d t ( A B C D ) = aV2 2a^ _ 2^f2a^ ^/3 • V3 " V = a>/2 2y[2a^ V3 • 4a^ ^ , = — ^ (ycbt) 9V3 Trade h e t t a n h ^ n x e t r k n g cde m a t ben (SAB), (SBC), (SDC), (SAD) l a bon t a m giac bkng T h a t v a y , v d i SA = SC, SB = SD v a tCr gia t h i e t : A B = BC = C D = A D t h i t a m gi^c d6 c6 c^c canh t a o n g ilng bSng H a B H SA, ABSA la t a m giac can ( B A = BS) n e n B H cung l a t r u n g t u y e n cua t a m gidc AS BSA, turc l a H A = H S = T r o n g t a m giac v u o n g O S A t a eo : SA'-* = OS^ + OA'^ = AH = SA BH 4a' SA = 2a a - HA^ AB' = Ja a V3 a aV2 dt(SAB) = - SA.BH = H A B H = ^ ^ V3 V3 a^yf2 Cuoi cung t a ducte : Sip = d t ( A B C D ) + d t ( S A B ) = 4a^ y f2 2a^ 42 3 => S,p = 2a^V2 (ycbt) e/ N o i D v(Ji H => D H l a dadng cao ciia t a m giac can D S A Do vay i J H f i = ( ^ Ta CO = [(SABiTisAD)] : D H ^ = BH^* = 2a^ 108 4a' DII^ + B H ' = = BD'^ 3 => ABHD vuong tai dinh H => Goc nhi dien canh (SA) la nhi dien vuong (ycbt) Bai 189 (DAI HOC K I I O I B, N - 1975) Cho mot tarn giac vuong can ABC, AB = AC = a BB' va CC cung vuong goc vcJi (ABC), d cung mot phi'a doi vdi mat phang va BB' = CC = a a/ ChiTng minh rSng tarn giac AB'C la tarn giac deu hi Tinh the tich cua hinh chop c6 dinh la A va day la tuf giac BCC'B' d Chufng minh rang nam diem A, B, C, C , B' ciing nSm tren mot mat cau T i m the tich ciia hinh cau tifang ijfng Giai a/ Cac tam giac ziABC, ABAB', ACAC vuong can => BC = AB' = A C = a>/2 => B'C = A C = AB' = a => AAB'C la tam giac deu (dpcm) hi Ha AH BC Va thay BB' (ABC) => BB' ± A H Lai CO : A H _L BC A H (BCC'B) A H BB'J Dieu chufng to A H la difcfng cao ciia hinh chop A.BCC'B' aV2 Trong A vuong can ABC : => A H = Vay VAHCCIV = ^ A H dt (BCCB') = \ o (a.aV2) = ^ (ycbt) c/ Goi O la tam hinh chuT nhat BCC'B' Ta c6 : OB = OB' = OC = OC = aVs Trong tam giac vuong HOA => A H = (1) 1V2 Do OH la dtfdng trung binh cua tam giac BCC ^ OH = - C C = - ^ OA = V A H + O H ^ Tif (1) va (2) 1V3 = OA = OB = OB' = OC = OC = (2) iV3 Do O la tam hinh cau di qua nam diem A', B, B', C, C va the tich Vc ciia hinh cau bkng: V , = - : R = -n 3 S1 (ycbt) 109 Gi a i a/ The tich V cua h in h chop S AM B N la : V= i d t ( A M B N ) X SA (1) Trong : d t( A M B N ) = d t( AB N ) + d t( AB M ) d t( AM B N ) = 2d t( AB M ) (vi M , N doi xufng qua AB ) d t( AM B N ) = X - A B X M H => d t( AM B N ) = 2R X A M s in a => d t( AM B N ) = 2R X A B cosa.sina => d t( AM B N ) = 2R^ (2s ina cosa) = 2R^sin2a 2R'^ V = - X 2R^sin2u x R = s in2a (ycbt) 3 hi Xet : V(S B MN ) = - d t( B M N ) x SA = - x i M N x B H x SA => V(S AMN ) = - 3 dt( A M N ) x SA = - x - M N x A H x S A V(S B MN ) = 3V ( S AM N ) » B H = 3AH BH AB AH ~ BH + AH ~ 3+1 ~ ~ ~ « cos^ a = AH AH Ma A M = A B cosa = o AH = ^ 3R BH = R = — cos a AB „ n ^ n , cosa = — ( v i O < a < — ) = > a = — (ycbt) 2 Bai 273 ( D AI HOC B A C H KH O A - TO N G HCfP - K H O I A - 1977) Cho mot h in h chop tiif giac deu S.ABCD (S la dinh) Cat h i n h chop ay b a ng mot mSt phSng khong song song vdi ma t day M a t p h l n g cat cac canh ben SA, SB, SC, C D Ian liXcrt tai cac diem M , N , P, Q; M P va N Q cat ta i L D a t S M = a, S N = b, SP = c, SQ = d, SL = I, ^ = a (SH la difdng cao ciia h in h chop S.ABCD) 1/Tinh dien tich ta m giac S MP theo a, c, a 21 Chufng h he thijfc : — + — = a c / 3/ Chufng h he thiJc : — + — = — + — a c b d Gi 1/ Do hinh chop SAB C deu, nen day AB C D la mot h in h vu ong va dacfng cao S H la true cua dudng tron ngoai tiep h i n h vu ong AB C D Do H la ta m ciia h i n h vu ong AB C D Mat khac: S H = (SB D ) ^ (SAC) 185 ^> Q N r^ M P = L e S H dt(ASMP) = i SM.SP.sin KiSt' = — SM.SP.sin2a = — acsin2a = acsina.cosa (ycbt) 2 21 X e t h e t h ^ c : l + a c a + c o cos a = i = ^ ^ I a + c ac (1) 2cos a s in a = / (a ac 0) /si na a/sina + d s i n a = 2acsinacosa = acsin2a a/si na « a cs in 2a c /si na dt(AS ML) + dt(ASLP) = dt(ASMP) (2) : (luon dung) 1 2cos a , => — H — = (dpcm) a c / O G h i c h i i : Doc gid c6 the dung phuang phdp dien tich 3/ Ly lu an nhif cau 2/ vori cac ta m giac SQL, S LN va SQN, ta difcfc : 1 cos a b ^ d"^ (3) } Tif (2) va (3) suy : — + - = — + — (dpcm) a c b d Bai (DAI 274 HOC BACH KHOA - 1987) Cho mot h in h sau canh loi A B C D E F vdi cac d in h n a m tr en difdng tr on co dinh ta m O ban k in h R, ngoai A B = C D = E F; BC = D E = FA D at AB = a, BC = b, i C O B = 2a, ^OC = 2p 1/ Ti m h§ thufc lien he giCa a, b, a, p, tif suy ra ng : ta n a = aV3 ^ „ bV3 — ; tanp = a + 2b b + 2a 2/ Tin h dien tich S ciia h in h tr en theo R va a Cho b iet giA t r i Idn n h a t co the co cua S va y nghia h in h hoc Vdi gia t r i nao ciia a th i S = 3/ Tin h chu vi P cua h in h tr en theo R va a Cho b iet gia tr j \dn nha t co the co ciia P va y nghia h in h hoc 4/ Ti m he thufc giOfa a, b va dUa tr en he thufc t i m la i ket qua d cau 3/ Gi 1/ De y : 3(2a + 2p) = Ta CO — = : => a + P = 2:1 A F (1) Rsina • => b s ina = asinp - = Rs inp 186 n bsi na = a s i n do(l) a u V3 bsi na = a si n a cos a o {2b + a) si n a = a Vs c o sa (y ebt ) t an a = (dpcm) 2b + a (dpcm) Hoan t oan t uang tif t a t i n h difac : t anp = 2a + b f 2/ Ta CO ; S = 3(S,VVOB + SABOC) = - si n 2a + - v2 s i n 2(3 3R^ => S = ( s i n a + s i n 2(3) = R ^si n(a + (i)cos(a - p) S=3R ^COS 3V3 ^ 2a - (2) 3j Uau dang thufc t ro ng (2) xay r a c o s ^ a - ^ ^ 3j Vay : S„ «, = R ^ , t UOng ufng a = (? = - ( y c bt ) 2, = a = — Vay t r o n g c a c h i n h c a n h n o i t i e p t r o n g di /dng t r o n t r e n t h i h i n h c6 d i e n t i c h Idn n h a t l a hinh luc g i ac d e u - , o sR^Ve Tong quat xet : S = «> cos a 3j 2a = ^ ^ 3V3 „ ^2a-^^ R'^ c o s = c o s a 3j 2P = ^ sR^Ve 71 = COS — • a = p = — (y cbt ) a = — => 2p = — 12 12 3/ P = 3(a + b) = ( R si n a + R si nP ) = R ( si n a + si np) 71 P= R s i n ^ ^ c o s ^ ^ = 6Rcos a 2 ^ Dau dang thufc t ro ng (3) xay r a COS a Vay ?,„ ,, = R « a = p = - ;6R (3) 7:^ = ! < = > « = — b Vay t r o n g c a c h i n h l u c g i ^ c n g i t i e p t r o n g d Ud n g t r6 n t r e n t h i h i n h l u c g i d c d e u la h i n h c6 chu vi l(Jn n h a t ( y c bt ) 187 T a CO : a'^ + + ab = (a + bf - ab = (a + b)^ [{a + b)^ - (a -b)^] a^* + b^ + ab « -(a + hf = -ia + hf +- ( a - h f =3 R - i ( a - b ) = SR^* B A C A (1) M a CO ± m p ( B A O ) => CO B A Tir (1) va ( ) (2) B A m p (CAO) ( ) Ma BO ± mp(CAO) (4) Tii ( ) va (4) cho t h a y : qua B co h a i difdng t h i n g phan b i e t cung v u o n g goc vdi m p ( C A O ) t a i O (v6 l i ) Vay dieu gia suf A A B C vuong t a i A la sai (dpcm) V d i cac goc k h a c cung chiifng m i n h t u o n g t i i N g h i a la A A B C k h o n g p h a i la t a m giac vuong (dpcm) b/ VoAHC = - A O d t (ABOC) = - A O - BO.CO = ' A1 « » AO.BO.CO = V.M.BAO + V M.CAO + V M.Uf)€ - O A O B O C = - c.dtA(BAO) + - b.dtA(CAO) + - a.dtA(BOC) 3 188 » - O A.B O C O = i c AO B O + - b AO C O + - a.BO.CO 6 6 c = b + CO a BO + (5) AO Dg y r a n g : VQABC = ^ A O B O C O = ^ abc 6 ^ a b OA c OB OC Ap du ng B D T Cauchy cho ba so du ang va sOf du ng (5); ta c6 : a a a c b D c c OA ^ O B ^QC OB O C b OA => V o A B c ^ T ^ a b c D a OA b — = —abc.- — = —abc J _ (6) ^3 c 27 • +O B +O C Dau b at d i n g thuTc tr on g (6) xay r a k h i vsk chi k h i : f A = 3a AO (6) Do BO B = 3b C O C O = 3c V = — abc ; taong iifng : A = 3a O B = b (ycbt) O C = 3c d Theo B D T B u nhiacovsky ta c6 : (Va + Vb + Vc j < a b c (OA + O B + OC) = O A + O B + OC , A • + O B +O-C J Do : min(O A + O B + OC) = ( Va + Vb + Vc )^ xay r a k h i v^ chi k h i : rz OA ( A rr VOA \ B O V C O VoA VBO VCO -y/b Vc Va+Vb+Vc Va+Vb+Vc OB OC A O+BO + CO (V^ + V b + V c f A O = A/a(Va + -y/b + Vc) • B O = Vb (Va + Vb + Vc) (ycbt) C O = Vc(Va + Vb + Vc) Va+Vb+Vc Bai 276 (DA I HOC Y DLfOC TP.HCM - PB - 1996) Cho hinh chop S.ABCD day ABCD la hinh chCr nhat vdi A B = a, A D = b Canh AS = 2a cua hinh chop vuong goc vtJi day Goi M la diem tren canh AS, vdi A M = x; (0 < x < 2a) 1/ Mat phang (MBC) cat hinh ch6p theo thiet dien gi ? Tinh dien tich thiet dien Hy 21 Xac dinh x de mat phang (MBC) chia hinh chop hai phan vdi the tich b ing G iai 1/ Goi : N = (MBC) r> (SD) JM N = ( SA D ) n ( M BC ) MN / / A D/ / BC ^ [A D/ / EC ^ => MNCB la hinh thang Mat khac, ta c6 : A D (SAB) => A D ± BM r:> M N BM; BC BM; BM ? T = C B ^ = - Vay mat ph^ng (MBC) cat hinh ch6p theo thiet dien la hinh thang MNCB vuong tai M va B (ycbt) B M = V A M ^ + A B^ Ta CO : { SA AD SM M N M N = = Va^ + x^ 2a SA - SM A D (2a x)b f ( 2a- x) b + b 2a Va^ + x^ ( 4a - x)b MNCB (ycbt) 4a 2/ Trong mat phSng (SAB), ta ditog : SO BM Suy : SO (MNCB) tai O Ta CO : ASOM &o A BA M ^_ SO A B SM = BM AB SM SO SO BM a(2a - x) = , /a „2 + X Khi do, the" tich hinh ch6p S.MNBC la : V = A SO S S.MNCB V 3' • - Va^ + x ^ ( a - x)b ^^^^ 4a MNCB b(2a - x)(4a - x) S.MNCB 12 The tich hinh chop S.ABCD la: V„ = - SA S S.ABCD = ABCD , 190 Xet • V = b(2a - x)(4a V - x) o a ^b = 12 ; (0 < X ^ 2a) o ,2 ( < x < a ) ( a - x ) ( a - x ) = 43^^; o x ^ - a x + a ^ = ; (0 < x ^ 2a) X] = a - aVs (c6 : A' = 5a^ > ) : thoa < x < 2a X2 = a + aVs : k h o n g t h o a < x < a Vay vori : x = a ( - VS) t h i y c b t d u g c t h o a Bai 7 ( D A I H O C Q U O C G I A T P H C M - K I I O I A - 9 ) Cho h i n h c h o p S A B C D c6 d a y A B C D l a h i n h v u o n g c a n h b a n g a, c a n h S A ( A B C D ) v a c6 dp dai S A = a M o t m a t p h a n g d i q u a C D c a t cac c a n h S A , S B I a n l i /a t a M , N D a t A M = x l/TijT giac M N C D l a h i n h g i ? T i n h d i $ n t i c h tuf g i a c M N C D t h e o a, x 2/ Xac d i n h gia t r i c u a x d e t h e t i c h c u a h i n h c h o p S M N C D bang - I a n t h e t i c h h i n h ch6p S.ABCD Hvtdng dan Tirang t i f , k h i x e m D e D A I H O C Y D l /O C - P B - 9 Doc g i a CO t h e t h a y B bang D ; A D = a ; S A = a se d e d a n g c6 iMc : 1/ M N C D l a h i n h t h a n g v u o n g t a i M ; D ( y c b t ) SMNCD = ^ ( a - x)Va^ + x^ 21 X e t : VgMNCD - X = — a o (ycbt) g VgABCD (ycbt) Bai 278 ( D A I H O C Q U O C G I A T P H C M - K H O I A - 9 ) Tren cac c a n h ciia goc t a m d i e n v u o n g O x y z l a y cac d i e m : A e O x v a O A = a > ; B e O y v a OB = b > ; C e O z v a O C = c > K e O H m p ( A B C ) , a/ ChiJng m i n h A A B C c6 cac g c d e u n h o n v a H l a t r U c t a m A A B C b/ Chijrng m i n h : ( d t A A B C ) ^ = ( d t ABAO)'"^ + ( d t A C A O ) ^ + ( d t A B O C ) ^ d Gpi M ; N ; P t h e o t h a tif l a t r u n g d i e m A B ; B C ; C A C h u f n g m i n h b o n m a t c u a til d i e n POMN la cac t a m g i a c b k n g n h a u T i n h t h e t i c h cua n o t h e o a; b ; c il Cho A ; B ; C c h a y t r e n c a c c a n h c i i a g o c t a m d i e n n h i m g v S n t h o a m a n d i e u k i § n : a^ + b ^ + = ( k > c h o t r a d e ) K h i n a o t h i A A B C c6 d i e n t i c h I d n n h S ' t ? C h i J n g m i n h r a n g k h i d o thi dean O H c u n g d a i n h a t Giai a/ Tuong t i f d e D H N O N G L A M - K H O I A - 9 (dpcm) 191 b/ => dt(ABOC) = —ab => dt(ACAO) = —ab => dt(ABAO) = —ab (2) (dtACAO)^ = -a^c^ (1) (dtABAO)^ = - a ^ b ^ (dtAB0C)2 = Il bl ^ c ^ (3) Cong (1) + (2) + (3) theo ve ta c6 : (dtABAO)^ + (dtACAO)' + (dtABOC)^ = - ( a V + a^c^ + b V ) (4) Mat khac : dt(AABC) = - BC.AI => (dtAABC)^ = - B C l A I ^ = - (b^ + c^XAO^ + OI^) 4 Trong tam giac vuong BOC cho : 2„2 b=^C 1 O I ^ " OB^ ^ OC^ b^ Do : (dtAABC)^ = -(b^+ c^) a So sanh (4) va (5) c2 + 2„2 b^c b^+c=^ = - ( a V + a V + bV) (dpcm) c/ Tam giac vuong BOA cho : MO = ^ AB = PN Ttfang tu : N O = - BC = P M (dpcm) PO = - A C = M N Ta CO : AMNP oo AABC => dtAMNP = - dtAABC Tur dien OMNP va tuf dien OABC c6 cung ducrng cao OH nen : 'OMNP = - OH.dt A M N P = - O H - dtAABC = - V,OABC VQABC OABC = -g OA.dt ABOC = -a.~ BO.CO = -6 abc => V o M N P = d/ — abc (yebt) Theo BDT Bunhiacovky : a^b^ + b^c^ + c^a^ < a^ + b " + c" Mat khac : ( a^ + b^ + c )2 = a" + b ^ c" + 2{a^h^ + ah^ « k^= (*) + b^c^) a^b"+cn2(a2b2+b2c2+cV) k^ ^ 3( a^b^ + b^c^ + c^a^) = 12 (dtAABC)^ [theo (5)] dt AABC < 192 Dau ddng thufc tr on g (6) xay a = b = c dtAABC Idrn n h a t => max (dtAAB C) = (ycbt) V3 Cac tarn giac vu ong O A I va BOC cho : 1 O H^ => OV + 4r a' 1 OA^ = ^ OH^ „ \ + -4- > / + OC^ Ol2 (B D T Cauchy) „2 Ta cung c6 : a^ + b^ + -(a' ^OHU > > / a V c ^ + b' + c ') = ~ 9 => O H ^ - k (7) Dau dang thiifc tr on g (7) xay k h i a = b = c => k h i O H dai n h a t tu ong litng vdi dt AABC Idn n h a t (dpcm) Bai 279 (CAO D A N G K I N H TE D O I N G O A I CP - 1999) Cho h in h vuong AB C D canh bang a I la tru ng diem AB Qua I dOng du&ng vu ong goc vdi mat phSng (AB C D ) va tr en lay diem S cho 2IS = a V s 1/ ChuTng h r a n g tarn giac S AD la ta m giac vuong 2/Tinh the" tich h in h chop S.ACD roi suy r a khoa ng each tiT C den ma t p h l n g (SAD ) Gi 1/ Xet: S I ( AB C D ) ^ S I A D AB AD (SAB ) ^ AD SA AD => A S A D vu ong ta i A (dpcm) 2/Ta CO : = \I = ^ ^ a ^ ^ = ^ (ycbt) Goi h la khoa ng each liT C den ma t phSng (SAD ) Kh i : (1) = - SA.AD Ma : Ss Ai) Vdi : SA = J — + QA Sa^ 1^^ T = a o AD = a Khid6:^ h = ^ ^ = ^ ( y e b t ) 193 B a i 280 (DAI HOC QUOC GIA TP.HCM - KHOI