1. Trang chủ
  2. » Giáo Dục - Đào Tạo

current practice of gas chromatography mass spectrometry

519 648 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 519
Dung lượng 3,93 MB

Nội dung

ISBN: 0-8247-0473-8 This book is printed on acid-free paper Headquarters Marcel Dekker, Inc 270 Madison Avenue, New York, NY 10016 tel: 212-696-9000; fax: 212-685-4540 Eastern Hemisphere Distribution Marcel Dekker AG Hutgasse 4, Postfach 812, CH-4001 Basel, Switzerland tel: 41-61-261-8482; fax: 41-61-261-8896 World Wide Web http:/ /www.dekker.com The publisher offers discounts on this book when ordered in bulk quantities For more information, write to Special Sales/Professional Marketing at the headquarters address above Copyright  2001 by Marcel Dekker, Inc All Rights Reserved Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage and retrieval system, without permission in writing from the publisher Current printing (last digit): 10 PRINTED IN THE UNITED STATES OF AMERICA Preface Combined gas chromatography–mass spectrometry (GC–MS) is a powerful tool for the quantitative and qualitative analysis of a wide variety of relatively volatile compounds It is a mature technique, showing excellent perspectives in a variety of application areas The purpose of this book is to give insight into the actual practice of GC–MS in a number of these application areas Specialists in these fields were asked to contribute a chapter, briefly describing the state of the art of the application of GC–MS in their field and to illustrate this with results from their own research This book, therefore, provides a useful guide to the current practice of GC–MS as well as a good perspective on how GC–MS is actually used by researchers in a wide variety of application areas In this way, this book differs from other books published on GC–MS The 20 chapters of this book can be classified into five parts The text starts with principles and instrumentation for GC–MS, paying attention to general aspects (Ch 1) and surface ionization for GC–MS (Ch 2) Industrial and environmental applications of GC–MS are dealt with in the following six chapters Upstream and downstream applications of GC–MS in the petroleum industry are described in Chapter The identification of chlorinated compounds in the environment is described in two chapters, applying either quadrupole ion-trap technology (Ch 4) or high-resolution sector instruments (Ch 5) The use of large-volume injection and on-line solid-phase extraction combined with GC–MS for the analysis of microcontaminants in water samples is described in Chapter Two chapters deal with the use of GC–MS in occupational and environmental health assessment—Chapter in relation to the biological monitoring of 1-nitropyrene, and Chapter with the principles and use of solid-phase microextraction in studies related to occupational exposure to chemicals The next five chapters deal with pharmaceutical and clinical applications of GC–MS, paying attention to automated sample pretreatment procedures for rapid GC–MS of drugs (Ch 9), multidimensional detection strategies in the analysis of anesthetics (Ch 10), the use of stable isotope-ratio GC–MS in clinical applications (Ch 11), steroid profiling in relation to a variety of diseases iii iv Preface (Ch 12), and screening of inborn errors of metabolism (Ch 13) Toxicological and forensic applications of GC–MS are discussed in three chapters, dealing with clinical and forensic toxicology (Ch 14), drugs of abuse (Ch 15), and explosives (Ch 16) The last four chapters are devoted to food-related applications, paying attention to the analysis of flavors and fragrances (Ch 17), principles and applications of residue analysis of veterinary hormones (Chs 18 and 19), and the identification of monoterpenes and sesquiterpenes (Ch 20) Current Practice of Gas Chromatography–Mass Spectrometry covers a wide variety of application areas and discusses problems in relation to these applications (e.g., concerning sample pretreatment, analyte derivatization, gas chromatographic separation, and various mass spectrometric approaches to obtain the best possible results) The