Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 22 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
22
Dung lượng
443,98 KB
Nội dung
B S Nayak / International Journal of New Technologies in Science and Engineering Vol 1, Issue 1, Jan 2014, ISSN XXXX-XXXX Comparison of Direct and Indirect Vector Control of Induction Motor B Srinu Naik Abstract-Vector control is becoming the industrial standard for induction motor control The vector control technique decouples the two components of stator current space vector: one providing the control of flux and the other providing the control of torque The two components are defined in the synchronously rotating reference frame With the help of this control technique the induction motor can replace a separately excited dc motor The DC motor needs time to time maintenance of commutator, brushes and brush holders The main effort is to replace DC motor by an induction motor and merge the advantages of both the motors together into variable speed brushless motor drive and eliminate the associated problems The squirrel cage induction motor being simple, rugged, and cheap and requiring less maintenance, has been widely used motor for fixed speed application So with the implementation of vector control, induction motor replaces the separately excited dc motor The vector control technique is therefore a better solution so that the control on flux and torque become independent from each other and the induction motor is transformed from a non-linear to linear control plant With the advent of field oriented control; the induction motor has become an attractive option In this report we will come to know the concept of vector control and different types of vector control techniques available And finally we will be able to compare them Index Terms-Induction Motor, Vector Control, Speed Control, AC Motors INTRODUCTION Modern method of static frequency conversion has liberated the induction motor from its historical role as a fixed speed machine The inherent advantages of adjustable frequency operation cannot be fully realized unless a suitable control technique is employed The choice of technique is vital in determining the overall characteristics and performance of the drive system Also the power converter has little excess current capability; during normal operation the control strategy must ensure that motor operation is restricted to the regions of high torque per ampere, thereby matching the inverter ratings and minimizing the system loses Overload or fault conditions must be handled by sophisticated control rather than over design Now a days more than 60% of all the electrical energy generated in the world is used by cage induction machines have been mostly used at fixed speed for more than a century On the other hand, D.C machines have been used for variable speed applications In DC machines mmf axis is established at 90˚ electrical to the main field axis The electromagnetic torque is proportional to the product of field flux and armature current Field flux is proportional to the field current and is unaffected by the armature current because of orthogonal orientation between armature mmf and field mmf Therefore in a separately excited DC machine , with a constant value of field flux the torque s directly proportional to the armature current Hence direct control of armature current gives direct control of torque and fast response Hence they are Available online @ www.ijntse.com 110 B S Nayak / International Journal of New Technologies in Science and Engineering Vol 1, Issue 1, Jan 2014, ISSN XXXX-XXXX simple in control and offer better dynamic response inherently Numerous economical reasons, for instance high initial cost, high maintenance cost for commutators, brushes and brush holders of DC motors call for a substitute which is capable of eliminating the persisting problems in dc motors Freedom from regular maintenance and a brushless robust structure of the three phase squirrel cage induction motor are among the prime reasons, which brings it forward as a good substitute The ac induction motors are the most common motors used in industrial motion control systems, as well as in main powered appliances Simple and rugged design, low cost and low maintenance are some of the main advantages of phase ac induction motors Various types of induction motors are available in the market Different motors are suitable for different application The speed and torque control of phase induction motors require great understanding of the design and characteristics of these motors BRIEF THEORY OF VECTOR CONTROL (FIELD ORIENTED CONTROL) The control of separately-excited dc machines is straightforward due to the inherent decoupled nature between flux and torque As a consequence, torque linearization can be obtained easily by armature current control with constant field flux DC motors have been widely used in high performance domains such as robotics, rolling mills and tracking systems where fast dynamic torque control is required AC machines are always preferable to dc machine due to their simpler and more robust construction; there are no mechanical commutators However, the electrical structures of ac machines are highly nonlinear and involve multivariable inputs and outputs Therefore, additional effort is required to decouple and linearize the control of these machines In practice, intricate control algorithms are involved if ac drives have to match the dynamic performance of dc drives Due to advancements in microelectronics and power electronics, high performance control of ac motors can now be implemented at a reasonable cost This technological breakthrough has stimulated in turn the application of sophisticated control algorithms and the widespread use of ac drives in high performance domains [2][22] The realization of fast decoupling control requires that both the magnitude and phase of the machine currents be controlled accurately Depending on the design philosophy and the type of ac machine, there can be many different approaches to synthesize the machine currents to provide fast decoupling control Among the different approaches of torque and flux decoupling control techniques, the emerging consensus is that the method of field-orientation yields the best overall performance The field-oriented control (F.O.C.) is by far the most widely accepted method of control in high performance ac drive domains While F.O.C represents a single, unified control concept, the application strategies, complexity of implementation and drive responses vary with different drive motors In a Dc machine, a number of coils are distributed around the armature surface and inter connected to form a closed winding Stationary poles with dc-excited field windings or permanent magnets establish magnetic field in which the armature rotates Current is supplied to the armature through the commutator brushes so that the armature mmf axis is established at 90 degrees electrical to the main field axis Available online @ www.ijntse.com 111 B S Nayak / International Journal of New Technologies in Science and Engineering Vol 1, Issue 1, Jan 2014, ISSN XXXX-XXXX The DC motor analogy Where torque (T) Ia.If And where Ia represents the torque component and If the field The orthogonal or perpendicular relationship between flux and mmf axes is independent of the speed of rotation and so the electromagnetic torque of the dc motor is proportional to the product of the field flux and armature current Assuming negligible magnetic saturation, field flux is proportional to field current and is unaffected by armature current because of the orthogonal orientation of the stator and rotor field