A - D dT - 1999) Cho hinh chop ta m giac S.AIBC c6 day AB C la ta m giac deu canh a, SA -L (ABC) va SA = a M la mot diem tha y doi tr en canh AB D a t = a, S H vu ong goc vdi dadng t h i n g C M 1/ Ti m quy tich d iem H Suy gia t r i Idn n h a t ciia the tich tuf d i^ n S AHC 2/ Ha A I i SC, A K S H Ti n h dai SK, A K va the tich tuf dien S AKI Gi 1/ Goi N la chan difcrng cao ke tif S tr on g ta m giac SBC, ta c6 : B C _L (S AN ) => B C A N Ta CO : SH i (1) M C => M C (SAH) => A H HC (1), (2) ==> H lu on n h in AC dudri mot goc vuong N h a n th a y : M = A ^ M HE B ^ H A H = N Doc gia tiT l a m pha n dao, t h i ta c6 : Quy tich d iem H la cu ng A N thuQc ducfng tr on dacrng k i n h AC (ycbt) The tich tuT dien S AH C la : 'SAHC = - S A A C H H ' = - a ^ H H ' 6 (vdi i r la chan dUcrng cao tir H tr on g AAHC) Suy : m ax CV g ^Hc) m axCHH') H la tr u n g d iem A C Kh i d o : (VsAHc)n 2/ Ta c6 : • s ina = (ycbt) 12 AH AC A H = a s in a SsAH = - S A A H = S H A K • S H - V SA ^ + A H ^ = aVl + s in^ a AK = SA.AH a sma a.sm a a V l + s in^ a S K = VSA^ - A K ^ (ycbt) V l + s in^ a = (ycbt) s in " a Tr on g A S H C , dUng IJ S H ASAC c ant A Ma IJ // C H SI = I C AI I SC I J = - C H = ia.cosa 2 M a t khac : C H ( S A H ) => I J ( SA K ) 194 Vay the tich hinh chop SAKI 1^ : a.(sin a)a V OA = OB = OC => DO la true ducrng tron ngoai tiep AABC DO hien nhien la dircfng cao ti3 dien DABC Goi I la trung diem DC Ta c6 : DH = HC => ADHC can => H I l DC Khi : H I = VHC^ - IC^ = ^ Tif; Si„ic = - DO.HC = - HI.DC 2 D0 = V- XT HI.DC HC ^nnc 3a^ DO = Vay : VABCD = - D O S A B C a^-x^ = a.Vsa^ - x^ 4a^ - x^ y i.^ ^ a T^ 4a^ - x^ 195 VABCD = -^axVsa^ - (ycbt); (0 < x < aVs ) A p dung B D T Cauchy, t a c6 : ^ABCD - 144 x^+Oa^-x^) l2 144 144 9a^ a^ a^ : max(VABci)) = — (3) (4) Dau d i n g thijfc t r o n g (3) va (4) x a y r a Vay x^ = 3a^ - x^ x = aVe tifcfng uTng x = — — - B a i 282 ( D A I H O C H U E - aVe (ycbt) 1999) Cho tuf d i e n A B C D c6 ba c a n h A B , A C , A D vuong goc v d i n h a u t i l n g doi m o t va A B = a, A C = 2a, A D = 3a H a y t i n h d i e n ti'ch t a m giac B C D theo a Htfdtng d a n G o i h l a dp d a i dirdng cao c u a t i l d i e n v u o n g of A v a k e tiJ A t h i d a c h i l n g m i n h difoc : 1 AB^ AC^ + The t i c h h i n h tuT d i e n : 4a^ 9a^ , => h = — a V = - A B A C A D = a^ Do d6: d i e n t i c h A B C D \k : S = B a i 283 h 7a^ 3V (ycbt) ( D A I H O C Q U O C G I A T P H C M - K H O I A - D O T - 2000) Cho h i n h chop t i l giac S.ABCD c6 day la h i n h t h a n g A B C D vuong t a i A va D; A B = A D = a; CD = 2a Canh ben SD vuong goc vdti mat phSng ( A B C D ) ; SD = a 1/ C h i l n g m i n h rkng t a m giac SBC v u o n g T i n h d i e n t i c h t a m giac SBC 2/ T i n h k h o a n g each tii d i e m A den m a t p h i n g (SBC) Giai 1/ Goi E l a t r u n g d i e m cua C D Do t i n h chat h i n h t h a n g vuong A B C D , suy r a : BD DC = a = B C => E B D C , E B = - ( t r u n g t u y e n b k n g nijfa canh huyen) => A D B C v u o n g t a i B Theo d i n h l y ba dUcfng vuong goc => S B J- B C (vi B C S D , B C ± B D ) => A S B C vuong t a i B (dpcm) Luc d i e n t i c h S ciia A S B C l a : S = - S B B C = - V S D ^ + DB^.(EB.V2 ) =-^la^ + (aSf (aV2) = ^ a ^ (ycbt) 196 2/ Ha A H ( S B C ) t a i H => h = A H = d[A; (SBC)] a^h Ve The t i c h V cua h i n h chop A S B C l a : V = - S h = —a'^.h = 3 (1) Mat khac t h e t i c h V cung l a t h e t i c h h i n h chop S A B C V = — S A B C - S D = — (SABCD - o o Sa' a Si)Ac)a a' a' a = — — a = — So sanh (1) va (2); t a c6 : a' a^h Vay : d[A; (SBC)l = ^ (2) h = (ycbt) Bai 284 (FDAI H O C S U P H A M H A N O ! - K H O I A - 2000) Trong k h o n g gian cho cac diem A ; B; C theo thijf t u thuoc cac t i a Ox; Oy; Oz vuong goc v d i tirng doi m o t , cho OA = a (a > 0); OB = a V2 ; OC = c ( c > 0) Goi D l a d i n h doi dien vdi cua h i n h chCf n h a t A O B D va M la t r u n g difim cua doan BC (P) l a m a t p h i n g d i qua A M va cat m a t p h ^ n g (OCD) theo m o t dUdng t h a n g vuong goc v d i difctng t h S n g A M 1/ Goi E la giao diem ciia (P) vdi ducmg t h ^ n g OC T i n h dai doan t h a n g OE 21 Tinh t i so thfe t i c h cua h a i k h o i da d i e n duac tao t h a n h k h i cat k h o i h i n h chop C.AOBD b d i mat phang (P) 3/ Tinh k h o a n g each tii d i e m C den m a t p h a n g (P) Giai 1/ Goi N la t r u n g d i e m O B ; P la t a m h i n h chijf nhat A B C D Xet he toa dp : • O A ; AN f a^ = AD = (ADO) ] Ta c6: D O = (-aV2; a) AN.DO = (aS {-ay/2) + a.a = AN DO tai R (1) Ma : M N D O (vi M N / / C O ( O B D A ) OD) (2) T i r ( l ) va (2) cho : D O J_ A M Lai t h a y : EQ A M v d i : EQ = (P) n (OCD) ^ EQ // OD 197 Tinh chat dudng trung binh cho : MP = — AC Goi : F = (P) n CP ta c6 : AFCA t/J AFPM FC FP MP FC m a ^ = ^ OE OE = - O C Vay:OE=|(ycbt) II Dat : Q = (P) ^^ CD Thi§'t di$n ma (P) cat hinh ch6p C.AOBD se chia hinh ch6p C.AOBD thsknh hai kho'i da dien Dey : C A C O C D Vc.AOD CA VcAEQ CB Vc.BOD CM Vc.MEQ _ C E CQ CE •CO CQ •CD 2 "as 2 •3 •3 Vi : Vc.OAD = Vc.BOD = 'C.AEQ => Vc.AEQ + V,C M E Q — Vc.OABD 9^9 + VcMEQ = -r A • ~ - Vc.OABD (goc) Vc.OABD o Vay ty so the tich cua hai khoi da dien mat phing ( P ) c^t hinh ch6p C.OABD tao la : - hoac (ycbt) O G h i chii : Bgc gid c6 the xem each gidi khdc d TUYEN TAP 500 BAI TOAN HINH HOC GIAI TICH eua eung nhom tdc gid 3/ Ha CK ± AM tai K => CK = d[C; (P)] D6c gid tif chon phuong dn t i n h CK => (ycbt) B a i 285 ( H O C V I E N N G A N H A N G - P H A N V I E N T P HCM - Khoi B - 2000) Cho hinh chop til giac deu S.ABCD c6 day la hinh vuong ABCD canh a, dudng cao SO = h 1/ Tinh theo a va h ban kinh mat cau ngoai tiep hinh ch6p 2/ Tinh theo a v a h dien tich toan phan cua hinh chop, tif d6 tinh ban kinh mat cau n6i tifi'p hinh chop Giai 1/ Hinh ch6p S.ABCD deu SA = SB = SC = SD S O la true dudng t r o n A B C D ^ |SOI(ABCD) Ttf trung diem M cua canh SB dong mat phIng trung trUc (a) cua canh SB (a) n SO = I Luc I la tam mat cau ngoai tiep hinh chop S.ABCD va c6 ban kinh R = SI ASOB SI _ SM SB " SI = SM.SB SO SO 198 SI = SI = SB^ f , SM = VI: 2.S0 SB^ J SO^+OB^ 2h aV2 2h Vay : R = 4h (ycbt) 4h 2/ Gpi J la t r u n g d i e m canh A D t h i t r u n g doan SJ la : -7 A SJ = p h a n Stp l a cu => S,,p = a ' + 4, — a - V2 I r : S,p = + 4( AD.SJ) = a|a + V a ^ i - h " j (ycbt) So sanh h a i the t i c h V ciia h i n h chop : V = -Bh ah r- — - V = A rS • ^^"^ V a " + h - ) (ycbt) a + Va^ + 4h^ DE Tl/dNG T I / Bai 286 ( D A I H O C Q U O C G I A T P H C M - K H O I A , B - 1997) Day h i n h chop S A B C D l a h i n h vuong, canh a, SA ( A B C D ) va SA = a M p qua C D cSt SA, SB t a i M , N D a t M A = x a/ T i m dien t i c h t h i e t d i e n b/ T i m X de the t i c h h i n h chop S M N C D b a n g | the t i c h h i n h chop S A B C D Htfofng d a n : a/ S = - ( M N + C D ) M D = - (2a - x) V x ^ T a ^ 2 Bai 287 ( D A I H O C D O N G D O H A N O I - K H O I A - hi x = - a 1998) Canh day h i n h chop t a m giac deu bSng a, goc tao b d i mSt ben Va day b a n g 60° a/ T i m the t i c h va S,p h i n h chop b/ T i m t i so the t i c h h a i p h a n cua h i n h chop m a t p h i n g p h a n giac ciia goc n h i dien 60° d t hinh chop Hrfdrng d i n : a/ V = 24 b/ ^ =i V, 199 ... B = R x = > A M = V2Rx B M ^ = B H X A B = 2R(2R - x) B M = V2R(2R - x) M H ^ = A H = x(2R - X B H x) M H = Vx(2R - x) M S = M H = Vx(2R - x) SA^ = MS^ + M A ^ = x(2R - x) + 2Rx = x(4R - => S... theo (1), thi : l2 + tan2- SH= HI t a n - (2) maHC = HI V2 Lay (3) SH (2) (3) tancp = HC V2 t a n — + J ;2 \ + tan2-^ (4) Vdi gia thiet cosa = ^f2 - 1, da c6 duoc : tan^— = V2 - (3) tancp = V... - O j + JC^ = R2 = + (c - 10 )2 = +OF + (IJ- (1) Olf + c % ^ - 2C.0I (2) + O r = b^ + c^ + O r - 2c OI TCr (1) va (2) , suy : 114 01 = 2c Thay 01 = ^ vao (1) 2c = a^ + b^+c^-a^^'' 2c Vay : R = —