various contributors succeeded in providing a full perspective on the practice of GC–MS It was a pleasure to work with them on this project and I would like to thank them for their efforts I hope that the reader will benefit from this collection of chapters For those working in a particular application area, the book provides an up-to-date overview Also, other chapters give additional ideas to solve analytical problems Readers will get a good perspective on how GC–MS is used in various application areas and what type of results can be expected W M A Niessen Contents Preface Contributors iii ix Part I: Principles and Instrumentation of Gas Chromatography–Mass Spectrometry Principles and Instrumentation of Gas Chromatography–Mass Spectrometry W M A Niessen Principles and Applications of Surface Ionization in Gas Chromatography–Mass Spectrometry Toshihiro Fujii 31 Part II: Industrial and Environmental Applications Gas Chromatography–Mass Spectrometry in the Petroleum Industry C S Hsu and D Drinkwater 55 Analysis of Dioxins and Polychlorinated Biphenyls by Quadrupole Ion-Trap Gas Chromatography–Mass Spectrometry J B Plomley, M Lausˇevic, and R E March 95 Gas Chromatography–Mass Spectrometry Analysis of Chlorinated Organic Compounds M T Galceran and F J Santos 117 v vi On-Line Solid-Phase Extraction–Capillary Gas Chromatography–Mass Spectrometry for Water Analysis Thomas Hankemeier and Udo A Th Brinkman Gas Chromatography–Mass Spectrometry in Occupational and Environmental Health Risk Assessment with Some Applications Related to Environmental and Biological Monitoring of 1-Nitropyrene P T J Scheepers, R Anzion, and R P Bos Application of Solid-Phase Microextraction–Gas Chromatography–Mass Spectrometry in Quantitative Bioanalysis Paola Manini and Roberta Andreoli Contents 155 199 229 Part III: Pharmaceutical and Clinical Applications Gas Chromatography–Mass Spectrometry of Drugs in Biological Fluids After Automated Sample Pretreatment M Valca´rcel, M Gallego, and S Ca´rdenas 10 Gas Chromatography–Mass Spectrometry Analysis of Anesthetics and Metabolites Using Multidimensional Detection Strategies M De´sage and J Guitton 247 267 11 Gas Chromatography–Mass Spectrometry in Clinical Stable Isotope Studies: Possibilities and Limitations F Stellaard 285 12 Clinical Steroid Analysis by Gas Chromatography–Mass Spectrometry Stefan A Wudy, Janos Homoki, and Walter M Teller 309 13 Gas Chromatography–Mass Spectrometry for Selective Screening for Inborn Errors of Metabolism Joărn Oliver Sass and Adrian C Sewell 341 Contents vii Part IV Toxicological and Forensic Applications 14 Applications of Gas Chromatography–Mass Spectrometry in Clinical and Forensic Toxicology and Doping Control Hans H Maurer 355 15 Detection of Drugs of Abuse by Gas Chromatography–Mass Spectrometry Jennifer S Brodbelt, Michelle Reyzer, and Mary Satterfield 369 16 Gas Chromatography–Mass Spectrometry Analysis of Explosives Shmuel Zitrin 387 Part V Food-Related Applications 17 Gas Chromatography–Mass Spectrometry Analysis of Flavors and Fragrances M Careri and A Mangia 18 Gas Chromatography–Mass Spectrometry for Residue Analysis: Some Basic Concepts H F De Brabander, K De Wasch, S Impens, R Schilt, and M S Leloux 409 441 19 Applications of Gas Chromatography–Mass Spectrometry in Residue Analysis of Veterinary Hormonal Substances and Endocrine Disruptors R Schilt, K De Wasch, S Impens, H F De Brabander, and M S Leloux 455 20 Identification of Terpenes by Gas Chromatography–Mass Spectrometry A Orav 483 Appendix Index 495 499 Contributors Roberta Andreoli University of Parma, Parma, Italy R Anzion University of Nijmegen, Nijmegen, The Netherlands R P Bos University of Nijmegen, Nijmegen, The Netherlands Udo A Th Brinkman Free University, Amsterdam, The Netherlands Jennifer S Brodbelt University of Texas, Austin, Texas S Ca´rdenas University of Co´rdoba, Co´rdoba, Spain M Careri University of Parma, Parma, Italy H F De Brabander University of Gent, Merelbeke, Belgium M De´sage Universite´ Claude Bernard, Lyon, France K De Wasch University of Gent, Merelbeke, Belgium D Drinkwater BASF Corporation, Princeton, New Jersey