0, vdi mgi m ndn (1) la phuang trinh dudng trdn vdi mgi m b) Tdm cua dudng trdn (1) cd toa d d : x = m ; y = m + l Suy quy tfch cdc dilm la dudng thing cd phuang trinh y = x + c) Ta tim cap sd (xo ; yo) cho XQ + yo - 2mxo - 2(m + l)yo + 4m = vdi moi m 196 Bidn ddi ding thftc trdn ta ed : 2m(2 - Xo - yo) + xJ + yJ - 2yo = vdi mgi m Tft dd suy : - Xo - yo = va Xo2 + yo2 - 2yo = Giai ta cd hai cap sd (1 ; 1) vd (0 ; 2) la nghidm Vdy dudng trdn (1) ludn di qua hai dilm cd dinhA(l; l)va5(0;2) 10 a) True ldn cua (F) la 2a = PQ = 6, vd true be la 26 = QF = Vdy a = 3, = Elip (F) cd phuong trinh 2 ^+y-=i 2 Tuong tu (77) cd phuong trinh ^ - ^ = b) Hai dudng tidm cdn eua (77) cd phuang trinh chung la ^ - ^ = Giai he gdm hai phucmg trinh (ciia (F) va cua hai dudng tiem cdn), ta tim dugc toa dd cua bdn giao dilm la 3V2 ;V^ 3V2 ;V5 3V2 \ ;-V2 / 3V2 ;-S 11 Dudng trung true d eua OF cd nhidn di qua dilm (0 ; 1) va (1 ; 0) ndn d ed phuang trinh x + y - = Vdi mgi dilm M(x ; y), ggi M77 Id khoang each tft M din d thi M77 = la MF = Ix + y - ll V^ va khoang each tft M din F ^lix-l)'+iy-lf a) Cdnic cd tdm sai c = V2 la mdt hypebol Ta cd MF = V2 ^ M F = 2M772 (x-l)2+(y-l)2 = (x + y-l)2 o 2xy = MH vay hypebol dd ed phuong trinh 2xy = 1, hay cung cd thi vilt y = — Dd la hypebol da bilt d cdp Trung-hgc co sd 197 b) Cdnic cd tdm sai c = la mdt parabol Ta cd : ^^ =1^ MH MF' = MH' O (X - 1)2 + (y - 1)2 = | ( X + y - 1)2 x2 + y2 - 2xy - 2x - 2y + = Parabol cd phuong trinh la (x - y)2 - 2(x + y) + = c) Cdnic cd tdm sai e = —^ Id dudng elip Ta cd : V2 MF MH 4i 9