Thus in a separately excited dc motor with constant value of field flux, torque is directly proportional to armature current The principle behind the field oriented control or the vector control is that the machine flux and torque are controlled independently, in a similar fashion to a separately excited DC machine Instantaneous stator currents are transformed to a reference frame rotating at synchronous speed aligned with the rotor stator or air gap flux vectors, to produce a d-axis component current and a q-axis component current (SRRF).In this work, SRRF is aligned with rotor mmf space vector, the stator current space vector is split into two decoupled components, one controls the flux and the other controls the torque respectively [11][22] An induction motor is said to be in vector control mode , if the decoupled components of the stator current space vector and he reference decoupled components defined by the vector controller in the SRRF match each other respectively Alternatively, instead of matching the two phase currents (reference and actual) in the SRRF, the close match can also be made in the three phase currents (reference and actual) in the stationary reference frame Hence in spite of induction machine’s non linear and highly interacting multivariable control structure, its control has becomes easy with the help of FOC Therefore FOC technique operates the induction motor like a separately excitedly DC motor The transformation from the stationary reference frame to the rotating reference frame is done and controlled by with reference to specific flux vector (stator flux linkage, rotor flux linkage) or magnetizing flux linkage) In general, there exits three possibilities for such selection and hence, three vector controls They are stator flux oriented control, rotor flux oriented control and magnetizing flux oriented control As the torque producing component in this type of control is controlled only after transformation is done and is not the main input reference, such control is known as indirect torque control The most challenging and Available online @ www.ijntse.com 112 B S Nayak / International Journal of New Technologies in Science and Engineering Vol 1, Issue 1, Jan 2014, ISSN XXXX-XXXX ultimately, the limiting feature of field orientation is the method whereby the flux angle is measured or estimated Depending on the method of measurement, the vector control is sub divided into two sub categories: direct vector and indirect vector control In direct vector control, the flux measurement is done by using flux sensing coils or the hall devices [2][22] FOC uses a d-q coordinates having the d-axis aligned with rotor flux vector that rotates at the stator frequency The particular solution allows the flux and torque to be separately controlled by the stator current d-q components The rotor flux is a flux of the d-axis component stator current ids The developed torque is controlled by the q – axis component of the stator current iqs The decoupling between torque and flux is achieved only if the rotor flux position is accurately known This can be done using direct flux sensors or by using a flux estimator TYPES OF VECTOR CONTROL TECHNIQUES OF INDUCTION MOTOR The synchronously rotating reference frame (SRRF) can be aligned with the stator flux or rotor flux or magnetizing flux (field flux) space vectors respectively Accordingly, vector control is also known as stator flux oriented control or rotor flux oriented control or magnetizing flux oriented control Generally in induction motors, the rotor flux oriented control is preferred This is due to the fact that by aligning the SRRF with the rotor flux, the vector control structure becomes simpler and dynamic response of the drive is observed to be better than any other alignment of the SRRF The vector control can be classified into (i) Direct vector control and (ii) indirect vector control Scope of work In vector control the dynamic performance of the induction motor improves to a great extent The squirrel cage induction motor behaves similar to a separately excited dc motor with control of field and torque being independent of each other Therefore the drive exhibits quick starting response, fat reversal response and quick change over from one operating point to another With proper choice of speed controller, the drive can be further improved in terms of performance indices such as starting time, reversal time, and dip in speed on load application, overshoot in speed on load removal, steady state speed error on load etc The VCIMD can be operated in two modes of operation (a) operation below base speed and (b) operation above base speed When the drive operates below base speed, the flux component of the stator current (ids*) is maintained constant and torque is dependent on the torque component of the stator current (iqs*) and when the drive operates above base speed, the flux component of stator current (ids*) is reduced for control, with the torque component (iqs*) at the maximum possible level The excitation current for rotor flux (imr*) depends on the speed of the motor ( r ) in inverse proportion for the operation of the motor above base speed The voltage source inverter I operated in current controlled (CC) mode The CC mode of VSI gives a quick and fast response as the winding currents are regulated in accordance to vector control mode of an induction motor Available online @ www.ijntse.com 113 B S Nayak / International Journal of New Technologies in Science and Engineering Vol 1, Issue 1, Jan 2014, ISSN XXXX-XXXX Normally uncontrolled ac-dc converters are used to feed vector controlled induction motor These uncontrolled ac-dc converters draw non-sinusoidal current from the ac mains and behave as non-linear loads This leads to power quality problems But a number of techniques have been proposed for improving power quality at ac mains Direct vector control method In direct vector control method we have seen that it determines the magnitude and position of the rotor flux vector by direct flux measurement or by a computation based on terminal conditions It also called flux feedback control is method in which required information regarding the rotor flux is obtained by means of direct flux measurement or estimation The flux is measured by the sensors like Hall Effect sensor, search coil and this is a part of the disadvantages Because fixing of number of sensors is a tedious job and this increases the cost factor [2] The quantities generated from flux sensors are used in the outer loop of the drive control structure Alternatively, in place of flux sensors, the flux models can also be used for which the stator currents and voltages become the feedback signals and he rotor flux angle is given as its estimated output Figure.2 shows a simplified block diagram of a field control scheme the two axis reference currents, iqs and ids are the demanded torque and flux components of stator current, respectively and are governed by the outer control loops Currents, iqs and ids , undergo a coordinate transformation to two phase stator based quantities, followed by two phase to three phase transformation which generates the stator reference * * * currents ias ,ibs ,ics These reference current are reproduced in the stator phases by the current controlled PWM inverter [2] Available online @ www.ijntse.com 114 B S Nayak / International Journal of New Technologies in Science and Engineering Vol 1, Issue 1, Jan 2014, ISSN XXXX-XXXX Figure-2: Basic field oriented control system for an induction motor with a current controlled PWM inverter Thus the external reference currents iqs and ids are reproduced within the induction