Vật lý học động cơ bước (phần 2)

7 130 0
Vật lý học động cơ bước (phần 2)

Đang tải... (xem toàn văn)

Thông tin tài liệu

Vật lý học động cơ bước Phần 2: Động cơ bước dịch bởi Đoàn Hiệp  • • • • • • • • • Giới thiệu  Tĩnh học  Điều khiển nửa bước và vi bước  Lực ma sát và vùng chết  Động lực học  Cộng hưởng  Sống chung với cộng hưởng  Vận tốc moment xoắn cản  Vấn đề về điện từ  Giới thiệu  Khi nói về các đại lượng vật lý, việc chú ý đến đơn vị đo được dùng là rất quan  trọng! Trong phần trình bày này về động cơ bước cũng vậy, chúng ta sẽ nhắc lại  các đơn vị vật lý tiêu chuẩn: English  CGS  MKS  KHỐI LƯỢNG  slug  kilogram LỰC pound  dyne  KHOẢNG CÁCH foot  gram  newton  centimeter meter  THỜI GIAN second  second  second  GÓC radian  radian  radian  Theo  bảng  trên,  lực  một  pound  sẽ  gia  tốc  cho  một  khối  lượng  một  slug  là một  foot  trên  một  giây  bình  phương.  Mối  quan  hệ  này  giữa  đơn  vị  của  lực,  khối  lượng và thời gian và khoảng cách trong các hệ đơn vị đo khác cũng giống như  vậy.  Người  ta  thường  lẫn  lộn  góc  thì  đo  bằng  độ  và  khối  lượng  lại  đo  bằng  pound rồi lực lại tính bằng kilograms sẽ làm thay đổi kết quả đúng của các công  thức dưới đây! Cẩn thận khi biến đổi những đơn vị không chính quy thành các  đơn  vị  tiêu  chuẩn  được  liệt  kê  trên  đây  trước  khi  áp  dụng  các  công  thức  tính  toán!   Tĩnh học  Cho một động cơ quay S radian mỗi bước, biểu đồ moment xoắn theo vị trí góc  của  rotor  so  với  vị  trí  cân  bằng  ban  đầu  sẽ  có  dạng  gần  đúng  hình  sin.  Hình  dạng thực tế của biểu đồ phụ thuộc vào hình dạng các cực của rotor và stator,  nhưng trong bảng thông số (datasheet) của động cơ lại không có biểu đồ này, và  cũng không trình bày hình dạng các cực! Đối với động cơ nam châm vĩnh cửu và  động cơ hỗn hợp, biểu đồ moment theo vị trí góc rotor thường giống như hình  sin, nhưng cũng không hẳn vậy. Đối với động cơ biến từ trở, đường này giống  hình sin một chút, hình thang một chút nhưng cũng không hẳn là hình răng cưa Đối với động cơ 3 mấu biến từ trở hoặc nam châm vĩnh cửu có góc bước S, chu  kỳ của moment so với vị trí sẽ là 3S; hay một động cơ 5 pha, chu kỳ sẽ là 5S. Đối  với động cơ 2 mấu nam châm vĩnh cửu hay hỗn hợp, loại phổ biến nhất, chu kỳ  sẽ là 4S, như được mô tả trong Hình 2.1 Hình 2.1      Nhắc lại, đối với một động cơ nam châm vĩnh cửu 2 mấu lý tưởng, đường cong  này có thể mô tả toán học như sau:       T = ‐h sin( (( /2) / S)  )  trong đó   T ‐‐ moment xoắn (torque)    h ‐‐ moment xoắn giữ (holding torque)    S ‐‐góc bước, tính bằng radian (step angle)    = góc trục (shaft angle)  Nhưng  nhớ  rằng,  thường  thì  đường  biểu  đồ  thực  không  bao  giờ  có  dạng  hình  sin lý tưởng như trên.  Moment xoắn giữ (holding torque) trên một mấu (winding) của động cơ bước là  giá trị đỉnh của moment xoắn trên biểu đồ khi dòng qua một mấu đạt giá trị lớn  nhất. Nếu cố  tăng giá trị moment xoắn lên cao hơn giá trị đỉnh trong khi vẫn giữ  nguyên điện áp kích ở một mấu, rotor sẽ quay tự do Đôi khi việc phân biệt giữa góc trục điện và góc trục cơ là việc làm cần thiết. Về  mặt cơ, một vòng quay của rotor sẽ là 2  rad. Về phương diện điện, một vòng  được định nghĩa là một chu kỳ của đường cong moment xoắn đối với góc trục.  Trong  tài  liệu  này,    sẽ  dùng  để  chỉ  góc  trục  cơ,  và  (( /2)/S)   để  chỉ  góc  trục  điện của một động cơ 4 bước/vòng.  Cho rằng đường cong moment xoắn so với vị trí góc gần đúng hình sin. Chừng  nào mà moment xoắn còn bằng moment xoắn giữ, rotor sẽ vẫn nằm trong ¼ chu  kỳ so với vị trí cân bằng. Đối với một động cơ nam châm vĩnh cửu hay hỗn hợp  hai  mấu,  điều  này  có  nghĩa  là  rotor  sẽ  giữ  nguyên  vị  trí  so  với  vị  trí  cân  bằng  trong phạm vi một bước.  Nếu không có nguồn cấp vào các mấu động cơ, moment xoắn sẽ không bao giờ  giảm xuống 0! Trong các động cơ bước biến từ trở, từ trường dư trong mạch từ  của động cơ có thể tạo ra một moment xoắn dư nhỏ, và trong các động cơ nam  châm vĩnh cửu và hỗn hợp, lực hút giữa các cực và từ trường vĩnh cửu của rotor  có thể tạo ra một moment xoắn đáng kể mà không cần nguồn áp.  Moment xoắn dư trong một động cơ nam châm vĩnh cửu hay hỗn hợp thường  được gọi là moment xoắn trên răng của động cơ, bởi vì một người khờ khạo sẽ  nghĩ  rằng  có  một  kết  cấu  cơ  khí  dạng  mấu  răng  nằm  ở  bên  trong  động  cơ  giữ  rotor lại. Thông thường, moment xoắn trên răng biễu diễn theo góc rotor không  có  dạng  hình  sin,  ở  một  vị  trí  cân  bằng  tại  mỗi  bước  và  một  biên  độ  lớn  hơn  khoảng 10% moment xoắn giữ của động cơ, nhưng nhìn chung các động cơ từ  các nhà sản xuất cho ra giá trị cao đến 23% đối với động cơ nhỏ và dưới 26% đối  với động cơ cỡ trung bình.  Điều khiển nửa bước và vi bước Miễn là không có phần nào của mạch từ bão hòa, thì việc cấp điện đồng thời cho  hai mấu động cơ sẽ sinh ra một moment xoắn theo vị trí là tổng của các moment  xoắn đối với hai mấu động cơ riêng lẻ Đối với động cơ hai mấu nam châm vĩnh  cửu  hoặc  hỗn  hợp,  hai  đường  cong  này  sẽ  là  S  radians  khác  pha,  và  nếu  dòng  qua hai mấu bằng nhau, đỉnh của tổng sẽ nằm ở vị trí S/2 radians kể tử đỉnh của  đường cong gốc, như ở Hình 2.2  Hình 2.2      Đấy  là  cơ  bản  của  điều  khiển  nửa  bước.  Moment  xoắn  giữ  là  đỉnh  của  đường  cong moment xoắn kết hợp khi hai mấu có cùng dòng lớn nhất đi qua. Đối với  động  cơ  nam  châm  vĩnh  cửu  và  hỗn  hợp  thông  thường,  moment  xoắn  giữ  hai  mấu sẽ là:    h2 = 20.5 h1  trong đó:    h1 – moment xoắn giữ trên một mấu     h2 – moment xoắn giữ hai mấu   Điều này cho thấy rằng không có phần nào trong  mạch từ bão hoà và moment  xoắn theo đường cong vị trí đối với mỗi mấu là hình sin lý tưởng.  Hầu hết các bảng hướng dẫn động cơ nam châm vĩnh cửu và biến từ trở đều chỉ  ra  moment  xoắn  giữ  hai  mấu  mà  không  có  đưa  ra  moment  xoắn  giữ  trên  một  mấu; phần nào, có lẽ vì nó sẽ chiếm nhiều giấy hơn, và phần nào cũng vì hầu hết  các bộ điều khiển đủ bước thông thường luôn áp điện áp vào cả hai mấu cùng  lúc.  Nếu  bất  kỳ  phần  nào  trong  mạch  từ  của  động  cơ  bị  bão  hoà,  hai  đường  cong  moment xoắn sẽ không thể cộng tuyến tính với nhau. Kết qủa là moment tổng  hợp có thể không nằm chính xác tại vị trí S/2 kể từ vị trí cân bằng ban đầu.  Điều khiển vi bước cho phép các bước nhỏ hơn bằng việc dùng các dòng khác  nhau qua hai mấu động cơ, như vẽ trên Hình 2.3:  Hình 2.3      Đối với một động cơ hai mấu biến từ trở hoặc nam châm vĩnh cửu, cho rằng các  mạch từ không bão hoà và các đường cong moment xoắn trên mỗi mấu theo vị  trí là một hình sin hoàn hảo, công thức dưới đây đưa ra những đặc tính chủ chốt  của đường cong moment xoắn tổng hợp:    h = ( a2 + b2 )0.5     x = ( S / ( /2) ) arctan( b / a )  trong đó:    a – moment xoắn áp trên mấu với vị trí cân bằng tại 0 radians     b – moment xoắn áp trên mấu với vị trí cân bằng tại S radians     h – moment xoắn giữ tổng hợp     x ‐‐ vị trí cân bằng tính theo radians     S – góc bước, tính theo radians.   Khi  không  có  bão  hoà,  các  moment  xoắn  a  và  b  tỉ  lệ  với  dòng  đi  qua  các  mấu  tương ứng. Điều này rất thông dụng khi làm việc với các dòng và moment xoắn  bình thường, để moment xoắn giữ mấu đơn hoặc dòng cực đại được chấp nhận  trong một mấu động cơ là 1.0.   Ma sát và vùng chết Đường  cong  moment  xoắn  so  với  vị  trí  được  chỉ  ra  trong  Hình  2.1  không  tính  đến moment xoắn động cơ để thắng lực ma sát! Chú ý rằng các lực ma sát có thể  được chia thành hai loại lớn, lực ma sát nghỉ là lực ma sát trượt, cần phải có một  moment xoắn đủ lớn để thắng lại nó, không kể đến vận tốc và ma sát động học  hay lực nhớt, hoặc các cản trở khác không phụ thuộc vận tốc. Ở đây, chúng ta  quan tâm đến lực ma sát nghỉ. Cho rằng moment xoắn cần thiết để thắng lực ma  sát nghỉ trong hệ là ½ giá trị đỉnh moment xoắn của motor, như miêu tả trong  Hình 2.4.  Hình 2.4      Đường gạch  đứt trong  hình  2.4  chỉ  ra moment  xoắn  cần thiết  để  thắng  ma  sát,  chỉ có một phần đường cong moment xoắn bên ngoài đường gạch đứt là làm cho  rotor chuyển động. Đường cong chỉ ra moment xoắn hiệu quả khi có ma sát trục  không giống những đường cong này, Hình 2.5:  Hình 2.5      Chú ý rằng tác dụng của lực ma sát gồm hai phần. Đầu tiên, tổng moment xoắn  hiệu  quả  để  quay  tải  bị  giảm,  thứ  hai,  có  một  vùng  chết  nằm  ở  mỗi  vị  trí  cân  bằng  của  động  cơ  lý  tưởng.  Nếu  rotor  động  cơ  được  đặt  tại  bất  cứ  đâu  trong  vùng  chết  đối  với  vị  trí  cân  bằng  tức  thời,  moment  xoắn  ma  sát  sẽ  vượt  quá  moment xoắn tác dụng bởi các mấu động cơ, rotor sẽ không di chuyển. Cho rằng  một đường cong hình sin lý tưởng giữa moment xoắn và vị trí khi không có ma  sát, độ rộng góc của những vùng chết sẽ là:    d = 2 ( S / ( /2) ) arcsin( f / h ) = ( S / ( /4) ) arcsin( f / h )  trong đó:    d ‐‐ độ rộng vùng chết tính bằng radians     S – góc bước tính bằng radians     f – moment xoắn cần thiết để thắng lực ma sát     h – moment xoắn giữ  Điều quan trọng phải ghi chú về vùng chết là nó giới hạn độ chính xác vị trí sau  cùng! Một ví dụ, khi lực ma sát nghỉ là 1/2 giá trị đỉnh moment xoắn, một động  cơ bước mỗi bước 90° sẽ có vùng chết là 60°! Điều đó có nghĩa là các bước hiệu  quả  sẽ  dao  động  trong  khoảng  30°  đến  150°,  tuỳ  thuộc  vào  rotor  dừng  ở  đâu  trong vùng chết sau mỗi bước!  