Toshihiro Fujii Tsukuba, Japan National Institute for Environmental Studies, Onogawa, M T Galceran University of Barcelona, Barcelona, Spain M Gallego University of Co´rdoba, Co´rdoba, Spain ix Identification of Terpenes 493 of the identification of terpenoic constituents of yarrow oil and percentage quantities of peaks are presented in Table The yarrow oil was a complex mixture of approximately 100 compounds, 65 of which were identified as representing up to 90% of the total oil The main groups of components in this oil were monoterpenes (55%), while oxygenated sesquiterpenes constituted 20%, sesquiterpenes 12%, and oxygenated monoterpenes 6% of the total The peaks of the main components in oil, sabinene, and β-pinene overlapped on OV-101 column, but were separated on PEG 20M The peaks of limonene and 1,8-cineole also overlapped on OV-101, but from the PEG 20M data it can be concluded that 1,8-cineole constituted about 10% and limonene only 0.4% in this yarrow sample The main difficulties occurred in the identification of sesquiterpenes and oxygenated sesquiterpenes There are many overlapping peaks (especially on OV-101 column) and insufficient literature on RI data in the polar phase for sesquiterpenes and oxygenated sesquiterpenes in these regions of the chromatograms ACKNOWLEDGMENT We thank Dr M Muăuărisepp for performing GCMS analyses REFERENCES Y Masada, Analysis of Essential Oils by Gas Chromatography and Mass Spectrometry, 1976, Wiley, New York P Sandra and C Bicchi (eds.), Capillary Gas Chromatography in Essential Oil Analysis, 1987, Huetig, Heidelberg, Germany R.P Adams, Identifications of Essential Oil Components by Gas Chromatography/ Mass Spectrometry, 1995, Allurd, Carol Stram, IL V.A Isidorov, I.G Zenkevich, E.N Dubis, A Slowikowski, and E Wojciuk, J Chromatogr A, 814 (1998) 253–260 I.G Zenkevich, Rastit Resur., 32 (1996) 48–58 I.G Zenkevich, Rastit Resur., 33 (1997) 16–28 N.W Davies, J Chromatogr A, 503 (1990) 1–24 A Srinivara Rao, B Rajanikanth, and R Seshadri, J Agric Food Chem., 37 (1989) 740–743 J.-L Le Quere and A Latrasse, J Agric Food Chem., 38 (1990) 3–10 10 J.H Loughrin, T.R Hamilton-Kemp, R.A Andersen, and D.F Hildebrand, J Agric Food Chem., 38 (1990) 455–460 11 P.R Venskutonis, A Dapkevicius, and M Baranauskiene, in G Charalambous (ed.), Food Flavours: Generation, Analysis and Process Influence, 1995, Elsevier, Amsterdam, pp 833–847 494 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 Orav P.R Venskutonis, J Essent Oil Res., (1996) 91–95 V.K Kaul, B Singh, and R.P Sood, J Essent Oil Res., (1996) 101–103 M.F Kerslake and R.C Menary, Perfum Flavor., (1985) 13–24 K Yamaguchi and T Shibamoto, J Agric Food Chem., 29 (1981) 366–370 A Koyasako and R.A Bernhard, J Food Sci., 48 (1983) 1807–1812 C Bicchi, C Frattini, G.M Nano, and A.D Amato, J High Resolut Chromatogr., 11 (1988) 56–60 L Maat, E.J.M Straver, T.A van Beek, M.A Posthumus, and F Piozzi, J Essent Oil Res., (1992) 615–621 N Chanegriha and A Baaliouamer, J Chromatogr A, 633 (1993) 163168 I Nykaănen, Z Lebenm Unters Forsch., 183 (1986) 267272 I Loayza, D Abujder, R Aranda, J Jakupovic, G Collin, H Deslauriers, and F.-I Jean, Phytochemistry, 38 (1995) 381–389 R.G Binder and R.A Flath, J Agric Food Chem., 37 (1989) 734–736 E Stashenko, N Quiroz Prada, and J.R Martinez, J High Resolut Chromatogr., 19 (1996) 353–358 P.R Venskutonis, A Dapkevicius, and T.A van Beek, J Essent Oil Res., (1996) 211–213 C Blanco Tirado, E.E Stashenko, M.Y Combariza, and J.R Martinez, J Chromatogr A, 697 (1995) 501–513 R.G Berger, F Drewert, and H Kollmannsberger, Z Lebensm Unters Forsch., 188 (1989) 122–126 A.L Morales, D Albarracin, J Rodriquez, and C Dugue, J High Resolut Chromatogr., 19 (1996) 585–587 R.L Miller, D.D Bilss, and R.G Buttery, J Agric Food Chem., 37 (1989) 1476– 1479 Chu-Chin Chen and Chi-Thang Ho, J Agric Food Chem., 36 (1988) 322–328 A Padrayuttawat and H Tamura, J High Resolut Chromatogr., 19 (1996) 365– 369 Y Holm, R Hiltunen, and I Nykaănen, Flavour Fragrance J., (1988) 109112 M.Y Combariza, C Blanco Tirado, and E Stashenko, J High Resolut Chromatogr., 17 (1994) 643–646 M Sakho, J Crouzet, and S Seck, J Food Sci., 50 (1985) 548–550 V.O Elias, B.R.T Simoneit, and J.N Cardoso, J High Resolut Chromatogr., 20 (1997) 305–309 E Stashenko, H Wiame, S Dassy, and J.R Martinez, J High Resolut Chromatogr., 18 (1995) 54–58 E Tudor, J Chromatogr A, 779 (1997) 287–297 A Orav, K Kuningas, and T Kailas, J Chromatogr A, 697 (1995) 495–499 A Orav, T Kailas, and M Liiv, Chromatographia, 43 (1996) 215–219 Appendix AC ACE AED AGC AMS AP ASI ASTED AT-II beta-BSCD beta-TBDM BSA BSTFA BTEX CAH CFS CI CID CSP DHS DMA DPA DSI ECD ECNI EI ELCD FI FID FTIR FTR GC acetylation angiotensin converting enzyme atomic emission detector automatic gain control accelerator mass spectrometry appearance potential associative surface ionization automated sequential trace enrichment of dialysates angiotensin receptor II blocker tert-butyl dimethylsilylated-beta-cyclodextrin heptakis (6)-tert-butyl-dimethylsilyl-2,3-di-O-methyl)-beta-cyclodextrin bis-trimethylsilylacetamide N,O,-bis-trimethylsilyl-trifluoroacetamide benzene, toluene, ethylbenzene and xylenes congenital adrenal hyperplasia continuous-flow systems chemical ionization collision-induced dissociation chiral stationary phases dynamic headspace dimethylamine diphenylamine dissociative surface ionization electron-capture detector electron-capture negative ionization electron ionization electrolytic conductivity detector field ionization flame-ionization detector Fourier-transform infrared fractional turnover rate gas chromatography 495 496 GC-C-IRMS GC-P-IRMS HFB HFBA HFBI HFIP HRGC HRMS HSD IASPE IE IR IRMS IS ITD IV LAAM LC LLE LMCO LOD LRMS LVI MBTFAN MFI MIDA MMA MS MSD MSI MS-MS MSTFA MTBSTFA NCI NMR NPD NSAID PBM PCB PCDD PCDF PCI PCSE PCT PDB PDMS Appendix GC-combustion-IRMS GC-pyrolysis-IRMS heptafluorobutyric ester, heptafluorobutyration heptaflurorbutyric anhydride heptafluorobutyric imidazole hexafluoroisopropranol high-resolution gas chromatography high-resolution mass spectrometry hydroxysteroid dehydrogenase immunoaffinity SPE ionization energy infrared isotope-ratio mass spectrometry internal standard ion-trap detector intravenous l-a-acetylmethadol liquid chromatography liquid-liquid extraction low-mass cut-off limit of detection low-resolution mass spectrometry large-volume injection methyl-bis-(trifluoroacetamide) multifrequency irradiation mass isotopomer distribution analysis monomethylamine mass spectrometry mass-selective detector molecular surface ionization tandem mass spectrometry N-methyl-N-trimethylsilyl-trifluoroacetamide N-methyl-N-ter-butyl-dimethylsilyl-trifluoroacetamide negative-ion chemical ionization nuclear magnetic resonance nitrogen-phosphorous detector nonsteroidal anti-inflammatory drug probability based matching polychlorobiphenyl polychlorodibenzo-p-dioxin polychlorodibenzofuran positive-ion cemical ionization partially concurrent solvent evaporation polychlorinated terphenyls Pee Dee Belemnite polydimethylsiloxane Appendix PFB PFB-Cl PFP PFPA PLOT PT PTV RF RI RSI S/N SCOT SDE SFE SFI SFM SI SIM SIOMS SPE SPETD SPME SRM STA SVE SVE TBA TDM TEA TEF TFA TFAA TIC TMCS TMS TNA TOF TSQMS WCOT WSCOT 497 pentafluorobenzyl pentafluorobenzoyl-chloride pentafluoro-1-propanol pentafluoropropionic acid anhydride porous-layer open-tubular column purge-and-trap programmed temperature vaporizer radiofrequency (Kovats) retention index reaction surface ionization signal-to-noise ratio suface-coated open-tubular column simultaneous steam distallation–extraction supercritical fluid extraction single-frequency irradiation secular frequency modulation surface ionization selection ion monitoring surface ionization organic mass spectrometry solid-phase extraction thermal-desorption SPE solid-phase microextraction selective reaction monitoring systematic toxicological analysis solvent vapour exit solvent-vapour exit tributylamine therapeutic drug monitoring thermal-energy analyser toxicity equivalent factor trifluoroacetylation trifluoroacetic anhydride total ion chromatogram trimethylchlorosilane trimethylsilyl, trimethylsilylation trimethylamine time-of-flight triple-stage quadrupole mass spectrometry wall-coated open tubular column wall-coated superior-capacity open-tubular column Index Acetic acid, 428 Acetone, 209, 424 Acetonitrile, N-morpholino-, 390 1α-Acetylmethadol, 378 Acridine, 44 Adenine, N-3-alkyl, 209 Aflatoxins, 219 Alachlor, 185 Aldehydes, 410–412, 427 Alfentanyl, 267, 273, 277 Alkaloids, 45 Alkylamines, 43–44 Alkylphenol ethoxylates, 473–474 Alphaprodine, 262 Ambient air analysis, 200–201, 202–207, 240–244 Amino acids, 45, 288, 291, 298–299 Aminoalcohols, 44 Ammonia, 209 Amphetamine, 252, 253, 358, 359, 364, 378–380 methylenedioxy, 364 Analgesics, 359 Androst-5-ene-3β,17β-16-keto, 314 Androst-5-ene-3β,17β-diol, 312, 314 5α-Androstane-3α,17α-diol, 315– 316 Androstanediol, 326, 329, 334, 464 4-Androstenedione, 326, 329, 333 Androstenedione, chloro, 461 Androstenetetrol, 314 Androstenetriol, 312 Androsterone, 312, 323–324 11-hydroxy, 312, 323, 325 11-oxo, 312 dehydro-epi- (DHEA), 312, 321, 325–326, 329, 334 15β,16α-dihydroxy, 314 16-α-hydroxy, 312, 314, 321 sulfate, 313, 329, 334–335 Anesthetics, 235–240, 267–281 Angiotensin converting enzyme inhibitors, 356 Angiotensin receptor II blockers, 356 Aniline, 35, 40, 163 dimethyl, 160, 171, 176 dinitro, 390–391 Anions azide, 399–400 chlorate, 399–400 cyanide, 399–400 disulphide, 399–400 hydrosulphide, 399–400 nitrate, 399–400, 405 nitrite, 399–400 sulphide, 399–400 thiocyanate, 399–400 499 500 Anisole chloro, 412, 430 nitro, 391 trichloro, 412, 430 Antiarrhythmics, 360 Anticonvulsants, 359 Antidepressants, 359, 361–362 Antihistamines, 360 Anti-inflammatory drugs, 252 Antiparkinsonian drugs, 359 Arachidonic acid, 298 Aromatics, 69–71, 76, 79–80, 86–87 Articaine, 267, 269 Atomic emission detection, 27, 189–191, 279–280 Atrazine, 49–50, 158, 176, 179 Automated cleanup, 252–263 Barbiturates, 170, 257, 356, 358– 359, 362–363, 381–383 Benzaldehyde, 45, 181 2-hydroxy, 430 trinitro, 391 Benzene, 66, 74, 238, 240–244 alkyl, 70–71, 169 chloro, 169, 171, 174, 176, 178, 431 nitro, 391 dinitro, 390 ethyl, 240–244 hexachloro, 163 methoxy, 178 trinitro, 388–391, 394–395 vinyl, 430 Benzodiazepines, 170, 183, 257, 261, 359, 362, 381 Benzoic acid, trinitro, 391 Benzoylecgonine, 257, 261, 375– 377 Benzyl alcohol, 45, 430 Beta-agonists, 356, 362, 363, 469– 471 Index Beta-blockers, 359–360, 362 Betamethasone, 466, 469 Bile acid, 293, 296, 299–300 Biomarker analysis, 59–68 Biphenyl 4-amino, 201, 219 polychlorinated, 106–114, 129, 201, 473 Bisabolene, 487 Bisabolol, 445, 489 Boldenone, dehydro, 460 Bornadienes, polychlorinated (see Toxaphene) Bornanes, polychlorinated (see Toxaphene) Bornenes, polychlorinated (see Toxaphene) Borneol, 438 Bromazepam, 381 Bromophos-ethyl, 171 BTEX Analysis, 240–245 Bupivacaine, 267, 274, 277 Butadiene, hexachloro, 163 Butanetriol trinitrate, 392 Butanoate, methyl, 429 Butanoic acid, 428 Butyric acid, 4-hydroxy, 343 Butyrolactone, 275 Butyrophenone, 360 Cadinene, 487 Cadinol, 489 Caffeine, 263 Camphene, 438 polychlorinated, 127, 136 Camphor, 438 Cannabidiol, 381 Cannabinoids, 380–381 Cannabinol, 380 delta-9-tetrahydro (THC), 380 Caproic acid, 2-oxo, 345 Carbamates, N-methyl, 163, 170 Index Carbaryl, 185 Carbazole, 44 Carbofuran, 185 Carbohydrates, 297–298 Caryophyllene, 487 oxide, 489 Chenodeoxycholic acid, 299– 300 Chlordecone, 473 Chlorpyrifos, 158 Cholestane, 65–66 Cholesterol, 296, 299–300, 310– 311 Cholesteryl butyrate, 315 Cholic acid, 293, 299 Cimaterol, 470 1,8-Cineole, 489, 493 Clenbuterol, 455, 467, 470–471 Clinazolam, 275 Clostebol, 460 Cocaethylene, 376 Cocaine, 257, 261, 262, 359, 362, 375–377 Codeine, 259, 262 Copaene, 438 Corticosteroids, 311–325, 466– 469 Corticosterone, 311, 313, 322 11-deoxy, 322 hydroxy, 322 tetrahydro, 312 -11-dehydro-, 312 Cortisol, 311–313, 316–317, 322, 325, 466, 469 (20α-dihydro), 325 20α-hydroxy, 312 6β-hydroxy, 312, 325 6-hydroxy, tetrahydro-11-deoxy, 321 deoxy, 321 tetrahydro, 312, 317, 322–325 -11-deoxy-, 312, 316 501 Cortisone, 322 hydroxy-tetrahydro-, 314 tetrahydro, 312, 314, 322 α-Cortol, 6β-Hydroxycortisol, 312 β-Cortolone, 312, 314, 322 α-Cortolone, 312, 322 6a-hydroxy, 314 Coumarin anticoagulants, 356, 363 Coumestans, 475 Coumestrol, 475 Cyclohexene, 44 Cyclonite, 389 Daidzein, 475 DDT, 473 Decalactone, 428 Decene, 432 Derivatization, 22–23, 86–87, 210, 252, 271–273, 315, 328, 345–346, 358–359, 372–374, 459–461, 469, 471, 472, 474 Designer drugs, 253, 359, 364, 378–380 Dexamethasone, 466, 469 Diazepam, 381 Diazinon, 473 Dibenzofuran, polychlorinated, 97–106 Dibenzo-p-dioxin, polychlorinated, 97–106, 473 Dibenzothiophenes, 76, 84–85 Dibucaine, 277 Diesel fuel emission, 79, 202–205 Diethylglycol-dinitrate, 401 Diethylstilbestrol, 455 Difluoromethoxy-2,2-difluoroacetic acid, 270, 273 Dihydropyridine calcium channel blockers, 356, 363 Dimethamphetamine, 380 Dimethoate, 171 502 Dimethyl disulphide, 428 Dimethylamine, 46–47 Dimethylenediphenyl diisocyanate, 201 Dioxins, 97–106, 143 Diphenol laxatives, 359 Diphenylamine, 36, 390 Dipicrylamine, 394 Diuretics, 356, 363 DNA adducts, 209, 215–222 Docosahexanoic acid, 298 Dodecalactone, 428 Dodecane, 43 Dodecene, 432 Drugs of abuse, 170, 247–263, 355–365, 369–384 Dynamic headspace, 411 Ecgonine, 261, 375–377 Edulans I and II, 417 Eltoprazine, 158 Enantiomeric analysis, 349–351, 416–417 Enflurane, 269, 273 EPA 8270 method, 75–76 Estradiol, 445–446, 456, 460, 472 Ethanol, 424 Ethion, 171 Ethyl acetate, 424, 428 Ethyl hexanoate, 429 Ethyl propionate, 424 Ethylene glycol dinitrate, 388, 392–396, 401 Ethylene oxide, 473 Etiocholanalone, 312 11-hydroxy, 312 Eucalyptol, 438 Explosives, zie False negative results, 444–445, 447–448 Index False positive results, 445–446, 448–451 Farnesene, 487 Farnesol, 490 Fatty acids, 288, 298, 424, 428– 429, 432 3-hydroxy, 201 Fenchone, 432 Fenfluramine, 383–384 Fentanyl, 267, 270–272, 276–280 Flavones, 475 Flavours, 409–410, 421–438 Fourier-transform infrared spectroscopy, 27, 280 Fragrances, 409–420 Fructose, 297 Furans, 97–106, 410–411, 428 Fusarium toxins, 201 GC, injection techniques, 3, 20– 22, 155–194 GC, on-line LLE, 162–163 GC, on-line SPE, 163–179 Genistein, 475 Geranyl acetate, 489 Germacrene D, 487 Glucose, 288, 297–298 Glutaric acid, L-2-hydroxy, 346, 349–351 Glycerol, 296–297 dinitrate, 392 trinitrate, 388 Glycine, 299, 302 Guaiacol, 430 Guanidine, nitro, 394 Guanine, N-7-alkyl, 209 Haemoglobin adducts, 215–222 Halothane, 235–240, 270 Heptan-2-one, 428 Heroin, 259, 377–378 Index Hexamethylenetriperoxidediamine, 398–399 Hexane, 207, 427 Hexogen, 389 Human breath analysis, 200–201, 207–209 Humulene, 487 Hydrazines, 32, 44 Hydrocortisone, 466 γ-Hydroxybutyrate, 267 Hypoglycemic sulfonylureas, 356, 363 Imipramine, 49 Immunoaffinity chromatography, 457 Indolalkylamines, 460 Indole, 44 Internal standard, stable isotope, 276, 286, 327 Ionization charge-exchange, 81–84 chemical, 11–13, 84 electron-capture NCI, 128–136, 142 field, 13, 84 surface, 31–54 Ion-trap application of, 95–114, 148, 185–187, 199–224, 348 instruments, 16–17, 96, 289, 416 Isoborneol, 2-methyl, 430 Isobutanoic acid, 428 Isobutyl acetate, 429 Isocamphone, 432 Isoflavones, 475 Isoflurane, 235–240 Isoprene, 57, 209 Isoprenoids, 60–62 Isosorbide dinitrate, 392 503 Isotope-ratio MS, 67–68, 285– 302, 410, 417–420 Isovaleric acid, 428 3-hydroxy, 346 Ketamine, 267, 270, 273–274, 277–278 Lactate, 297 Lactones, 159, 428 Lactose, 288, 297, 301 Lactulose, 288 Lamotrigine, 364 Large volume injection, 20–22, 155–194 LC-GC heart-cut, 158–162 techniques, 157–163 Leucine, 298–299 Lidocaine, 47–49, 262, 267, 270, 277 Limonene, 417, 420, 438, 493 -1,2-epoxide, 417 Linalol, 417, 489 Lindane, 176 Linoleic acid, 288–298, 412 Linolenic acids, 298, 412 Liquid–liquid extraction, 251, 343, 357, 372, 411 Lorazepam, 381 Lysergide, 381–383 Mabuterol, 470 Malathion, 473 Malonic acid, 345–346 Maltose, 288 Mebeverine, 159 Medazepam, 275 Mepivacaine, 277 Mercapturic acids, 209 Metallocenes, 45 504 Metalochlor, 185 Methadone, 262, 378 Methamphetamine, 252, 261, 262, 378–380 methylenedioxy, 364 Methanol, 209 Methaqualone, 364 Methoxychlor, 473 Methylamine, 44, 46–47 Methylene dianiline, 201 Methyl-N-methylanthranilate, 428 Methylpyrrole, 412 Methyl-t-butyl ether, 71 4-Methyltetrahydropyran, 2-(2methyl-1-propenyl), 417 Methylthiouracil, 471 Metriol trinitrate, 392, 401 Mevinphos, 170 Midazolam, 267, 272, 275 Mirtazapine, 361 Monoterpenes, 411, 416, 432, 438, 486–487 oxygenated, 489 Morphine, 259–260, 359, 362 MS analyte ionization, 10–13, 34– 37, 80–84 high-resolution, 15, 26–27, 84– 85, 136–142, 273–274 instrumentation, 10–18, 39–40, 289, 442–443 MS–MS, application of, 63–66, 97–104, 143–148, 374, 461 Multidimensional detection, 27– 28, 268–269 Muramic acid, 201 Muurolene, 487 Naphthalene, 66 1-nitro, 180 alkyl, 71 Index [Naphthalene] methyl, 427 nitro, 390 polychlorinated, 119 Narcotics, 247–263, 355–366, 369–384 Nerolidol, 489–490 Neuroleptics, 360 Nitramines, 388–389, 392–394, 396–398 Nitrate esters, 387–388, 392–398, 401 Nitro musks, 392 Nitrobenzonitril, 390 Nitrocellulose, 387–388 Nitrocresol, 390 Nitrofluoranthenes, 207 Nitroglycerin, 388, 392–398, 401 Nitroglycol, 388 N-Nitrosamines, 219 N-Nitrosomorpholine, 390 Nitrous oxide, 235 Nonane, 432 Non-steroidal anti-inflammatory drugs, 252, 259, 356–357, 363 Nonylphenol ethoxylates, 473–474 Noralfentanil, 277 Nordiazepam, 381 Norisoprenoids, 411 Norketamine, 270–271, 277–278 5,6-dehydro, 270–271, 277–278 Nortestosterone, 168, 445, 464 Oct-1-en-3-ol, 430–431 Oct-1-en-3-one, 430 Octanoic acid, 298 Octene, 432 Octogen, 389 Olefins, 57, 68–69, 87–91 Oleic acids, 412 Opiates, 256, 257, 359, 377–378 Index Opioids, 359 Organic acids, 160, 163, 171, 342–352 Organometallic compounds, 44–45 Oxazepam, 381 Oxoacids, 342, 345, 347 PAH, nitro, 201–202 Palmitic acid, 288, 293, 298 Paraffins, 69–71, 80, 88 Parathion, 473 Pentacaine, 274 Pentaerythritol, tetranitrate, 388, 392, 394–395, 398, 401 Pentan-2-one, 428 Pentane, 209 Perchloroethylene, 473 Pesticides, 49–50, 159, 163, 171, 179, 185–187, 191, 473 organochlorine, 119, 473 organophosphorous, 28, 163, 187, 191, 473 Phallandrene, 432, 486, 489 Phenanthrene, 76–78 Phencyclidine, 381–383 Phendimetrazine, 383–384 Phenol, 3-chloro-4-nitro, 180 chloro, 169, 430 dimethyl, 176 trinitro, 388 Phenols, 163, 170, 178, 183 Phenothiazine, 359 Phenylalanine, 299 Phospholipids, 299 Phthalate, 159, 171, 473 di(2-ethylhexyl), 201 Phytane, 62 Phytanic acid, 346 Phytoestrogens, 473–475 Picramide, N-methyl, 393–395, 398 Picric acid, 388, 394–395 505 Pinene, 417, 432, 438, 486, 493 PIONA, 69 Pipecolic acid, 287 Piperidine, 43 Polycyclic aromatic hydrocarbons, 44, 76–79, 201, 219 Porphyrins, 60–61 Pregn-5-ene,3β,17α,20α-triol, 312 Pregn-5-ene-3β,15β,17α-triol-20one, 314 Pregn-5-ene-3β,16α,diol-20-one, 314 Pregn-5-ene-3β,20α,21-triol, 314 Pregn-5-ene-3β,21-diol-20-one, 314 Pregnanediol, 312, 316 Pregnanetriol, 312, 316–317, 321 11-oxo, 312, 321 Pregnanolone, 17-hydroxy or 15hydroxy, 311–312, 321, 326 Pregnenediol, 312 Pregnenetetrol, 314 Pregnenetriol, 17-hydroxy, 321 Pregnenolone, 311 17α-hydroxy, 327, 329, 334 Prilocaine, 277 Pristane, 62 Process GC-MS, 72–74 Profiling plasma steroid, 326–332 urinary steroid, 313–326 Progesterone, 311, 313, 456, 473 17-hydroxy, 321, 326, 329, 332–333 Propanal, 3-methylthio, 428 Propionic acid, 428 Propofol, 267, 270, 273–275, 279 Propylene glycol dinitrate, 392 Purge-and-trap, 411 Purine bases, 45 506 Pyrazines, 411–415, 428 methoxy, 411 Pyrene amino, 206, 213–215 hydroxy-amino, 209–215 hydroxy-N-acetylamino, 209– 215 N-acetyl-1-amino, 214 nitro, 79, 202–209 nitro-4,5-dihydrodiol, 222 Pyrethroids, 170 Pyridine, 35, 40, 42–43, 44 Pyrolysis GC-MS, 66 Pyrrole, 44 Quadrupole instruments, 15–16, 289 Quaternary ammonium salts, 44 Quinol, 273, 275, 279 1,4-Quinol, 2,6-di-isopropyl, 270, 273 Quinoline, 44 Quinone, 79 Remifentanil, 267, 277 Residue analysis, 441–454 Resorcyl acid lactones, 461 Ropivacaine, 278 Rose oxide, 417 Sabinene, 417, 493 hydrate, 489 Sector instruments, 13–15, 289 Semtex, 392–393 Sesquiterpenes, 416, 431, 487– 488 oxygenated, 489–490 Sevoflurane, 235–240 Simazine, 171, 179 Simetryne, 49–50 Sinensal, 428 Index Sitostanol, 300 Solid-phase extraction, 202, 251, 343, 357, 372 Solid-phase micro-extraction, 229– 245, 251, 358, 372, 411 Somatotropins, 469 Soxhlet extraction, 202 Stanozolol, 457, 460 Steam distillation, 411 and extraction, 411, 490 Stearic acid, 298 Sterane, 60–66 Steroids, 60–66, 296–300, 309– 337, 445–448, 456–469 anabolic, 445, 456–466 sulphate, 3β-hydroxy-5-ene, 313 Sterol, 61 Stigmasterol, 315–316 Stilbene, 461 Styrene, 473 Sufentanil, 267, 273 Supercritical fluid extraction, 88– 89, 202, 411 Surface ionization, 31–54 Systematic toxicological analysis, 359–363 Tapazole, 471 Temazepam, 275, 381 Terpanes, 61–62, 66 Terpenes mono-, 411, 416, 432, 438, 483–493 sesqui-, 416, 431, 483–493 Terpenoids, 45 Terphenyl, polychlorinated, 117– 119, 125–127, 137–138, 143–145 Terpinen-4-ol, 417 Terpinene, 420 Index Terpineol, 417 Testosterone, 326, 328, 334, 456, 472 5α-dihydro-, 326, 329, 334 methyl, 448 tetrahydro, 464 9-Tetrahydrocannabinol, 380 11-hydroxy, 380 11-nor-9-carboxy, 380 N-Tetranitro-N-methylalanine, 389 Tetranitrotetrazacyclooctane, 389, 393–398 Tetryl, 389, 393–395, 398 Thiouracil, 471 Thujene, 438 Thymol, 274–275, 279 Thyreostatic agents, 471–472 Thyroxine, 471 Time-of-flight instruments, 17–18, 412–414 Tobacco smoke analysis, 203–204 Toluene, 35, 176, 191, 240–244, 390, 473 4-methoxy, 45 amino-dinitro, 390, 396 amino-nitro, 390 diamino-nitro, 391 diisocyanate, 201 dinitro, 388, 390–392, 394–395 nitro, 390, 394 trinitro, 388–392, 394–396, 401 o-Toluidine, 201 Toxaphene, 119–120, 127–135, 139–142, 145–148 nomenclature, 120–121 507 Toxicity equivalent factors, 107– 110 Tramadol, 361 Trenbolone, 448 Triacetonetriperoxide, 398–399, 404–405 Triazine, 49–50, 168, 169, 187 Tributylamine, 42–43 Tricin, 475 Tridecene, 432 Triethylene glycol dinitrate, 392 Triglyceride, 298–299 Tri-iodothyroxine, 471 Trimethylamine, 46–47 Trimethyloethane trinitrate, 392 Trinitrotriazacyclohexane, 389, 392–398, 401 Trinitroxylene, 390 Triterpanes, 59–64 Undecene, 432 Urea, 299, 302 Urinary metabolites, analysis of, 209–215 Urinary organic acids, 341–352 Valerolactone, 275 Valine, 294, 299, 302 4-Vinylcyclohexene, 473 Work function of surface, 34 Xylene, 174, 240–244 Zeranol, 461

Ngày đăng: 06/10/2016, 09:28

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
1. J. Yinon and S. Zitrin, Modern Methods and Applications in Analysis of Explosives, 1993, Wiley, New York, pp. 122–139 Khác
2. J. Yinon and S. Zitrin, The Analysis of Explosives, 1981, Pergamon Press, Oxford, pp. 1–28 Khác
3. M. Kaplan and S. Zitrin, J. Assoc. Off. Anal. Chem., 60 (1977) 619–624 Khác
4. T.L. Chang, Anal. Chim. Acta, 53 (1971), 445–448 Khác
5. R.J. Spanggord, B.W. Gibson, R.G. Keck, D.W. Thomas, and J.J. Barkley, Environ.Sci. Technol., 16 (1982) 229–232 Khác
6. A.J. Danzig, A.M. Dietrich, C.E. Parker, and K.B. Tomer, Proceedings of ASMS 38th Annual Conference on Mass Spectrometry and Allied Topics, Tuscon, AZ, 1990, pp. 1075–1076 Khác
7. W.E. Pereira, D.L. Short, D.B. Manigold, and P.K. Roscio, Bull. Environ. Contam.Toxicol., 21 (1979) 554–562 Khác
8. D.S. Weinberg and J.P. Hsu, J. High Resolut. Chromatogr. Chromatogr. Commun., 6 (1983) 404–418 Khác
9. Y. Nishikawa and T. Okumura, Anal. Chim. Acta, 312 (1995) 45–55 Khác
10. J. Feltes, K. Levsen, D. Volmer, and M. Spiekermann, J. Chromatogr., 518 (1990) 21–40 Khác
11. J. Feltes and J. Koll, LC-GC Int., 7 (1994) 698–701 Khác
12. K. Levsen, P. Mussmann, E. Berger-Preiss, A. Preiss, D. Volmer and G. Wu¨nsch, Acta Hydrochim. Hydrobiol., 21 (1993) 153–166 Khác
13. M.E. Walsh, T.F. Jenkins, and P.G. Thome, J. Energetic Mater., 13 (1995) 165–183 Khác
14. M.R. Lee, S.C. Chang, T.S. Kao, and C.P. Tang, J. Res. Natl. Bur. Stand., 93 (1988) 428–431 Khác
15. S.D. McDermott, J. Forensic Sci., 39 (1994) 1103–1106 Khác
16. M.P. Yurawecz and B.J. Puma, J. Assoc. Off. Anal. Chem., 66 (1983) 241–247 Khác
17. Y. Bamberger, S. Levy, T. Tamiri, and S. Zitrin, Proceedings of 3rd International Symposium on Analysis and Detection of Explosives, 1989, Mannheim-Neuos- theim, Germany, pp. 26.1–26. 24 Khác
18. H. Tagaki, N. Washida, H. Akimoto, and M. Okuda, Anal. Chem., 53 (1981) 175–179 Khác
19. M R. Lee, D.G. Hwang, and C. P. Tang, Proceedings of 3rd International Symposium on Analysis and Detection of Explosives, 1989, Mannheim-Neuostheim, Germany, pp. 5.1–5. 12 Khác
20. J. Yinon, Toxicity and Metabolism of Explosives, 1990, CRC Press, Boca Raton, FL, pp. 110–113 Khác

TỪ KHÓA LIÊN QUAN

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN