Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 44 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
44
Dung lượng
3,7 MB
Nội dung
Chuyển pha chơng 1: nhiệt động học Biên soạn: PGS Nguyễn Hồng HảI ĐHBK Hà nội Phân loại vật chất theo trạng thái Vật chất Chất lỏng Chất rắn Vô Kim loại Chất khí Hữu Thuỷ tinh & gốm Polyme Gỗ Hanoi University of Science and Technology Kinetic processes in materials Materials Science and Engineering Nguyen Hong Hai 12 CHNG I NHIT NG HC (thermodynamics) Chuyn pha Hỡnh trỏi phn ỏnh khớa cnh vt lý ca : - Cỏc tớnh cht s dng (performance) cho ta bit vt liu cú hnh vi nh th no mụi trng lm vic; cỏc tớnh cht s dng c hin thc hoỏ bi cỏc c tớnh (properties) - Cỏc c tớnh t c thụng qua s hỡnh thnh cỏc pha vi nhng cu trỳc (structure) v hỡnh thỏi khỏc - Cu trỳc v t chc t c nh cỏc quỏ trỡnh ch to v x lý (processing) vt liu vi thnh phn hoỏ hc (chemistry) c thit k Trong hai vũng trũn ngoi cựng cú liờn quan n mụi trng thỡ vũng trũn liờn qua trc tip n cu t then cht ca MSE l crystallography, kinetics v thermodynamics, nh c ch trờn hỡnh phi; Nú cho ta thy s thit yu ca thermodynamics v kinetics nh cỏc thnh phn ct lừi ca MSE Chỳng cng l c s cho vic mụ hỡnh hoỏ v thit k vt liu a kớch thc (multiscale), a cu t (multicomponent) Cng tin vo tõm mc khú ca mụn hc cng tng Chuyn pha CHNG I NHIT NG HC (thermodynamics) 1.1 M U Nhiệt động học xảy ra, tức trình trạng thái cân Có câu hỏi mà nhiệt động học phảI trả lời: Hệ có trạng tháI cân hay không? Các điều kiện mặt lợng để phản ứng (hoặc chuyển biến) xảy Để hiểu đợc trình đông đặc không cân nhiệt động học cần phải xa với giả thiết trạng thái cân dới ứng suất, mà nhiệt động học đợc áp dụng cho trình riêng biệt trình khác đợc coi xảy với tốc độ vô nhỏ nhìn chung không xảy Một thí dụ việc áp dụng nhiệt động học cho hình thành pha giả ổn định Tất nhiên, nhiệt động học đợc áp dụng theo cách cần thận trọng đánh giá đắn giả thiết thực nghiệm Chuyn pha CHNG I NHIT NG HC (thermodynamics) 1.1 M U Cỏc khỏi nim nhit ng hc H: t hp ca mt hay nhiu pha Pha: mt phn ca h cú tớnh cht v thnh phn ng nht v tỏch bit vi cỏc phn khỏc ca h v mt vt lý A356 CHNG I NHIT NG HC (thermodynamics) 1.1 M U Cỏc khỏi nim nhit ng hc T, 0C l+ 1538 Cu t: cỏc nguyờn t hoc cỏc hp cht húa hc to nờn mt h Thnh phn ca mt pha hay ca mt h cú th c xỏc nh thụng qua hm lng mi cu t 14870 B 1394 l N l+ l + Fe3C 11480 E G 912 + P C F + Fe3C 7270 S K + Fe3C Fe3 C 500 Fe %C CHNG I NHIT NG HC (thermodynamics) 1.1 M U Cỏc khỏi nim nhit ng hc Chuyn pha: mt hoc nhiu pha hp kim (trong h) chuyn thnh mt pha mi hoc mt t hp pha mi -Al5FeSi Stable - Al8Fe2Si Desired In reality Unstable iu gỡ quyt nh s n nh ca pha? CHNG I NHIT NG HC (thermodynamics) 1.1 M U Năng lợng tự Gibbs: G = H - TS (1.1) H = E + PV (E: ni nng) Vì PV H ~ E Một hệ ổn định có enthalpy thấp entropy cao Một hệ đgl nằm trạng thái cân nằm trạng thái ổn định nhiệt độ áp suất không đổi hệ đóng (tức có khối lợng thành phần không đổi) nằm trạng thái cân ổn định có giá trị lợng tự Gibbs nhỏ nhất; Nếu viết dới dạng toán ta có: dG = Chuyn pha (1.2) CHNG I NHIT NG HC (thermodynamics) 1.4 CN BNG TRONG H KHễNG NG NHT G Thụng thng A v B khụng cú cựng cu trỳc tinh th; ú ta phi v ng cong nng lng t c d a Hỡnh thỏi n nh ca A v B nguyờn cht ti nhit v ỏp sut xỏc nh c ký hiu l v T hỡnh b) cú th thy rng hp kim giu A s cú nng lng t thp hn nng lng t ca pha ng nht v hp kim giu B s cú nng lng t thp hn nng lng t ca pha ng nht Chuyn pha Gmix e G A a) B X G c d a b G G b) A XB B CHNG I NHIT NG HC (thermodynamics) 1.4 CN BNG TRONG H KHễNG NG NHT Th nng húa hc Nếu lợng nhỏ A, thí dụ dnA mol, đợc bổ sung vào pha lớn nhiệt độ áp suất không đổi kích thớc hệ tăng lợng dnA lợng tự tổng hệ tăng lợng nhỏ dG Nếu dnA đủ nhỏ thì: dG = A dnA Hệ số tỷ lệ A đgl lợng tự riêng phần A hay hoá học A pha A phụ thuộc vào thành phần hoá học pha Đối với hợp kim nguyên hoá học nguyên tố A B đợc viết nh sau: A B (T,P,nB = const) G n ' A T , P , n B G n ' T , P , n A B Lu ý: Ký hiệu G dùng để lợng tự toa`n hệ thống Ký hiệu G dùng để lợng tự theo mol Chuyn pha CHNG I NHIT NG HC (thermodynamics) 1.4 CN BNG TRONG H KHễNG NG NHT Th nng húa hc Nh vậy, hoá học thay đổi lợng tự toàn hệ thống (G) lợng vô nhỏ thành phần đợc bổ sung cách thuận nghịch (bổ sung theo mole, nA nB) Đối với hệ hai nguyên ta cộng thành phần: dG = A dnA + B dnB (1.13) Nếu A B đợc bổ sung theo tỷ lệ định kích thớc hệ tăng mà A B không thay đổi; Khi từ 2.13 ta có: Chuyn pha G = A XA + BXB J mol-1 (1.14) CHNG I NHIT NG HC (thermodynamics) 1.4 CN BNG TRONG H KHễNG NG NHT Th nng húa hc G2 = XAGA + XBGB + RT (XA lnXA + XBlnXB) (1.12) G = A XA + B XB (1.14) ối với dung dịch lý tởng: A = GA + RT lnXA B = GB + RT ln XB Chuyn pha (1.15) CHNG I NHIT NG HC (thermodynamics) 1.4 CN BNG TRONG H KHễNG NG NHT Nếu nguyên tử đợc xếp nh mt pha đồng nhất, lợng tự G0 G0 mole Tuy nhiên hệ hạ thấp lợng tự nguyên tử đợc chia pha với thành phần, thí dụ, v Năng lợng tự hệ giảm xuống G1 Có thể tiếp tục giảm lợng tự nguyên tử A B trao đổi v đạt đợc thành phần e v e Năng lợng tự Ge hệ minimum, không cần thay đổi thêm Nh hệ nằm trạng tháI cân e e nồng độ cân pha v Chuyn pha Ta xét hợp kim X0 CHNG I NHIT NG HC (thermodynamics) 1.4 CN BNG TRONG H KHễNG NG NHT Kết phù hợp với hợp kim có thành phần nằm e e Nếu thành phần hợp kim nằm vùng lợng tự thấp nằm đờng cong G G; trạng tháI cân hợp kim đơn pha đồng Từ hình bên thấy trạng thái cân pha đòi hỏi đờng tiếp tuyến với đờng cong G tiếp tuyến chung Nói cách khác cấu tử cần có hoá học pha; nói cách khác, trờng hợp cân hệ không đồng nhất: G0 G G1 G1 G0 G1 a) A X0 B G0 A Ge G0 Ge B Ge A = A, B = B b) Chuyn pha G A e X0 e B CHNG I NHIT NG HC (thermodynamics) 1.4 CN BNG TRONG H KHễNG NG NHT nhiệt độ không đổi, lợng tự pha có mặt hợp kim gồm nguyên tố A B hàm thành phần, nh đợc cách sơ đồ hình bên Điều kiện quan trọng cho cân hoá học cần có giá trị nh điểm Chuyn pha Có khả cân pha khoảng nhiệt độ cân pha nhiệt độ Năng lợng tự theo mole nh hàm thành phần hoá học hợp kim nguyên nhiệt độ không đổi CHNG I NHIT NG HC (thermodynamics) 1.4 CN BNG TRONG H KHễNG NG NHT Để chuyển từ trạng thái ban đầu với lợng tự G1 sang trạng thái cuối với lợng tự G2 nguyên tử phải thay đổi lợng tự giá trị: G = G2 - G1 Tuy nhiên trớc đạt đợc trạng thái cân ổn định với lợng tự G2, nguyên tử cần trạng thái chuyển tiếp hay trạng thái kích hoạt với lợng tự cao G1 giá trị Ga Quá trình đgl kích hoạt nhiệt Ga đgl hàng rào lợng tự kích hoạt (activation free energy barrier) Chuyn pha CHNG I NHIT NG HC (thermodynamics) 1.5 NG HC QU TRèNH CHUYN PHA Xác suất nguyên tử đạt đợc trạng thái kích hoạt đợc cho hàm mũ: G a rate exp kT k: số Bolztmann = R/Na Tốc độ chuyển biến phụ thuộc vào tần suất nguyên tử đạt đợc trạng thái kích hoạt: tốc độ chuyển biến exp(-Ga /kT) Đặt Ga = Ha - TSa chuyển từ đại lợng mức nguyên tử sang mức mole ta có phơng trình động học Arrhenius H a rate exp kT Chuyn pha 1.8 15 g Au v 25 g Ag c pha trn to thnh dung dch rn lý tng n pha a) Cú bao nhiờu mole dung dch? b) T phn theo mole ca Au v Ag l bao nhiờu? c) Entropy pha trn theo mole l bao nhiờu? d) Entropy pha trn tng l bao nhiờu? e) S thay i nng lng t theo mole 5000 C l bao nhiờu? f) Th nng húa hc ca Au v Ag 500 0C l bao nhiờu nu gi thit rng nng lng t ca Au v Ag nguyờn cht bng 0? g) Nng lng t ca dung dch s thay i nh th no 5000 C nu nguyờn t ng c thờm vo dd? (tớnh eV/nguyờn t) Bit trng lng nguyờn t ca Au l 197 v ca Ag l 108 a) S mol Au = 15/197 = 0,076 S mol Ag = 25/108 = 0,231 S mol dung dch = 0,307 b) T phn theo mol ca Au = 0,076/0,307 = 0,248 T phn theo mol ca Ag = 0,231/0,307 = 0,752 c) Entropy pha trn theo mol Smix = -R (XAlnXA + XBlnXB) = - 8,314 (0,248.ln0,248 + 0,752.ln0,752) = 4,66 JK-1mol-1 Chuyn pha d) Entropy pha trn tng l bao nhiờu? e) S thay i nng lng t theo mole 5000 C l bao nhiờu? f) Th nng húa hc ca Au v Ag 500 0C l bao nhiờu nu gi thit rng nng lng t ca Au v Ag nguyờn cht bng 0? g) Nng lng t ca dung dch s thay i nh th no 5000 C nu nguyờn t vng c thờm vo dd? (tớnh eV/nguyờn t) d) Entropy pha trn tng = entropy pha trn theo mol x s mol = 4,66 0,307 = 1,43 J K-1 e) S thay i nng lng t theo mole 5000 C = Gmix = -RT (XAlnXA + XBlnXB) = -TSmix = -773.4,66 = - 3,6 kJ mol-1 f) Au = GAu + RTlnXAu = + (8,314 773 ln0,248) = - 8,96 kJ mol-1 Ag = GAg + RTlnXAg = + (8,314 773 ln0,752) = - 1,83 kJ mol-1 g) Nu b sung mt lng rt nh Au thỡ s thay i nng lng t ca dung dch dG = A dnA (T,P,nB = const) Ti 5000: Au = 8,96 kJ mol-1 , s Avogadro = 6,023 1023, 1eV = 1,6 10-19 J G ' Au Chuyn pha 8,96.103 eV / nguyentu 19 23 1,6.10 6,023.10 CHNG I NHIT NG HC (thermodynamics) 1.6 TH D 12 hũa tan ca Si nhụm 5500C l 1,25 at% v 4500 C l 0,46 at% hũa tan ú l bao nhiờu 2000 C? Gi thit Xsi = A exp (-Q/RT) lnXSi = ln A Q/RT 5500 C (823 K): ln 1,25 = ln A Q/(8,314 823) 4500 C (723 K): ln 0,46 = ln A Q/(8,314 723) Q = 49,45 kJ mol-1; A = 1721 Vy 2000 C (473K): XSi = 1721.exp -(49450/8,314.473) = 0,006 at% Theo gin pha hũa tan < 0,01 at% Chuyn pha 1.14 ng lng phi b quỏ ngui bao nhiờu mt mm cú ng kớnh sau cú th ln lờn: a) m b) nm Nhit núng chy ca ng 1085 0C Trng lng nguyờn t 63,5 Trng lng riờng 8900 kg m-3 Nng lng mt phõn cỏc rn lng = 0.144 j m-2 n nhit núng chy L = 13.300 J mol-1 Nu pha rn cú dng cu bỏn kớnh r thỡ nng lng t ca nú s tng mt lng 2Vm G G G r S r S S ln lờn ca pha rn phi dn n s gim nng lng t ca h: GrS < GL, hay G = GL GrS = S.T = (L/Tm).T LT 2Vm Tm r Th cỏc giỏ tr s vo ta cú: 2VmTm T rL T (r = m) > 0,2 K T (r = nm) > 200 K Chuyn pha CHNG I NHIT NG HC (thermodynamics) 1.6 TH D Nng ln g t theo mol, G 2Vm r GrS Tmin T Chuyn pha GL TM G S Nhit , T CHNG I NHIT NG HC (thermodynamics) 1.6 TH D 1.15 Gi s mt hp kim nguyờn cha 40 at% nguyờn t A, 20 at% B v 40 at% C ụng c to thnh cựng tinh nguyờn vi cỏc pha: cha 80 at% A, 10 at% B v 15 at% C cha 10 at% A, 70 at% B v 15 at% C cha 10 at% A, 20 at% B v 70 at% C T phn theo mole ca , , t chc t vi l bao nhiờu? A: 0.4 = 0,8 X + 0,1 X + 0,1 X B: 0.2 = 0,1 X + 0,7 X + 0,2 X C: 0.4 = 0,15 X + 0,15 X + 0,7 X Chuyn pha X = 0,43 X = 0,13 X = 0,44 [...]... sau: Cp = 22,64 + 6,28 x 10 -3 T J mol -1 K -1 Entropy ca ng s tng bao nhiờu khi nhit tng t 300 lờn 13 58 K? S T2 T1 13 58 S30 013 58 300 CP dT T 22,64 6,28 .10 3 T dT T 3 22,64 ln T 6,28 .10 T 40,83Jmol 1 K 1 Chuyn pha 13 58 300 CHNG I NHIT NG HC (thermodynamics) 1. 2 KIM Loại nguyên chất 1. 2 .1 Năng lợng tự do Gibss nh hàm của nhiệt độ (áp suất không đổi) Lu ý: 1 nhit Tm c 2 pha rn v lng u cú cựng... rn l 7,6x 10 -6 m3 n nhit núng chy: 13 ,05 kJ mol -1 Nhit núng chy 10 85 0C H = HL HS = 13 050 J mol -1 TP TM V P H V = VL VS = (8 7,6) 10 -6 m3 Tm = (10 85 + 273) = 13 58 K P = 10 kbar = 10 9 Nm-2 T = 42 K Chuyn pha CHNG I NHIT NG HC (thermodynamics) 1. 2 KIM Loại nguyên chất 1. 2.2 Lực điều khiển quá trình nh hng ca ỏp sut ti quỏ trỡnh kt tinh ca C Chuyn pha CHNG I NHIT NG HC (thermodynamics) 1. 2 KIM Loại... nguyên tử A và B pha trộn lẫn nhau để tạo dung dịch rắn đồng nhất Khi đó: G2 = G1 + Gmix Gmix là sự thay đổi năng lợng tự do Gibbs do pha trộn G1 = H1 - TS1 G2 = H2 - TS2 Hmix = H2 - H1 Smix = S2 - S1 Gmix = Hmix - TSmix (1. 8) (1. 9) Hmix là nhiệt thảI ra hoặc hấp thụ trong quá trình pha trộn, và đgl nhiệt pha trộn Chuyn pha CHNG I NHIT NG HC (thermodynamics) 1. 3 HP KIM 2 NGUYấN 1. 3 .1 Sự thay đổi năng... (1. 13) Nếu A và B đợc bổ sung theo một tỷ lệ đã định thì kích thớc của hệ có thể tăng mà A và B không thay đổi; Khi đó từ 2 .13 ta có: Chuyn pha G = A XA + BXB J mol -1 (1. 14) CHNG I NHIT NG HC (thermodynamics) 1. 4 CN BNG TRONG H KHễNG NG NHT Th nng húa hc G2 = XAGA + XBGB + RT (XA lnXA + XBlnXB) (1. 12) G = A XA + B XB (1. 14) ối với dung dịch lý tởng: A = GA + RT lnXA B = GB + RT ln XB Chuyn pha (1. 15)... dịch lý tởng nhiệt pha trộn bằng 0: Hmix = 0 Gmix = -TSmix Tìm Smix từ các mối quan hệ sau: S = k ln k: hng s Boltzmann NA = XA Na ; N A N B ! N A! N B ! NB = XB Nb Smix = -R (XAlnXA + XBlnXB) (1. 10) Gmix = RT (XAlnXA + XBlnXB) (1. 11) Chuyn pha CHNG I NHIT NG HC (thermodynamics) 1. 3 HP KIM 2 NGUYấN 1. 3.2 Dung dịch lý tởng G2 = G1 + Gmix G2 = XAGA + XBGB + RT (XAlnXA + XBlnXB) (1. 12) Nhn xét: Khi... giả sử 1 mol dung dịch rắn đồng nhất bao gồm XAmol A và XB mol B Để tính năng lợng tự do của hợp kim, quá trình pha trn đợc thực hiện theo 2 bớc: XA + XB = 1 XA và XB đgl tỷ phần theo mol của A và B 1 XA mol A và XB mol B tạo một hệ nhng cha pha trộn Khi đó năng lợng tự do của hệ đợc tính nh sau: Chuyn pha G1 = XAGA + XBGB J.mol -1 (1. 7) CHNG I NHIT NG HC (thermodynamics) 1. 3 HP KIM 2 NGUYấN 1. 3 .1 Sự... nhiờu? 1. 2.2 Lực điều khiển quá trình ộ quá nguội, 0 C Kim loại ộ quá nguội, 0 C Kim loại ộ quá nguội, 0 C Hg 77 Sb 13 5 Mn 308 Ga 76 Ge 227 Ni 319 Sn 11 8 Ag 227 Co 330 Bi 90 Au 230 Fe 295 Pb 80 Cu 236 Pd 332 Al 19 5 Pb 80 Pt 370 Kim loại Độ quá nguội lớn nhất đạt đợc bằng cách phun kim loại lỏng Chuyn pha CHNG I NHIT NG HC (thermodynamics) 1. 2 KIM Loại nguyên chất 1. 2.2 Lực điều khiển quá trình Chỉ có 1 pha. .. 0 (1. 3) G, H và S là sự thay đổi năng lợng tự do, enthalpy và entropy, tơng ứng, trên một phân tử gam Nếu nhiệt độ T TM thì Chuyn pha G = H - T S 0 (1. 4) CHNG I NHIT NG HC (thermodynamics) 1. 2 KIM Loại nguyên chất 1. 2.2 Lực điều khiển quá trình Từ (1. 3) G = H - TM S = 0 ta có: H = TM S Tại T = Tm : H = L S = L/Tm đgl entropy nóng chảy i vi a s kim loi Sf R (8.3 J mol -1 K -1) Phối hợp vi (1. 1)... khi pha trộn trong các kim loại nguyên chất A và B chỉ có các mối liên kết A-A và B-B, bởi vậy sự thay đổi nội năng sẽ bằng: Hmix = PAB ở đây Chuyn pha = AB - 1/ 2 (AA + BB) (2 .16 ) CHNG I NHIT NG HC (thermodynamics) 1. 3 HP KIM 2 NGUYấN Hmix = PAB = AB - 1/ 2 (AA + BB) 1. 3.4 Dung dịch đều Nu = 0, Hmix = 0, dung dch l lý tng, cỏc nguyờn t sp xp hon ton ngu nhiờn v: PAB = NazXAXB liờn kt.mol -1 (2 .17 )... pha CHNG I NHIT NG HC (thermodynamics) 1. 2 KIM Loại nguyên chất 1. 2.2 Lực điều khiển quá trình GL = HL - TSL GS = HS - TSS Tại nhiệt độ T: G = H - TS, [J.mol -1] H = H L HS S = SL- SS G đợc coi là lực điều khiển đối với quá trình đông đặc Chuyn pha CHNG I NHIT NG HC (thermodynamics) 1. 2 KIM Loại nguyên chất 1. 2.2 Lực điều khiển quá trình Sự thay đổi năng lợng tự do khi pha rắn đợc hình thành từ pha