motor Control is executed in terms of these direct and quadrature axis current components to give decoupled control of flux and torque as in a dc machine Disadvantages Fixing of number of sensors is a tedious job The sensors increase the cost of the machine Drift problem exist because of temperature Poor flux sensing at lower temperatures These disadvantages lead to another technique called in-direct vector control technique Available online @ www.ijntse.com 115 B S Nayak / International Journal of New Technologies in Science and Engineering Vol 1, Issue 1, Jan 2014, ISSN XXXX-XXXX In-direct vector control Method Figure.3 shows the basic block diagram of induction motor operating in indirect vector control mode The motor speed is used as feedback signal in the controller The controller calculates reference values of the two decoupled components of stator current space vector in the SRRF which are iqs* and ids* for the control of torque and flux respectively [2] The two components of the currents are transformed into three phase currents which are ias*,ibs*,ics* in the stationary reference frame of reference Now as a balanced load, two of the phase currents are sensed and the third one is calculated from the two sensed currents The current controller controls the reference currents close to sensed three phase currents in the stationary reference frame and operates the voltage source inverter to feed three phase induction motor This ensures a high level of performance of the vector controlled induction motor (VCIMD).Because of the smooth, efficient and maintenance free operation of VCIMDs, such drives are finding increasing applications in many drive application s such as air conditioning, refrigeration, fans blowers, pumps, waste water treatment plants ,elevators, lifts traction motors, electric vehicles, etc[2][7] figure-3:basic block diagram of indirect vector control mode The field-weakening controller receives the speed signal ( r ) as an input signal and provides reference * value of the excitation current ( imr ) as an output signal Therefore the two signals are the reference signals for the vector controller In the vector controller the d-axis component ( ids ) and the q- axis component ( iqs ) of the stator current signals are computed which are responsible for the flux and torque * control respectively The slip frequency signal ( ) is also computed in vector controller to evaluate * the flux angle The slip angle is computed using slip frequency ( ), rotor speed ( r ) and sampling Available online @ www.ijntse.com 116 B S Nayak / International Journal of New Technologies in Science and Engineering Vol 1, Issue 1, Jan 2014, ISSN XXXX-XXXX period ( T ).These signals of flux ( ids and torque ( iqs ) are in the synchronously rotating reference * * * frame and these are transformed into stationary reference three phase currents ( ias ,ibs ,ics ) * * * For current controlled VSI fed vector controlled induction motor, the reference currents ias ,ibs ,ics and sensed currents ( ias,ibs,ics ) are fed into the pulse width modulated (PWM) current controller A triangular carrier wave is generated at the required switching frequency (fs) The point of intersection of the triangular carrier wave and modulating signals acts as the point of state change over for the resulting PWM signals, which are fed to the driver circuit of VSI feeding an induction motor[2][7] The indirect vector controlled induction motor is reshown in figure.3 below with blocks consists of the speed sensor, speed controller ,limiter, the field weakening controller , the two phase rotating frame to three phase stationary frame converter, PWM current controller, CC-VSI and three phase squirrel cage induction motor The functions are described as follows Available online @ www.ijntse.com 117 B S Nayak / International Journal of New Technologies in Science and Engineering Vol 1, Issue 1, Jan 2014, ISSN XXXX-XXXX Speed sensor It measures the motor speed Since in the indirect vector, the accurate measurement of position of rotor flux vector is given by the sensors which have high resolution and precision Normally shaft encoders are used for the closed loop vector control of the cage induction motor drive Speed controller * The measured speed ( r ) is compared with the set reference speed ( r ) in the error detector and the resulting output is known as speed error ( e ) is processed in the speed controller The output of the controller is the control signal for the torque command ( T ) The command input may be positive or negative depending upon the set reference speed and the motor shaft speed The speed error ( e ) is processesed in the speed controller which may be of different types depending upon the required dynamic performance of the drive And accordingly the controller is used When the drive operates in the transient conditions such as starting, reversing or load application or load removal the speed controller output (T) may be very high value to achieve the steady state condition of the drive as fast as possible, as, a result the controller output signal (T) may become quite high and in some cases it may become higher than the breakdown torque of the motor Such a situation may be rather dangerous for the motor and may take the drive into instability In order to avoid certain circumstances, it becomes very much necessary to apply certain limit on the output of the speed controller The output of the speed controller after the limit is considered as the reference torque(T *) to the vector controller and used to obtain the value of stator current torque component of the stator current space vector As a result the limit of the torque also ensures over current protection to the drive FIELD WEAKENING CONTROLLER The field weakening operation of a VCIMD is similar to the field controller of a separately excited dc motor This operation is implemented when the drive speed is controlled above the base speed The input to the field weakening controller is the feedback speed of the motor The output of the controller is the excitation current Below the abase speed the excitation current remains constant Above the based speed the excitation current varies in inverse proportion to the speed [13-14] imr * imr * = im =Kf if im / r imr im * r < base speed if r >= base speed Where Kf is flux constant is the excitation current, is the magnetizing current, Available online @ www.ijntse.com 118 B S Nayak / International Journal of New Technologies in Science and Engineering Vol 1, Issue 1, Jan 2014, ISSN XXXX-XXXX r is the feedback speed of the motor, b is the base speed of the motor VECTOR CONTROLLER * The output of the speed controller after limiting is taken as the reference torque ( T ) and output of field * weakening controller ( imr ) is taken as reference flux for the vector controller These two command signals are taken as input to the vector controller for calculating the torque component ( iqs ) and the flux component ( ids ) And also to calculate the slip frequency ( ).The torque ( iqs ) and the flux components ( ids ) are the * respective decoupled components of the stator current ( is ) in the synchronously rotating reference frame Estimation of ids , iqs and * The vector controller block is the heart of the entire modeling of the vector controlled induction motor drive This section calculates the direct and quadrature axis stator components ( ids and iqs ) in the synchronously rotating reference frame (SRRF) aligned with rotor inclined at flux angle ( ) with respect to stationary reference frame [19] Mathematically these equations for calculating these two components of the current are given as follows: ids n = imr * di n + r mr dt * …………….……………………Eq(1) T * n i n = …………………………………… …………Eq(2) * Ki mr n qs 2 * n n = i n r mr i qs * …………………………………… Available online @ www.ijntse.com Eq (3) 119 B S Nayak / International Journal of New Technologies in Science and Engineering Vol 1, Issue 1, Jan 2014, ISSN XXXX-XXXX Where, r is the rotor time constant defined as r = L r Rr p M K= r P is the number of poles, i ds instant, n and iqs n refer to flux and torque components of stator current at n th * n refer to nth instant reference slip frequency , M is the mutual inductance , r is the rotor leakage factor and Lr is the rotor self inductance and is defined as Lr Llr Llm……………………………………………………………… …Eq(4) Lr 1r M……………………………………….… Eq(5) L And r r 1 where M= Lm , Lm is the magnetizing inductance M Two phase rotating frame to three phase stationary frame converter Two phase rotating frame to three phase stationary frame converter transforms the two decoupled components of stator current namely, ( ids and iqs ) in synchronously rotating reference frame into three * * * phase currents namely ias ,ibs and ics in three phase stationary reference frame The conversion process requires the flux angle ( ), which is calculated by the integration of the synchronous speed * Synchronous speed is obtained by addition of slip speed ( ) and motor speed ( r ) Transformation equations can be written as follows: * * * ias iqs sin ids cos ……………………………….……… …… Eq(6) * * * ibs cos sin i ds sin cos i qs ………… …Eq(7) Available online @ www.ijntse.com 120 * * ics ias ibs * * * B S Nayak / International Journal of New Technologies in Science and Engineering Vol 1, Issue 1, Jan 2014, ISSN XXXX-XXXX ………………………………………………………… …….Eq(8) * Where ias ,ibs ,ics are the three phase currents in stator reference frame PWM current controller Current control plays an important role in power electronic circuits, particularly in current regulated PWM inverters which are widely applied in ac motor drives and continuous ac power supplies where the objective is to produce a sinusoidal ac output The main task of the control system in current regulated inverters is to force the current vector in the three phase load according to a reference trajectory In order to operate the three phase induction motor into vector controlled mode, sensed three phase stator currents * * (ias,ibs and ics) are to be controlled by the three phase reference currents( ias ,ibs and technique is called current controller * ics ) Such a control In indirect vector control technique the rotor flux vector position is computed from the speed feedback signal the motor The indirect vector control eliminates the need of using flux sensors or flux model However it requires an accurate measurement of the shaft position in order to determine the precise position of the rotor flux vector The difference between the reference speed and the rotor speed is fed to the controller The controller computes the slip frequency that on addition to the feedback motor speed provides the speed of the rotor flux vector from which the flux angle can be computed The reference currents here are reproduced in the motor winding by the current controlled inverter Indirect control eliminates most of the problems, which are associated with the flux sensors as the controller is free from rotor flux sensing The induction motor behavior in field coordinates is given by the equations T ki mr i qs r ………………………………………………Eq(9) di mr i mr i ds dt ……………………………… Eq(10) i d mr m qs ………………………………… Eq(11) dt r i mr i d mr m qs ……………………………….Eq(12) dt r i mr Available online @ www.ijntse.com 121 B S Nayak / International Journal of New Technologies in Science and Engineering Vol 1, Issue 1, Jan 2014, ISSN XXXX-XXXX The latter equations state that the rotor flux vector has an instantaneous angular velocity, mr which is m and the instantaneous angular velocity of the rotor flux relative to the rotor If thus slip angular velocity is denoted by , the sum of the instantaneous shaft angular velocity, Then 2 = i qs r i mr and -Eq(12) = mr - m = s mr Where, -Eq(13) s is the fractional slip of the rotor with respect to the rotor flux vector The slip equation can be implemented in the field oriented controller so that direct measurement of the rotor flux position is unnecessary This approach is the basis of indirect methods of the field orientation, which are often termed slip frequency control methods The reference values iqs , demanded values of torque, i 2 = T ki mr i qs r i mr and for and rotor magnetizing current imr are given by di mr ids = imr + r dt qs = ids -Eq (14) Eq (15) T = k r i mr Eq (16) The basic implementation of a speed control system for a current controlled PWM inverter is shown in figure Available online @ www.ijntse.com 122 B S Nayak / International Journal of New Technologies in Science and Engineering Vol 1, Issue 1, Jan 2014, ISSN XXXX-XXXX Figure-3: the basic implementation of a speed control system for a current controlled PWM inverter The speed error is fed to the speed controller, which generates the torque command, T *.As before, the shaft speed is fed to a function generator that demands a constant rotor magnetizing current, imr , below base speed, and implements field weakening above base speed The torque and flux command are used to calculate the reference values iqs , ids and the commanded slip frequency is integrated to give a slip angular position signal, , which is added to the rotor position signal, , from the shaft mounted incremental encoder to determine the rotor flux angle, These calculations give desired accuracy and freedom form drift The angle is used to implement the vector rotation, based reference currents e jp of iqs and ids to stator Indirect field orientation is readily applied to other types of adjustable frequency inverter drive m In general, indirect field orientation systems are very similar to the controlled slip frequency drives The traditional controlled slip frequency drives seeks to maintain a constant air gap flux, but the controlled implementation does not preserve the proper phase relationships in the machine during the transient conditions The overall dynamic performance of the indirect vector control is better than direct vector control Available online @ www.ijntse.com 123 B S Nayak / International Journal of New Technologies in Science and Engineering Vol 1, Issue 1, Jan 2014, ISSN XXXX-XXXX Comparison with direct vector control The major disadvantage of direct vector method is the need of so many sensors Fixing so many sensors in a machine is a tedious work as well as costlier [2] Due to this the scheme is prevented from being used Several other problems like drift because of temperature, poor flux sensing at lower speeds also persists Due to these disadvantages and some more related ones, indirect vector control is used In indirect vector control technique, the rotor position is calculated from the speed feedback signal of the motor This technique eliminates most of the problems, which are associated with the flux sensors as they are absent Here the in phase component of stator current space vector n the SRRF is aligned with the rotor mmf vector This component of the vector is responsible for the production of flux In the similar fashion the quadrature component is responsible for the production of the torque And hence such a control technique provides a substitute of a separately excited dc motor using a three-phase squirrel cage induction motor in variable speed application.[2][7] Advantages The sensors are eliminated The dynamic performance of the indirect vector control is better than the direct vector control The cost factor is decreased There is no drift problem as in direct vector control CONCLUSION From the above discussion it can be concluded that the control of induction motor is very necessary as it is the common motor used in industrial motor control systems Hence a well established induction motor drive which is simple, rugged, low cost and low maintenance can serve the required purpose Many authors have published several research papers on the vector control techniques of induction motor And studying vector control techniques it is clear that the indirect vector control technique supersedes the direct vector control and is more used rather than the later one Hence for the further work the method adopted is the indirect vector control technique REFERENCES [1] [2] [3] [4] I.P Kopylov, Mathematical Models of Electric Machines, Translated from the Russian by P.S Ivanov, Revised from the Russian edition, 1980 Bose B.K, Modern Power Electronics and AC Drives, th Edition, 2004 Jyothi Mangaveni Chitta and Srinivasa Rao Maturu, “Sensorless Permanent Magnet Synchronous Motors (PMSM) For Torque Ripple Reduction”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE), Vol 8, Issue 1, pp 1-7, Oct-2013 G Subba Reddy, “Vector Controller based Speed Control of Induction Motor Drive with 3-Level SVPWM based Inverter”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 1, Issue 4, pp 1-11, March-2013 Available online @ www.ijntse.com 124 B S Nayak / International Journal of New Technologies in Science and Engineering Vol 1, Issue 1, Jan 2014, ISSN XXXX-XXXX [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] Mrs Anjali.U.Jawadekar, Dr.G.M.Dhole, SRParaskar, S.S Jadhao and M.A.Beg, “Application of ANN for Induction Motor Fault Classification Using Hilbert Transform”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 1, Issue 1, pp 7-12, March-2013 Niraj Kumar Shukla and Dr S K Sinha, “Fuzzy and PI Controller Based Performance Evaluation of Separately Excited DC Motor”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 2, Issue 1, pp 12-18, April-2013 K Anil Naik, “Frequency Domain Analysis of IMC Tuned PID Controller for Synchronous Generator Excitation System”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE – ISSN: 2320-9569) Vol 3, Issue.1, pp 15-19, May-2013 Mr Sandeep N Panchal, Mr Vishal S Sheth and Mr Akshay A Pandya, “Simulation Analysis of SVPWM Inverter Fed Induction Motor Drives”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 2, Issue 4, pp 18-22, April-2013 Bose B.K, Power Electronics and Motor Drives, Academic Press, Imprint of Elsevier, 2006 B.L Theraja, A.K Theraja, A Textbook of Electrical Technology, Vol.2 G Venu Madhav and Y P Obulesu, “Artificial Neural Network Based Control of Doubly Fed Induction Generator”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 1, Issue 1, pp 25-31, March2013 Sourabh Jain, Shailendra Sharma and R.S Mandloi, “Improved Power Quality AC Drive Feeding Induction Motor”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 2, Issue 1, pp 35-40, April2013 Mahesh Nandaniya, “A Review Paper of Automatic Canal Gate Control of 3-ø Induction Motor with PLC and VFD, Powered by Solar System and Monitoring by SCADA”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 1, Issue 1, pp 32-39, March-2013 Vijaya kumar.M and Gunasekaran.M, “Stability Analysis of FPGA –Based Control of Brushless DC Motor Using Fuzzy Logic Controller”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 4, Issue 1, pp 35-40, June-2013 Shrinivas P Ganjewar and Chandulal guguloth, “Sensorless Approach for Speed Control of Induction Motor using MRAS”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 1, Issue 1, pp 64-67, March-2013 Ms Preeti Dhiman, Deepankar Anand, Ekta Singh and Komal Grover, “PC Based Speed Control of Induction Motor”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 2, Issue 1, pp 81-84, April2013 Annapurna Birdar and Ravindra G Patil, “Energy Conservation Using Variable Frequency Drive”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 2, Issue 1, pp 85-91, April-2013 Prof Khushbu L Mishra, Prof Dambhare S.S and Prof Pagire K.M, “Design and Implementation of IGBT Based Single Phase AC Drive Using PIC 18F452”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 5, Issue 1, pp 79-82, July-2013 M.Sathish Kannan and S.Vasantharathna, “Dynamically Reconfigurable Control Structure for Asynchronous AC Drives”, International Journal of Engineering Trends in Electrical and Electronics (IJETEE – ISSN: 2320-9569) Vol 3, Issue 1, pp 75-82May, 2013 Mr Thanikonda Yedukondalu, Dr S Satya Narayana and M Subba Rao, “Controlling of Buck Converter Using Different Types of Sliding Mode Controllers”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 6, Issue 2, pp 1-4, Aug-2013 G K Dubey, Power Semiconductor Controlled Drives, Prentice Hall, Englewood, NJ, 1989 B K Bose, Energy, environment, and advances in power electronics, IEEE Trans Power Electronics, vol 15, pp 688–701, July 2000 B K Bose (Ed.), Power Electronics and Variable Frequency Drives, IEEE Press, New York, 1996 Dr RAMA RAO P.V.V and Ms N VENUPRIYA, “SPWM Based Two Level VSI for Microgrid Applications”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE – ISSN: 2320-9569) Vol 7, Issue 1, pp 3-6, Sep-2013 J.Shankaraiah, G.Kumara Swamy and Dr.K.Sri Gowri, “High Step-UP DC-DC Converter Using Cascode Technique”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 8, Issue 1, pp 13-18, Oct-2013 BANOTHU THAVU, “Micro Controller based Current Fed Dual Bridge DC-DC Converter”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 1, Issue 4, pp 24-31, March-2013 P Bapaiah, “Improvement of Power System Stability Using HVDC Controls”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 2, Issue 1, pp 19-34, April-2013 Available online @ www.ijntse.com 125 B S Nayak / International Journal of New Technologies in Science and Engineering Vol 1, Issue 1, Jan 2014, ISSN XXXX-XXXX [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] Brijesh M.Patel, Minesh k Joshi and Dhaval N Tailor, “Design and Simulation of Boost Converter for Constant Output Voltage”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 8, Issue 1, pp 19-24, Oct-2013 pavani vanga, Dr.S.Satyanarayana and M.Subbarao, “Design and Analysis of Soft Switched PWM Full Bridge DC– DC Converter for Regulated Voltage”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 6, Issue 1, pp 24-29, Aug-2013 U.Vinod kumar and P.Sai Sampath Kumar, “Loaded Resonant Converter for the DC to DC Energy Conversion Applications”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 6, Issue 2, pp 21-28, Aug-2013 R Krishnan, Electric Motor Drives, Modeling, Analysis, and Control, First Indian Reprint, Pearson Education, 2003 A.M Trzynadlowski, Control of Induction Motors, Academic Press, 2001 I Takahashi, Y Ohmori, High-performance direct torque control of induction motor, IEEE Trans Ind Appl., vol 25, no 2, pp 257–264, 1989 Jil sutaria, Manisha shah and Chirag chauhan, “Comparative Analysis of Single Phase and Multiphase Bi-Directional DC-DC Converter”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 2, Issue 1, pp 41-46, April-2013 M.Balachandran and N.P.Subramaniam, “Fuzzy Logic Controller for Z-Source Cascaded Multilevel Inverter”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 6, Issue 1, pp 30-34, Aug2013 Santhosh Kumar Vasireddy and Munfar Ali G, “Parallel Power Flow AC/DC Converter with Input Power Factor Correction and Tight Output Voltage Regulation for Universal Voltage Applications”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 1, Issue 4, pp 55-65, March-2013 R Subbarayudu, K Kishore Reddy and Dr K Sri Gowri, “A Novel Power Converter for Integrated Traction Energy Storage”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 6, Issue 2, pp 37-45, Aug-2013 Dhana Prasad Duggapu, Satya Venkata Kishore Pulavarthi and Swathi Nulakajodu, “Comparison between Diode Clamped and HBridge Multilevel Inverter (5 to 15 odd levels)”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 1, Issue 4, pp 66-78, March-2013 P.Chaithanya Deepak and S Nagaraja Rao, “Cascaded H-Bridge Multilevel Inverter Using Inverted Sine Wave PWM Technique”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 6, Issue 1, pp 3944, Aug-2013 Dharmesh.V.Khakhkhar, “Design and Simulation of Novel Integral Switching Cycle Control for Heating Load”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 5, Issue 1, pp 41-44, July2013 Mukesh Gupta, Sachin Kumar and Vagicharla Karthik, “Design and Implementation of Cosine Control Firing Scheme for Single Phase Fully Controlled Bridge Rectifier”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 3, Issue 1, pp 40-46, May-2013 L Sai Suman Rao and S Nagaraja Rao, “Three Level Neutral Point Clamped Back to Back Converter”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 6, Issue 1, pp 45-50, Aug-2013 K.K Dinesh kumar, K.B Naresh kumar, S ManiKandan and S Venkatanarayanan, “Design of Bridgeless SEPIC Converter for Speed Control of PMDC Motor”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 2, Issue 1, pp 64-69, April-2013 A Mallikarjuna Prasad, S Thirumalaiah, U chaithanya and P Nagarjuna, “Simulation of New Multilevel Inverter Topology”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 1, Issue 1, pp 6873, March-2013 Avneet Kaur, Prof S.K Tripathi, Prof P Tiwari, “Study of Power Factor Correction in Single Phase AC-DC Converter”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 5, Issue 1, pp 8993, July-2013 A M Khambadkone and J Holtz, Vector controlled induction motor drive with a self- commissioning scheme, IEEE Trans Ind Elec., vol 38, pp 322–327, October 1991 P Vas, Sensorless Vector and Direct Torque Control, Oxford University Press, New York, 1998 G S Buja and M P Kazmierkowski, Direct torque control of PWM inverter-fed ac motors—a survey, IEEE IE Trans., vol 51, pp 744–757, August 2004 Mr Ambadas S Mane and Mr Vijay B Suryawanshi, “Analysis of Five Level Inverter”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 1, Issue 1, pp 98-101, March-2013 Available online @ www.ijntse.com 126 B S Nayak / International Journal of New Technologies in Science and Engineering Vol 1, Issue 1, Jan 2014, ISSN XXXX-XXXX [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] Mashhood Hasan, Dinesh Kumar and Zafar Khan, “Multimodules of Diode Clamped Multilevel Converter: A Novel Option for High Power Facts Controller”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 2, Issue 1, pp 109-112, April-2013 M M Irfan, “Simulation of High Voltage Gain Zero Voltage Switching Boost Converter”, International Journal of Engineering Trends in Electrical and Electronics( IJETEE) Vol 3, Issue 1, pp 88-92, May, 2013 Mr Ambadas S Mane and Mr Vijay P Mohale, “Series Resonant Converter”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 1, Issue 1, pp 102-105, March-2013 P.Marino, M.D Incecco and N.Visciano, A comparison of Direct Torque Control Methodologies for Induction Motor, IEEE trans 2001 G Buja et al., Direct torque control of induction motor drives, IEEE ISIE Conf Rec., pp TU2–TU8, 1997 Burak Ozpineci, L.M.Tolbertr, Simulink Implementation of Induction Machine Model-A modular approach, IEEE Trans 2003 R H Park, Two-reaction theory of synchronous machines-generalized method of analysis -Part 1, AIEE Trans., vol 48, pp 716–727, July 1929 Manju khare, Yogendra kumar, Ganga Agnihotri and V.K Sethi, “Simulation and Analysis of Maximum-PowerPoint-Tracker for Photovoltaic Arrays”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 1, Issue 1, pp 1-6, March-2013 MoganapriyaKrishnakumar and PanneerselvamManickam, “Modeling and Neuro-Fuzzy Control of DFIG in Wind Power Systems for Grid Power Leveling”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE – ISSN: 2320-9569) Vol 3, Issue.1, pp 8-14, May-2013 R.Dinesh kumar and P.Karuppusamy, “Performance Analysis of Soft Switched Seven Level Inverter for Photovoltaic System”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE – ISSN: 2320-9569) Vol 5, Issue 3, pp 11-16, July-2013 Devendra Singh, Gyanendra yadav, DivyaPratap Singh and GyanRanjan Gupta, “Maximum Power Point Tracking For PV Based Solar System: A Review”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 3, Issue.1, pp 29-30, May-2013 Bhanupriya.R and Subasri.R, “Nonlinear Disturbance Control in a Wind Energy Conversion System Using Theta-D Control”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 6, Issue 1, pp 35-38, Aug-2013 Rupert Gouws and Elizbe van Niekerk, “Prototype Super-capacitor Photovoltaic Streetlight with xLogic SuperRelay Functionality”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 7, Issue 1, pp 34-39, Sep-2013 Brijesh M Patel, Kalpesh J.Chudasma, Hardik A.Shah, “Simulation of Single Phase Inverter using PSIM Software for Solar P.V System give Constant Output Voltage at Different Solar Radiation”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 4, Issue 1, pp 26-31, June-2013 Mrs S Sathana and Ms Bindukala M.P, “Hybrid Solar and Wind Power Conversion Using DFIG with Grid Power Leveling”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 1, Issue 1, pp 4348, March-2013 Mr.K.Saravanan and Dr H Habeebullah Sait, “Multi Input Converter for Distributed Renewable Energy Sources”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 2, Issue 1, pp 51-58, April2013 Mrs Thivya Balasubramanian., Mr Rajesh T Mr.RajaPerumal T.A, “Load Sharing In A Hybrid Power System With Renewable Energy Sources”, International Journal of Engineering Trends in Electrical and Electronics ( IJETEE) Vol 3, Issue 1, pp 35-39, May, 2013 K K Saravanan , Dr N Stalin and S T Jayasuthahar, “Review of Renewable Energy Resources in Clean Green Environment”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 1, Issue 1, pp 54-58, March-2013 S.Sathish Kumar and S Chinnaiya, “Switched Inductor Quasi-z-source Inverter for PMSG based Wind Energy Conversion System”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 3, Issue 1, pp 41-46, May-2013 C.Bhuvaneswari and R.Rajeswari, “Study Analysis of Hybrid Power Plant (Wind-Solar) - Vertical Axis Wind Turbine-Giromill Darrieus Type with Evacuated Tube Collectors”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 1, Issue 1, pp 80-83, March-2013 Deepali Sharma, Uphar Tandon, Nitin Saxena, “Development of 1000W, 230volt Solar Photovoltaic Power Electronic Conversion System”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 3, Issue 1, pp 70-74, May-2013 Available online @ www.ijntse.com 127 B S Nayak / International Journal of New Technologies in Science and Engineering Vol 1, Issue 1, Jan 2014, ISSN XXXX-XXXX [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] K.GAYATHRI, S.GOMATHI and T.SUGANYA, “Design of Intelligent Solar Power System Using PSO Based MPPT with Automatic Switching between ON grid and OFF Grid Connections”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 1, Issue 1, pp 95-97, March-2013 D.Pugazhenthi, P.Sathishbabu and R.M.SasiRaja, “A NOVEL NINE-SWITCH CONVERTER FOR SOLAR ENERGY GENERATION SYSTEMS”, International Journal of Engineering Trends in Electrical and Electronics( IJETEE) Vol 3, Issue 1, pp 83-87, May, 2013 Panchal Mehulkumar J and Ved Vyas Dwivedi, “Sustainable Energy Development and Appropriate Options to Energy Sustainability Threats in India”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 2, Issue 4, pp 83-89, April-2013 Mr Karthick R.T and Dr Ashok Kumar L, “Stand-Alone Solar Power Generation System with Constant Current Discharge”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 5, Issue 1, pp 108114, July-2013 Xingyi.Xu, D.W.Novotny, Implementation of Direct stator flux orientation control on versatile DSP based system, IEEE Trans Ind Appl., vol 24, no 4, July/August 1991 Y.A.Chapuis, D.Roye, J.Davoine, Principles and Implementation of Direct Torque Control by stator flux orientation of Induction Motor, IEEE Trans 1995 S.Vamsidhar, B.G.Fernades, Design and Development of Energy Efficient Sensor less Direct Torque Controlled Induction Motor Drive in Real Time Simulation, The 30th Annual conference of IEEE Industrial Electronics Society November 2-6, 2004 S.Vamsidhar, B.G.Fernades, Hardware-in-loop-simulation based design and experimental evaluation of DTC strategies, 35th Annual IEEE power Electronics Special Conference, 2004 C Lascu, I Boldea, F Blaabjerg, A Modified Direct Torque Control for Induction Motor Sensor less Drive IEEE Tram on Ind Appl., vol 36, No-1, 122-130, January/ February 2000 Miss Shraddha Mehta, Miss Mital Upahaya, Miss Mita Rathod, “CloudComputing: A Review”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 4, Issue 2, pp 29-31, June-2013 Ms Mohini Pande, Mr.Dishant Vyas, Ms.Roopakiran Yeluri and Prof.(Mrs).Suvarna K.Gaikwad, “Microcontroller Based Neural Network Controlled Low Cost Autonomous Vehicle”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 2, Issue 4, pp 36-39, April-2013 Arun Kumar, Munish Vashishth and Lalit Rai “Liquid level control of coupled tank system using Fractional PID controller”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 3, Issue 1, May2013 RAJDEEP SINGH, KUMARI KALPNA, DAWINDAR KUMAR MISHRA, “Hybrid Optimization Technique for Circuit Partitioning Using PSO and Genetic Algorithm”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE) Vol 4, Issue 2, pp 69-71, June-2013 Hoang Le-Huy, Comparison of Field-Oriented Control and Direct Torque Control for Induction Motor Drives, IEEE Thirty-Fourth IAS Annual Meeting, 1999 P Z Grabowski, M P Kazmierkowski, B K Bose, and F Blaabjerg, A simple direct-torque Neuro-fuzzy control of PWM-inverter-fed induction motor drive, IEEE Trans Ind Elec., vol 47, pp 863–870, August 2000 G C D Sousa, B K Bose, and K S Kim, Fuzzy logic based on-line tuning of slip gain for an indirect vector controlled induction motor drive, IEEE IECON Conf Rec., pp 1003–1008, 1993 B K Bose, Expert system, fuzzy logic, and neural network applications in power electronics and motion control, Proc IEEE, vol 82, pp 1303–1323, August 1994 G C D Sousa, B K Bose, and K S Kim, Fuzzy logic based on-line tuning of slip gain for an indirect vector controlled induction motor drive, IEEE IECON Conf Rec., pp 1003–1008, 1993 B K Bose, Expert system, fuzzy logic, and neural network applications in power electronics and motion control, Proc IEEE, vol 82, pp 1303–1323, August 1994 G.Vijayakumar and R Anita, “Renewable Energy Based Shunt Compensator for Power Quality Improvement”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE – ISSN: 2320-9569), Vol 9, Issue 1, Nov-2013, www.iret.co.in J Suryakumari and G Sahiti, “Analysis and Simulation of Modified Adaptive Perturb and Observe MPPT Technique for PV Systems”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE – ISSN: 23209569), Vol 9, Issue 1, Nov-2013, www.iret.co.in Danish Chaudhary, Amit Kumar Singhal, Madhur Chauhan, “Analysis of Harmonic Free Voltage Regulator with Simulation Technique”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE – ISSN: 2320-9569), Vol 9, Issue 1, Nov-2013, www.iret.co.in Available online @ www.ijntse.com 128 B S Nayak / International Journal of New Technologies in Science and Engineering Vol 1, Issue 1, Jan 2014, ISSN XXXX-XXXX [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] M.Banupriya, R.Punitha, B.Vijayalakshmi, C.Ram Kumar, “Remote Monitoring System For A Switchable Distribution Transformer By The Use Of Wireless ZigBee Technology”, International Journal of New Trends in Electronics and Communication (IJNTEC-ISSN: 2347 - 7334), Vol.1, Issue 4, pp 47-49, Nov 2013, www.iret.co.in Aslam P Memon, Waqar A Khan, Riaz H Memon, Asif Ali Akhund, “Laboratory Studies of Speed Control of DC Shunt Motor and the Analysis of Parameters Estimation”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE – ISSN: 2320-9569), Vol 9, Issue 1, Nov-2013, www.iret.co.in Aslam P Memon, A Sattar Memon, Asif Ali Akhund, Riaz H Memon, “Multilayer Perceptrons Neural Network Automatic Voltage Regulator With Applicability And Improvement In Power System Transient Stability”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE – ISSN: 2320-9569), Vol 9, Issue 1, Nov-2013, www.iret.co.in Aslam P Memon, M Aslam Uqaili, Zubair A Memon, Asif A Akhund, “Time-Frequency Analysis Techniques for Detection of Power System Transient Disturbances”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE – ISSN: 2320-9569), Vol 9, Issue 1, Nov-2013, www.iret.co.in V.Samba Siva Raju, *Mr S.Srinu, “Fault Detection and Mitigation in Multilevel Cascaded Converter STATCOM’s”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE – ISSN: 2320-9569), Vol 9, Issue 1, Nov-2013, www.iret.co.in Dhanorkar Sujata , E Himabindu, “Voltage Sag Mitigation Analysis Using DSTATCOM Under Different Faults in Distribution System”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE – ISSN: 23209569), Vol 9, Issue 1, Nov-2013, www.iret.co.in Vishal Phaugat, Hari Mohan Rai, Subham Gupta and Rohit Thakran, “Effect of Binder on Viscosity with Shear Rate”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE – ISSN: 2320-9569), Vol 9, Issue 1, Nov-2013, www.iret.co.in Shivam Thakur, Hari Mohan Rai, Sidharth Kumar and Suman Pawar, “Factors Determining the Speed and Efficiency of a Micro-Processor in a PC”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE – ISSN: 2320-9569), Vol 9, Issue 1, Nov-2013, www.iret.co.in G.Paranjothi and R.Manikandan, “Photovoltaic Based Brushless DC Motor Closed Loop Drive for Electric Vehicle”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE – ISSN: 2320-9569), Vol 9, Issue 1, Nov-2013, www.iret.co.in C N Bhende, S Mishra, S G Malla, “Permanent Magnet Synchronous Generator Based Standalone Wind Energy Supply System”, IEEE Transaction on sustainable energy, Vol 2, No.2, 2011 S.G Malla, C N Bhende, S Mishra, “Photovoltaic based Water Pumping System”, International Conference on Energy, Automation and Signal (ICEAS), 2011 G.Paranjothi and R.Manikandan, “Photovoltaic Based Brushless DC Motor Closed Loop Drive for Electric Vehicle”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE – ISSN: 2320-9569) Vol 10, Issue 1, pp 9-15, Jan-2014, www.iret.co.in Mr Sundar Ganesh C.S and Mr Joseph Mathew K, “Intelligent Speed Control System for Automobiles”, International Journal of New Trends in Electronics and Communication (IJNTEC-ISSN: 2347 - 7334), Vol.1, Issue 2, pp 1-4, Sep 2013, www.iret.co.in Phase Noise repression in Fractional-N PLLs using Glitch-Free Phase Switching Multi-Modulus Frequency Divider Billa Shirisha and Prof A balaji Nehru, International Journal of New Trends in Electronics and Communication (IJNTEC-ISSN: 2347 - 7334), Vol.1, Issue 2, pp 42-53, Sep 2013, www.iret.co.in K Naresh, Vaddi Ramesh, CH Punya Sekhar and P Anjappa, “Simulations for Three Phase to Two Phase Transformation”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE – ISSN: 2320-9569) Vol 10, Issue 1, pp 16-20, Jan-2014, www.iret.co.in G.U.V.Ravi Kumar and Mr.Ch.V.N.Raja, “Comparison between FSC and PID Controller for 5DOF Robot Arm”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE – ISSN: 2320-9569) Vol 10, Issue 2, pp 1-6, Mar-2014, www.iret.co.in Dr.T.Govindaraj and S.Vishnu, “Simulation Modelling of Sensor less Speed Control of BLDC Motor Using Artificial Neural Network”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE – ISSN: 23209569) Vol 10, Issue 2, pp 7-15, Mar-2014, www.iret.co.in Dr N Prema kumar and B Vanajakshi, “Speed Control of PMSM Drive Using Conventional and Self Tuning Fuzzy PI Controller”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE – ISSN: 2320-9569), Vol 10, Issue 2, pp 16-21, Mar-2014, www.iret.co.in P.P Kiran Kumar Reddy and J Nagarjuna Reddy, “Photovoltaic Energy Conversion System for Water Pumping Application”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE – ISSN: 2320-9569) Vol 10, Issue 2, pp 22-29, Mar-2014, www.iret.co.in Available online @ www.ijntse.com 129 B S Nayak / International Journal of New Technologies in Science and Engineering Vol 1, Issue 1, Jan 2014, ISSN XXXX-XXXX [112] Optimal Reactive Power Flow in a Deregulated Power System – A Case Study T Hariharan and Dr M Gopala Krishnan, International Journal of Emerging Trends in Electrical and Electronics (IJETEE – ISSN: 2320-9569) Vol 10, Issue 2, pp 30-32, Mar-2014, www.iret.co.in [113] Design and Fabrication of Circularly Polarized Microstrip Patch Antenna using Symmetric Slit Suvidya R Pawar1, R Sreemathy2, Shahadev D Hake, International Journal of New Trends in Electronics and Communication (IJNTEC— ISSN: 2347 - 7334) Vol 2, Issue 2, pp 1-6, Mar 2014, www.iret.co.in [114] Study of Multicast Routing Protocol in Wireless Mobile Adhoc Network Prof Dr Subhash P Rasal, International Journal of New Trends in Electronics and Communication (IJNTEC—ISSN: 2347 - 7334), Vol 2, Issue 1, pp 21-26, Jan 2014, www.iret.co.in [115] Y.A.Chapuis, D.Roye, J.Davoine, Principles and Implementation of Direct Torque Control by stator flux orientation of Induction Motor, IEEE Trans 1995 [116] C Lascu, I Boldea, F Blaabjerg, A Modified Direct Torque Control for Induction Motor Sensor less Drive IEEE Tram on Ind Appl., vol 36, No-1, 122-130, January/ February 2000 [117] Interweave Cognitive Radio Network: Signal Detection Pravin P.Magar, Megha N Pandey and Prof.Suman P.Wadkar, International Journal of New Trends in Electronics and Communication (IJNTEC—ISSN: 2347 - 7334) Vol 2, Issue 1, pp 1-4, Jan 2014, www.iret.co.in [118] Boosting Input Voltage and Improving PF Using PFC Circuit Prof.D.B.Madihalli, Prof.V.M.Chougala and Prof.D.M.Kumbhar, International Journal of New Trends in Electronics and Communication (IJNTEC—ISSN: 2347 7334), Vol.1, Issue 4, pp 1-4, Nov 2013, www.iret.co.in [119] Design & Simulation of Zigbee Transceiver System Based on MSK and QPSK Using Matlab Kapil Dev Jha and Mohit Kumar Srivastava, International Journal of New Trends in Electronics and Communication (IJNTEC—ISSN: 2347 - 7334), Vol.4, Issue 1, pp 5-9, Nov 2013, www.iret.co.in [120] S.Vamsidhar, B.G.Fernades, Design and Development of Energy Efficient Sensor less Direct Torque Controlled Induction Motor Drive in Real Time Simulation, The 30th Annual conference of IEEE Industrial Electronics Society November 2-6, 2004 [121] Energy Management by means of SMD Model Analysis for AMB Systems with Eccentricity Rupert Gouws, International Journal of New Trends in Electronics and Communication (IJNTEC-ISSN: 2347 - 7334), Vol.1, Issue 3, pp 14-19, Oct 2013, www.iret.co.in [122] An Approach to Look-Up-Table Design and Memory Based Realization of Fir Digital Filter with Decomposed Distributed Arithmetic S Srikanth and P Sireesha, International Journal of New Trends in Electronics and Communication (IJNTEC-ISSN: 2347 - 7334), Vol.1, Issue 2, pp 54-63, Sep 2013, www.iret.co.in [123] S.Vamsidhar, B.G.Fernades, Hardware-in-loop-simulation based design and experimental evaluation of DTC strategies, 35th Annual IEEE power Electronics Special Conference, 2004 [124] Management And Control of Power of an Integrated Active Wind Generator for Grid Integration and Generation of Distributed Power, V Anitha and Mr N Narasimhulu, International Journal of Emerging Trends in Electrical and Electronics (IJETEE – ISSN: 2320-9569), Vol 10, Issue 1, pp 1-8, Jan-2014, www.iret.co.in [125] J M R Malla and S G Malla, “Three level diode clamped inverter for DTC-SVM of induction Motor”, International Conference on Power Electronics, Drives and Energy Systems (PEDES), 2010 [126] Siva Ganesh Malla and Jagan Mohana Rao Malla, “Direct Torque Control of Induction Motor with Fuzzy Controller: A Review”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE – ISSN: 2320-9569), Vol 10, Issue 3, pp 1-16, April-2014, www.iret.co.in [127] Aiswarya B, Dr A A Powly Thomas and Dr.Indumathi.G, “Design of A Fault Tolerant Embedded Control System”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE – ISSN: 2320-9569), Vol 10, Issue 3, pp 17-22, April-2014 [128] Akhilesh P Patil, Rambabu A Vatti and Anuja S Morankar, “Simulation of Wind Solar Hybrid Systems Using PSIM”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE – ISSN: 2320-9569), Vol 10, Issue 3, pp 23-28, April-2014 [129] Darshan D Patel and Rohit B.Patel, “Chromatic Dispersion Compensation for 16×10 Gbps WDM Optical Communication System with Non Linearity”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE – ISSN: 2320-9569), Vol 10, Issue 3, pp 29-32, April-2014 [130] A Rajesh, K.S.V Phani Kumar and Dr.K.Sumanth P, “Enhancement of Power Quality Using Multiconverter Unified Power-Quality Conditioning System”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE – ISSN: 2320-9569), Vol 10, Issue 3, pp 33-38, April-2014 [131] Nitesh Meena and B.B Sharma, “Backstepping Algorithm with Sliding Mode Control for Magnetic Levitation System”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE – ISSN: 2320-9569) Vol 10, Issue 3, pp 39-43, April-2014 Available online @ www.ijntse.com 130 B S Nayak / International Journal of New Technologies in Science and Engineering Vol 1, Issue 1, Jan 2014, ISSN XXXX-XXXX [132] M Jayalakshmi, G Asha and K Keerthana, “Control of Single Phase Z-Source Inverter Fed Induction Motor Using Simple Boost Controller”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE – ISSN: 2320-9569), Vol 10, Issue 3, pp 44-48, April-2014 [133] Dr T Govindaraj and Mr K Bharanidharan, “Stability and Reliability Improvement in Solar Wind Hybrid Power System with Battery Energy Storage Station”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE – ISSN: 2320-9569), Vol 10, Issue 3, pp 49-57, April-2014 [134] Dr T Govindaraj and S Vasanth, “A Novel Approach to Harmonics Analysis and Control for Dynamic Power System using STATCOM”, International Journal of Emerging Trends in Electrical and Electronics (IJETEE – ISSN: 2320-9569) Vol 10, Issue 3, pp 58-66, April-2014 [135] V.Rajeshwari and A.Anendhar, “Design of Low Power, High Speed Parallel Archietecture for Cyclic Convolution Based on FNT”, International Journal of New Trends in Electronics and Communication (IJNTEC—ISSN: 2347 7334) Vol 2, Issue 2, pp 13-18, Mar 2014 Available online @ www.ijntse.com 131 ... speed and torque control of phase induction motors require great understanding of the design and characteristics of these motors BRIEF THEORY OF VECTOR CONTROL (FIELD ORIENTED CONTROL) The control. .. Direct vector control and (ii) indirect vector control Scope of work In vector control the dynamic performance of the induction motor improves to a great extent The squirrel cage induction motor behaves... estimated Depending on the method of measurement, the vector control is sub divided into two sub categories: direct vector and indirect vector control In direct vector control, the flux measurement