Sự  xuất  hiện  của  vùng  chết  có  một  ảnh  hưởng  rất  lớn  đến  việc  điều  khiển  vi  bước thực tế! Nếu vùng chết rộng x°, thì việc điều khiển vi bước với độ rộng một  bước nhỏ hơn x° có thể sẽ không làm cho rotor quay được một chút nào. Vì vậy,  đối  với  các  hệ  thống  định  dùng  điều  khiển  vi  bước  có  độ  phân  giải  cao,  việc  giảm thiểu ma sát nghỉ là rất quan trọng.   Động lực học  Mỗi lần bạn quay động cơ một bước, bạn di chuyển rotor khỏi vị trí cân bằng S  radians.  Điều  này  di  chuyển  toàn  bộ  đường  cong  được  miêu  tả  trong  hình  2.1  một khoảng cách S radians, như Hình 2.6:  Hình 2.6       Điều đầu tiên ghi nhận về quá trình quay một bước là giá trị ngẫu lực hiệu dụng  lớn nhất đạt tại giá trị nhỏ nhất khi roto đang quay nửa đường từ bước này sang  bước kế tiếp. Giá trị nhỏ nhất này xác định moment xoắn động (running torque),  giá trị moment xoắn lớn nhất của động cơ có thể  đạt được khi nó bước tới trước  rất chậm. Đối với động cơ nam châm vĩnh cửu hai mấu thông thường với những  đường  cong  hình  sin  lý  tưởng  của  moment  xoắn  so  với  vị  trí  và  moment  xoắn  giữ h, giá trị moment xoắn động sẽ là h/(20.5). Nếu động cơ được quay bằng cách  cấp điện cho hai mấu cùng lúc, moment xoắn động của một động cơ nam châm  vĩnh cửu hai mấu lý tưởng sẽ bằng moment xoắn giữ loại một mấu.  Cũng  nên  ghi  nhận  rằng  ở  một  tốc  độ  bước  cao,  moment  xoắn  động  đôi  khi  được định nghĩa như là moment kéo ra (pull‐out torque). Nghĩa là, nó là moment  xoắn lớn nhất mà động cơ có thể vượt qua để quay tải từ bước này sang bước  tiếp  trước  khi  tải  bị  kéo  ra  khỏi  vị  trí  bước  bởi  lực  ma  sát.  Một  vài  hướng  dẫn  động  cơ  định  nghĩa  một  moment  xoắn  thứ  hai  là  moment  xoắn  kéo  vào  (pull‐in  torque). Nó là moment xoắn ma sát cực đại mà động cơ có thể vượt qua để gia tốc  một  tải  đang  đứng  yên  đến  một  tốc  độ  đồng  bộ  (vận  tốc  điều  khiển  mong  muốn).  Moment xoắn kéo vào được nêu trong các tài liệu sử dụng động cơ bước  là giá trị không chính xác, bởi vì moment xoắn kéo vào phụ thuộc vào moment  ban đầu của tải được sử dụng khi chúng được đo, và một vài bảng hướng dẫn  động cơ chỉ ra giá trị này.  Trong thực tế,  luôn có lực ma sát, vì thế, sau khi vị trí cân bằng quay một bước,  rotor giống như dao động nhỏ xung quanh vị trí cân bằng mới. Quỹ đạo kết qủa  có thể tương tự như trong Hình 2.7:  Hình 2.7      Ở đây, quỹ đạo của vị trí cân bằng được biểu diễn bằng đường gạch đứt, trong  khi đó, đường cong trên hình là quỹ đạo của rotor động cơ. 

Ngày đăng: 04/10/2016, 16:15

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan