Springer Monographs in Mathematics Springer-Verlag Berlin Heidelberg GmbH Jean-Pierre Serre Galois Cohomology Translated from the French by Patrick Ion , Springer ]ean-Pierre Serre College de France rued'Ulm 75005 Paris France e-mail: serre@dmi.ens.fr Patrick ion (Translator) Mathematical Reviews P O Box 8604 Ann Arbor, MI 48017-8604 USA Library of Congress Cataloging-in-Publication Data applied for Die Deutache Bibliothek - C1P-Einheitsaufnahme SerIe Jean-Pierre: Galois cohomology I Jean-Pierre Serre Transl from the French by Patrick Ion Corr printing - Berlin; Heide1berg ; New York; Barcelona ; Hong Kong ; London ; MUan ; Paris ; Tokyo : Springer 2002 (Springer monographs in mathematics) Einheitssacht.: Cohomologie galoisienne ISBN 978-3-642-63866-4 DOI 10.1007/978-3-642-59141-9 ISBN 978-3-642-59141-9 (eBook) Corrected Second Printing 2002 of the First English Edition of 1997 Mathematics Subject Classification (2000): 12B20 ISSN 1439-7382 ISBN 978-3-642-63866-4 ThiI work is subject to copyright AU righu are reserved, whether the whole or part of the material is concerned specifica\lythe rightl oftranslation reprinting reuse ofillustrationl.recitation broadcasting, reproduction on microfilm or in any other way and storage in data banks Duplication of this publication or parts thereof is permitted on1y under the provisions of the German Copyright Law of September 1965 in its current version and permission for use must a1ways be obtained from Springer-Verl.g Violations are Iiable for prosecution under the German Copyright Law http://WWW.springer.de © Springer-ver\ag BerIio Heidelberg 1997 OriginaJ\ypub\ishedby Springer-Ver\ag BerIio Heidelberg New York in 1997 The use of general descriptive names registered names trademarks etc in this publication doel not inlply even in the absence of a specific statement that such namel are exempt from the relevant protective Iaws and regu1ations and therefore free for general use SPIN: 10841416 4113142LK - 432 o - Printed on acid-free paper Foreword This volume is an English translation of "Cohomologie Galoisienne" The original edition (Springer LN5, 1964) was based on the notes, written with the help of Michel Raynaud, of a course I gave at the College de France in 1962-1963 In the present edition there are numerous additions and one suppression: Verdier's text on the duality of profinite groups The most important addition is the photographic reproduction of R Steinberg's "Regular elements of semisimple algebraic groups", Publ Math LH.E.S., 1965 I am very grateful to him, and to LH.E.S., for having authorized this reproduction Other additions include: - A proof of the Golod-Shafarevich inequality (Chap I, App 2) - The "resume de cours" of my 1991-1992 lectures at the College de France on Galois cohomology of k(T) (Chap II, App.) - The "resume de cours" of my 1990-1991 lectures at the College de France on Galois cohomology of semisimple groups, and its relation with abelian cohomology, especially in dimension (Chap III, App 2) The bibliography has been extended, open questions have been updated (as far as possible) and several exercises have been added In order to facilitate references, the numbering of propositions, lemmas and theorems has been kept as in the original 1964 text Jean-Pierre Serre Harvard, Fall 1996 Table of Contents Foreword V Chapter I Cohomology of profinite groups §1 Profinite groups 1.1 Definition 1.2 Subgroups 1.3 Indices 1.4 Pro-p-groups and Sylow p-subgroups 1.5 Pro-p-groups 3 §2 Cohomology 2.1 Discrete G-modules 2.2 Cochains, cocycles, cohomology 2.3 Low dimensions 2.4 Functoriality 2.5 Induced modules 2.6 Complements 10 10 10 11 12 13 14 §3 Cohomological dimension 3.1 p-cohomological dimension 3.2 Strict cohomological dimension 3.3 Cohomological dimension of subgroups and extensions 3.4 Characterization of the profinite groups G such that cdp ( G) :5 3.5 Dualizing modules 17 17 18 19 21 24 §4 Cohomology of pro-p-groups 4.1 Simple modules 4.2 Interpretation of Hl: generators 4.3 Interpretation of H2: relations 4.4 A theorem of Shafarevich 4.5 Poincare groups 27 27 29 33 34 38 VIII Table of Contents §5 Nonabelian cohomology 5.1 Definition of HO and of HI 5.2 Principal homogeneous spaces over A - a new definition of HI(G,A) 5.3 Twisting 5.4 The cohomology exact sequence associated to a subgroup 5.5 Cohomology exact sequence associated to a normal subgroup 5.6 The case of an abelian normal subgroup 5.7 The case of a central subgroup " 5.8 Complements 5.9 A property of groups with cohomological dimension :s: 45 45 46 47 50 51 53 54 56 57 Bibliographic remarks for Chapter I 60 Appendix J Tate - Some duality theorems 61 Appendix The Golod-Shafarevich inequality " 66 The statement 66 Proof 67 Chapter II Galois cohomology, the commutative case §1 Generalities 71 1.1 Galois cohomology 71 1.2 First examples 72 §2 Criteria for cohomological dimension 2.1 An auxiliary result 2.2 Case when p is equal to the characteristic 2.3 Case when p differs from the characteristic 74 74 75 76 §3 Fields of dimension::::;1 3.1 Definition 3.2 Relation with the property (C I ) 3.3 Examples of fields of dimension :s: 78 78 79 80 §4 Transition theorems 4.1 Algebraic extensions 4.2 Transcendental extensions 4.3 Local fields 4.4 Cohomological dimension of the Galois group of an algebraic number field 4.5 Property (C r ) 83 83 83 85 87 87 Table of Contents IX §5 p-adic fields 5.1 Summary of known results 5.2 Cohomology of finite Gk-modules 5.3 First applications 5.4 The Euler-Poincare characteristic (elementary case) , 5.5 Unramified cohomology 5.6 The Galois group of the maximal p-extension of k 5.7 Euler-Poincare characteristics 5.8 Groups of multiplicative type 90 90 90 93 93 94 95 99 102 §6 Algebraic number fields 6.1 Finite modules - definition of the groups P'(k, A) 6.2 The finiteness theorem 6.3 Statements of the theorems of Poitou and Tate 105 105 106 107 Bibliographic remarks for Chapter II 109 Appendix Galois cohomology of purely transcendental extensions110 An exact sequence 110 The local case 111 Algebraic curves and function fields in one variable 112 The case K = k(T) 113 Notation 114 Killing by base change 115 Manin conditions, weak approximation and Schinzel's hypothesis 116 Sieve bounds 117 Chapter III Nonabelian Galois cohomology §1 Forms 1.1 Tensors 1.2 Examples 1.3 Varieties, algebraic groups, etc 1.4 Example: the k-forms of the group SLn 121 121 123 123 125 §2 Fields of dimension:::; 2.1 Linear groups: summary of known results 2.2 Vanishing of Hi for connected linear groups 2.3 Steinberg's theorem 2.4 Rational points on homogeneous spaces 128 128 130 132 134 §3 Fields of dimension:::; 139 3.1 Conjecture II 139 3.2 Examples 140 X Table of Contents §4 Finiteness theorems 4.1 Condition (F) 4.2 Fields of type (F) 4.3 Finiteness of the cohomology of linear groups 4.4 Finiteness of orbits 4.5 The case k = R 4.6 Algebraic number fields (Borel's theorem) 4.7 A counter-example to the "Hasse principle" 142 142 143 144 146 147 149 149 Bibliographic remarks for Chapter III 154 Appendix Regular elements of semisimple groups (by R Steinberg) 155 Introduction and statement of results 155 Some recollections 158 Some characterizations of regular elements 160 The existence of regular unipotent elements 163 Irregular elements 166 Class functions and the variety of regular classes 168 Structure of N 172 Proof of 1.4 and 1.5 176 Rationality of N 178 10 Some cohomological applications 184 11 Added in proof 185 Appendix Complements on Galois cohomology Notation The orthogonal case Applications and examples Injectivity problems The trace form Bayer-Lenstra theory: self-dual normal bases Negligible cohomology classes 187 187 188 189 192 193 194 196 Bibliography 199 Index 209 194 I1I.Appendix Complements on Galois cohomology where Q and Q' are of rank (this is possible according to [154], App I), we have Q' = (2d) ® Q, where d is the discriminant of E (Le of qE)' 2) Suppose one has Wl(qE) = and W2(QE) = O One may ask whether qE is isomorphic to the unit form (1, , I) (as would be the case if the rank were < 6) This is true if k is a number field (or a rational function field over a number field) It is in general false § Bayer-Lenstra theory: self-dual normal bases Let G be a finite group We are interested in the G-Galois algebras over k, L e in the G-torsors over k, G being considered as an algebraic group of dimension over k Such an algebra L is determined, up to a nonunique isomorphism, by a continuous homomorphism ipL : Gal(ks/k) -+ G When ip L is surjective, L is a field, and it is a Galois extension of k with Galois group isomorphic to G In [9], E Bayer and H Lenstra are interested in the case when L has a selfdual normal basis ("an SDNB"); this means that there exists an element x of L such that qdx) = and that x is orthogonal (relative to qL) to every gx, E G, =I- (Thus, the gx form a "normal basis" of L, and this basis is its own dual with respect to qL') One can give a cohomological criterion for the existence of a SDNB: if UG denotes the unitary group of the involutory algebra k[G], there is a canonical embedding of G into UG(k); by composing ipL with this embedding one obtains a homomorphism Gal(ks/k) > Ua(k), and this homomorphism may be viewed as a l-cocycle of Gal(ks/k) in Ua(k s ) The class CL of this co cycle is an element of Hl(k, Ua ) One has CL = if and only if L has an SDNB From this criterion, combined with (4.4), Bayer-Lenstra deduced the following theorem: (6.1) - If there exists an extension of k of odd degree over which L acquires an SDNB, then L has an SDNB over k In particular: (6.2) - If G is of odd order, every Galois G-algebra has an SDNB Here are some other results about SDNB, obtained in collaboration with E Bayer, cf [11]: Let L be a Galois G-algebra, and let ipL : Gal(ks/k) > G be the corresponding homomorphism If x is an element of Hn(G, Z/2Z), its image under will be denoted by XL Bayer-Lenstra theory: self-dual normal bases 195 (6.3) In order that L have an SDNB, it is necessary that XL = for every X E Hl(G, Z/2Z) (i.e., the image of Gal(ks/k) in G is in all the index-2 subgroups of G) This condition is sufficient if the cohomological2-dimension of Gal( ks / k) is :::; (i e., if the Sylow 2-groups of Gal(ks/k) are free pro-2-groups) (6.4) - Suppose that k is a number field In order that L have an SDNB, it is necessary that d Cv) = for every real place v of k (Cv denoting the complex conjugation with respect to an extension of v to ks ) This condition is sufficient if Hl(G, Z/2Z) = H2(G, Z/2Z) = o (6.5) The case where a Sylow 2-group of G is elementary abelian Let S be a Sylow 2-group of G Suppose that S is an elementary abelian group of order 2r , r ~ Ij the order of G is 2r m, with m odd (6.5.1) - There exists an r-fold Pfister form qi, and, up to isomorphism, only one, such that (2r) ® qL ~ m ® ql (a direct sum of m copies of qi) This form is an invariant of the Galois algebra L It is the unit form if L has an SDNB Conversely: (6.5.2) - Suppose that the normalizer N of S acts transitively on S - {I} The following are equivalent: (i) L has an SDNB (ii) The form qL is isomorphic to the unit form of rank 2rm (iii) The form ql is isomorphic to the unit form of rank 2r When r is small enough, this result can be translated into cohomological terms Indeed, the hypothesis that N act transitively on S - {I} implies that there exists an element x of Hr(G, Z/2Z) whose restriction to any subgroup of order of G is i- 0, and such an element is unique, up to the addition of a "negligible" cohomology class (cf § below) The corresponding element XL of Hr(k, Z/2Z) is an invariant of the Galois algebra L (6.5.3) - Suppose that r :::; The conditions (i), (ii), (iii) in (6.5.2) are then equivalent to: (iv) XL = in Hr(k, Z/2Z) The hypothesis r :::; could be dropped if the conjectures in §2.3 were proved Examples 1) Suppose that r = and that N acts transitively on S-{l}j this is so when G = A , A5 or PSL2 (F q) with q == (mod 8) The group H2( G, Z/2Z) contains a single element x i- OJ let be the corresponding extension of G by Z/2Z It follows from (6.5.3) that L has an SDNB if and only if the homomorphism tpL : Gal(ks/k) + G lifts to a homomorphism in Such a lifting corresponds to a Galois a-algebra Lj one can show it is possible to arrange that L also has an SDNB a a 196 III.Appendix Complements on Galois cohomology 2) Take as G the group SL2(Fs) or the Janko group J • The hypotheses in (6.5.2) and (6.5.3) are then satisfied with r = The group H3(G, Z/2Z) contains a single element x =F 0, and one sees that L has an SONB if and only if XL = in H3(k, Z/2Z) Remark The property that a G-Galois algebra L have an SONB can be translated into "Galois twisting" terms as follows: Let V be a finite-dimensional vector space over k, equipped with a family q = (qi) of quadmtic tensors (of type (2,0), (1,1), or (0,2), it doesn't matter which) Suppose that G acts on V and fixes every qi One may then twist (V, q) by the G-torsor corresponding to L In this way one obtains a k-form (V, q)L of (V, q) One can prove: (6.6) If L has an SONB, (V,q)L is isomorphic to (V,q) Moreover, this property chamcterizes the Galois algebras which have an SONB (Note that such a statement would be false for cubic tensors.) § Negligible cohomology classes Let G be a finite group and C a G-module An element x in Hq(G, C) is said to be negligible (from the Galois standpoint) if, for every field k, and every continuous homomorphism cp : Gal(ks/k) -+ G, we have cp*(x) = (This amounts to saying that XL = for every G-Galois algebra L.) Example If a and b are two elements of Hl(G, Z/2Z), the cup-product ab(a + b) is a negligible element of H (G, Z/2Z) Here are some results about these classes: (7.0) - If q = 1, no nonzero element of Hq(G,C) is negligible The same is true if q = and G acts trivially on C (7.1) - For every finite group G there exists an integer q(G) such that any cohomology class of G of odd order and dimension q > q( G) is negligible This result does not extend to classes of even order Indeed, no cohomology class (other than 0) of a cyclic group of order is negligible, as one sees by taking k=R (7.2) - Suppose that G is elementary abelian of order 2r Ifx E Hq(G,Z/2Z), the following properties are equivalent: Negligible cohomology classes 197 (a) x is negligible (b) The restriction of x to any subgroup of order is O (c) x belongs to the ideal of the algebra H*(G, Z/2Z) generated by the cupproducts ab(a + b), where a and b run over Hl(G, Z/2Z) {There are analogous results when G is elementary abelian of order pT (p and C = Z/pZ.) f 2), (7.3) - Suppose that G is isomorphic to a symmetric group Sn Then: (a) If N is odd, every element of Hq{G, Z/NZ), q ~ 1, is negligible (b) In order that an element of Hq{G, Z/2Z) be negligible, it is necessary and sufficient that its restrictions to the subgroups of G of order vanish Bibliography [I] A Albert - Structure of Algebras, A.M.S Colloquium Publ 24, Providence, 1961 [2] A Albert and N Jacobson - On reduced exceptional simple Jordan algebras, Ann of Math 66 (1957), 400-417 [3] J Arason - Cohomologische Invarianten quadratischer Formen, J Algebra 36 (1975), 446-491 [4] " " - A proof of Merkurjev's theorem, Canadian Math Soc Conference Pmc (1984), 121-130 [5] E Artin and O Schreier - Eine Kennzeichnung der reeH abgeschlossenen Karper, Hamb Abh (1927), 225-231 (= E Artin, C.P 21) [6] E Artin and J Tate - Class Field Theory, Benjamin Publ., New York, 1967 [7] M Artin, A Grothendieck and J-L Verdier - Cohomologie Etale des Schemas (SGA 4), Lect Notes in Math 269-270-305, Springer-Verlag, 1972-1973 [8] J Ax - Proof of some conjectures on cohomological dimension, Proc A.M.S 16 (1965), 1214-1221 [9] E Bayer-Fluckiger and H.W Lenstra, Jr - Forms in odd degree extensions and self-dual normal bases, Amer J Math 112 (1990), 359-373 [lOJ E Bayer-Fluckiger and R Parimala - Galois cohomology of classical groups over fields of cohomological dimension ~ 2, Invent Math 122 (1995), 195229 [111 E Bayer-Fluckiger and J-P Serre - Torsions quadratiques et bases normales autoduales, Amer J Math 116 (1994), 1-63 [12] F van der Blij and T.A Springer - The arithmetics of octaves and of the group G2 , Indag Math 21 (1959), 406-418 [13J A Borel - Groupes lineaires algebriques, Ann of Math 64 (1956), 20-82 (= Oe 39) [14] " " - Some finiteness properties of adele groups over number fields, Publ Math I.H.E.S 16 (1963), 5-30 (= Oe.60) [15] " " - Arithmetic properties of linear algebraic groups, Proc Int Congress Math Stockholm (1962), 10-22 (= Oe.61) [16] " " - Linear Algebraic Groups, 2nd edition, Springer-Verlag, 1991 [17] A Borel and Harish-Chandra - Arithmetic subgroups of algebraic groups, Ann of Math 75 (1962) 485-535 (= A Borel, Oe 58) [18] A Borel and J-P Serre - Theoremes de finitude en cohomologie galoisienne, Comm Math Helv 39 (1964), 111-164 (= A Borel, Oe.64) 200 Bibliography [19J A Borel and T.A Springer - Rationality properties of linear algebraic groups, Proc Symp Pure Math A.M.S (1966), 26-32 (= A Borel, Oe 76); II, Taho/ru Math J 20 (1968), 443-497 (= A Borel, Oe 80) [20J A Borel and J Tits - Groupes roouctifs, Publ Math I.H.E.S 27 (1965), 55-150 (= A Borel, Oe 66); Complements, ibid 41 (1972), 253-276 (= A Borel, Oe 94) [21J Z.L Borevic and LR Safarevic - Number Theory (in Russian), 3rd edition, Moscow, 1985 [22J F Bruhat and J Tits - Groupes algebrique simples sur un corps local, Proc Con! Local Fields, Driebergen, 23-26, Springer-Verlag, 1967 [23J F Bruhat and J Tits - Groupes roouctifs sur un corps local, Publ Math I.H.E.S 41 (1972),5-252; II, ibid 60 (1984), 5-184; III, J Fac Sci Univ Tokyo 34 (1987), 671-688 [24J A Brumer - Pseudocompact algebras, profinite groups and class formations, J Algebra (1966), 442-470 [25J H Cartan and S Eilenberg - Homological Algebra, Princeton Math Ser 19, Princeton, 1956 [26J J.W.S Cassels - Arithmetic on an elliptic curve, Proc Int Congress Math Stockholm (1962), 234-246 [27J J.W.S Cassels and A Frohlich (edit.) - Algebraic Number Theory, Acad Press, New York, 1967 [28J F Chatelet - Variations sur un theme de H Poincare, Ann Sci E.N.S 61 (1944), 249-300 [29J " " - Methodes galoisiennes et courbes de genre 1, Ann Univ Lyon, sect A-IX (1946), 40-49 [30] V.1 Chernousov - The Hasse principle for groups of type E8, Math U.S.S.R Izv 34 (1990), 409-423 [31] C Chevalley - Demonstration d'une hypothese de M Artin, Hamb Abh 11 (1934), 73-75 [32J " " - Theory of Lie Groups, Princeton Univ Press, Princeton, 1946 [33] " " - Sur certains groupes simples, Tahoku Math J (1955), 14-66 [34] " " - Classification des groupes de Lie algebriques, Sem E.N.S., LH.P., Paris, 1956-1958 [35] " " - Certains schemas de groupes semi-simples, Sem Bourbaki 1960/61, expose 219 [36J J-L Colliot-Thelene and J-J Sansuc - Sur Ie principe de Hasse et sur l'approximation faible, et sur une hypothese de Schinzel, Acta Arith 41 (1982), 33-53 [37J J-L Colliot-Thelene and Sir Peter Swinnerton-Dyer - Hasse principle and weak approximation for pencils of Severi-Brauer and similar varieties, J Crelle 453 (1994), 49-112 [38] P Dedecker - Sur la cohomologie non abelienne I, Can J Math 12 (1960), 231-251; II, ibid 15 (1963), 84-93 Bibliography [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] 201 " " - Three dimensional non-abelian cohomology for groups, Lect Notes in Math 92, Springer-Verlag, 1969, 32-64 A Delzant - Definition des classes de Stiefel-Whitney d'un module quadratique sur un corps de caracteristique differente de 2, C.R Acad Sci Paris 255 (1962), 1366-1368 M Demazure and P Gabriel- Groupes Algebriques, Masson, Paris, 1970 M Demazure and A Grothendieck - Schemas en Groupes (SGA 3), Lect Notes in Math 151-152-153, Springer-Verlag, 1970 S.P Demuskin - The group of the maximum p-extension of a local field (in Russian), Dokl Akad Nauk S.S.S.R 128 (1959), 657-660 " " - On 2-extensions of a local field (in Russian), Math Sibirsk (1963), 951-955 " " - Topological 2-groups with an even number of generators and a complete defining relation (in Russian), Izv Akad Nauk S.S.S.R 29 (1965),3-10 J Dieudonne - La Geometrie des Groupes Classiques, Ergebn der Math 5, Springer-Verlag, 1955 A Douady - Cohomologie des groupes compacts totalement discontinus, Sem Bourbaki 1959/60, expose 189 D Dummit and J.P Labute - On a new characterization of Demuskin groups, Invent Math 73 (1983), 413-418 R.S Elman - On Arason's theory of Galois cohomology, Comm Algebra 10 (1982),1449-1474 D.K Faddeev - Simple algebras over a field of algebraic functions of one variable (in Russian), Trud Math Inst Steklov 38 (1951), 321-344 (English translation: A.M.S Transl Series 2, vol 3, 15-38) M Fried and M Jarden - Field Arithmetic, Ergebn der Math 11, SpringerVerlag, 1986 P Gabriel - Des categories abeliennes, Bull Soc math France 90 (1962), 323-448 Giorgiutti - Groupes de Grothendieck, Ann Fac Sci Toulouse 26 (1962),151-207 J Giraud - Cohomologie Non Abelienne, Springer-Verlag, 1971 R Godement - Groupes lineaires algebriques sur un corps parfait, Sem Bourbaki, 1960/61, expose 206 E.S Golod and LR Safarevic - On class field towers (in Russian), Izv Akad Nauk S.S.S.R 28 (1964), 261-272 (English translation: LR Shafarevich, C.P 317-328) M.J Greenberg - Lectures on Forms in Many Variables, Benjamin Publ., New York, 1969 A Grothendieck - A general theory of fibre spaces with structure sheaf, Univ Kansas, Report 4, 1955 " " - Sur quelques points d'algebre homologique, Tohoku Math J.9 (1957), 119-221 202 [60] [61) [62) [63) [64) [65) [66) Bibliography If If Torsion homologique et sections rationnelles, Sem Chevalley (1958), Anneaux de Chow et Applications, expose If If Technique de descente et tMoremes d'existence en geometrie algebrique II: Ie theoreme d'existence en theorie formelle des modules, Sem Bourbaki, 1959/60, expose 195 If If Elements de Geometrie Algebrique (EGA), rooiges avec la collaboration de J Dieudonne, Publ Math I.H.E.S 4, 8,11,17,20,24, 28, 32, Paris, 1960-1967 If If Le groupe de Brauer I-II-III, Dix exposes sur la cohomologie des schemas, 46-188, North Holland, Paris, 1968 If " Revetements Etales et Groupe Fondamental (SGA 1), Lect Notes in Math 224, Springer-Verlag, 1971 K Haberland - Galois Cohomology of Algebraic Number Fields, VEB, Deutscher Verlag der Wiss., Berlin, 1978 D Haran - A proof of Serre's theorem, J Indian Math Soc 55 (1990), 213-234 [67) G Harder - Uber die Galoiskohomologie halbeinfacher Matrizengruppen, I, Math Zeit 90 (1965), 404-428; II, ibid 92 (1966), 396 415; III, J Crelle 274/275 (1975), 125-138 [68) " If Bericht iiber neuere Resultate der Galoiskohomologie halbeinfacher Gruppen, Jahr D.M V 70 (1968), 182-216 [69) D Hertzig - Forms of algebraic groups, Proc A.M.S 12 (1961), 657-660 [70) G.P Hochschild - Simple algebras with purely inseparable splitting fields of exponent 1, Trans A.M.S 79 (1955), 477-489 [71) [72) [73) [74) [75) [76) [77] [78] [79] [80] [81] " " - Restricted Lie algebras and simple associative algebras of characteristic p, Trans A.M.S 80 (1955), 135-147 G.P Hochschild and J-P Serre - Cohomology of group extensions, Trans A.M.S 74 (1953), 110-134 (= J-P Serre, Oe 15) C Hooley - On ternary quadratic forms that represent zero, Glasgow Math J 35 (1993), 13-23 B Huppert - Endliche Gruppen I, Springer-Verlag, Berlin-Heidelberg, 1967 K Iwasawa - On solvable extensions of algebraic number fields, Ann of Math 58 (1953), 548-572 " " - On Galois groups of local fields, Trans A.M.S 80 (1955), 448-469 K Iwasawa - A note on the group of units of an algebraic number field, J Math pures et appl 35 (1956), 189-192 B Jacob and M Rost - Degree four cohomological invariants for quadratic forms, Invent Math 96 (1989), 551-570 N Jacobson - Composition algebras and their automorphisms, Rend Palermo (1958), 1-26 " " - Structure and Representations of Jordan Algebras, A.M.S Colloquium Publ 39, Providence, 1968 K Kato - Galois cohomology of complete discrete valuation fields, Lect Notes in Math 967, 215-238, Springer-Verlag, 1982 Bibliography 203 [82] Y Kawada - Cohomology of group extensions, J Fac Sci Univ Tokyo (1963), 417-43l [83] II II Class formations, Proc Symp Pure Math 20, 96-114, A.M.S., Providence, 1969 [84] M Kneser - Schwache Approximation in algebraischen Gruppen, Colloque de Bruxelles, 1962, 41-52 [85] II II Einfach zusammenhiingende Gruppen in der Arithmetik, Proc Int Congress Math Stockholm (1962),260-263 [86] II II Galoiskohomologie halbeinfacher algebraischer Gruppen tiber p-adischen Korpern, I, Math Zeit 88 (1965), 40-47; II, ibid 89 (1965), 250-272 [87] II II Lectures on Galois Cohomology of Classical Groups, Tata Inst., Bombay, 1969 [88] H Koch - Galoissche Theorie der p-Erweiterungen, Math Monogr 10, VEB, Berlin, 1970 [89] B Kostant - The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer J Math 81 (1959),973-1032 [90] R Kottwitz - Tamagawa numbers, Ann of Math 127 (1988), 629-646 [91] M Krasner - Nombre des extensions d'un degre donne d'un corps p-adique, Colloque C.N.R.S 143 (1966), 143-169 [92] J.P Labute - Classification of Demuskin groups, Canad J Math 19 (1967),106-132 [93] II II Algebres de Lie et pro-p-groupes definis par une seule relation, Invent Math (1967), 142-158 [94] T.Y Lam - The Algebraic Theory of Quadratic Forms, Benjamin, New York,1973 [95] S Lang - On quasi-algebraic closure, Ann of Math 55 (1952), 373-390 [96] II II - Algebraic groups over finite fields, Amer J Math 78 (1956), 555-563 [97J II II - Galois cohomology of abelian varieties over p-adic fields, mimeographed notes, May 1959 [98J II II - Topics in Cohomology of Groups, Lect Notes in Math 1625, Springer-Verlag, 1996 [99] II II - Algebraic Number Theory, Addison-Wesley, Reading, 1970 [100] S Lang and J Tate - Principal homogeneous spaces over abelian varieties, Amer J Math 80 (1958), 659-684 [101] M Lazard - Sur les groupes nilpotents et les anneaux de Lie, Ann Sci E.N.S.71 (1954), 101-190 [102] II II Groupes analytiques p-adiques, Publ Math I.H.E.S 26 (1965), 389-603 [103] Y Manin - Le groupe de Brauer-Grothendieck en geometrie diophantienne, Actes Congres Int Nice (1970), t I, 401-411, Gauthier-Villars, Paris, 1971 [104] II II - Cubic Forms: Algebra, Geometry, Arithmetic, North Holland, 1986 204 Bibliography [105] K McCrimmon - The Freudenthal-Springer-Tits constructions of exceptional Jordan algebras, Trans A.M.S 139 (1969), 495-510 [106] J Mennicke - Einige endliche Gruppen mit drei Erzeugenden und drei Relationen, Archiv der Math 10 (1959), 409-418 [107] A.S Merkurjev - On the norm residue symbol of degree (in Russian), Dokl Akad Nauk S.S.S.R 261 (1981),542-547 (English translation: Soviet Math Dokl 24 (1981), 546-551) [108] " " - Simple algebras and quadratic forms (in Russian), Izv Akad Nauk S.S.S.R 55 (1991), 218-224 (English translation: Math U.S.S.R Izv 38 (1992), 215-221) [109] A.S Merkurjev and A.A Suslin - K-cohomology of Severi-Brauer varieties and the norm residue homomorphism (in Russian), Izv Akad Nauk S.S.S.R 46 (1982), 1011-1046 (English translation: Math U.S.S.R Izv 21 (1983), 307-340) [110] " " - On the norm residue homomorphism of degree three, LOMI preprint E-9-86 , Leningrad, 1986 (Norm residue homomorphism of degree three (in Russian) Izv Akad Nauk SSSR Ser Mat 54 (1990), 339-356.) [111] " " - The group K3 for a field (in Russian), Izv Akad Nauk S.S.S.R 54 (1990), 522-545 (English translation: Math U.S.S.R Izv 36 (1991), 541-565) [112] J-F Mestre - Annulation, par changement de variable, d'elements de Br2(k(x)) ayant quatre poles, C.R Acad Sci Paris 319 (1994), 529-532 [113] " " - Construction d'extensions regulieres de Q(T) it groupe de Galois SL (F ) et M 12 , C.R Acad Sci Paris 319 (1994), 781-782 [114] J Milne - Duality in the flat cohomology of a surface, Ann Sci E.N.S (1976), 171-202 [115] " " - Etale Cohomology, Princeton Univ Press, Princeton, 1980 [116] " " - Arithmetic Duality Theorems, Acad Press, Boston, 1986 [117] J Milnor - Algebraic K-theory and quadratic forms, Invent Math (1970), 318-344 [118] M Nagata - Note on a paper of Lang concerning quasi-algebraic closure, Mem Univ Kyoto 30 (1957), 237-24l [119] J Oesterle - Nombres de Tamagawa et groupes unipotents en caracteristique p, Invent Math 78 (1984), 13-88 [120] T Ono - Arithmetic of algebraic tori, Ann of Math 74 (1961), 101-139 [121] " " - On the Tamagawa number of algebraic tori, Ann of Math 78 (1963),47-73 [122] H.P Petersson - Exceptional Jordan division algebras over a field with a discrete valuation, J Crelle 274/275 (1975), 1-20 [123] H.P Petersson and M.L Racine - On the invariants mod of Albert algebras, J of Algebra 174 (1995), 1049-1072 [124] A Pfister - Quadratische Formen in beliebigen Korpern, Invent Math (1966),116-132 Bibliography 205 [125] V.P Platonov and A.S Rapinchuk - AJIre6pallIQeCKHe rpynnhI III TeOpllIJI QllIceJI Algebraic groups and number theory {in Russian with an English summary} Izdat "Nauka", Moscow, 1991 {English translation: Algebraic Groups and Number Fields, Acad Press, Boston, 1993} [126] G Poitou - Cohomologie Galoisienne des Modules Finis, Dunod, Paris, 1967 [127] D Quillen - The spectrum of an equivariant cohomology ring I, Ann of Math 94 {1971}, 549-572; II, ibid., 573-602 [128] L Ribes - Introduction to profinite groups and Galois cohomology, Queen's Papers in Pure Math 24, Kingston, Ontario, 1970 [129] M Rosenlicht - Some basic theorems on algebraic groups, Amer J Math 78 {1956}, 401-443 [130] " " - Some rationality questions on algebraic groups, Ann Mat Pura Appl 43 {1957}, 25-50 [131] M Rost - A (mod 3) invariant for exceptional Jordan algebras, C.R Acad Sci Paris 315 (1991),823-827 [132] " " - Cohomological invariants, in preparation [133] LR Safarevic [Shafarevich]- On p-extensions (in Russian), Math Sb 20 (1947),351-363 (English translation: C.P 3-19) [134] " " - Birational equivalence of elliptic curves (in Russian), Dokl Akad Nauk S.S.S.R 114 (1957), 267-270 (English translation: C.P 192-196) [135] " " - Algebraic number fields (in Russian), Proc Int Congress Math Stockholm (1962), 163-176 (English translation: C.P 283-294) [136] " " - Extensions with prescribed ramification points (in Russian, with a French summary), Publ Math I H.E.S 18 (1963), 295-319 (English translation: C.P 295-316) [137] J-J Sansue - Groupe de Brauer et arithmetique des groupes algebriques lineaires sur un corps de nombres, J Crelle 327 (1981), 12-80 [138] W Scharlau - Uber die Brauer-Gruppe eines algebraisehen Funktionenkorpers in einer Variablen, J Crelle 239-240 (1969), 1-6 [139] " " - Quadratic and Hermitian Forms, Springer-Verlag, 1985 [140] C Scheiderer - Real and Etale Cohomology, Lect Notes in Math 1588, Springer-Verlag, 1994 [141] A Schinzel and W Sierpinski - Sur certaines hypotheses concernant les nombres premiers, Acta Arith (1958), 185-208; Errata, ibid (1959), 259 [142] R Schoof - Algebraic curves over F2 with many rational points, J Number Theory 41 (1992), 6-14 [143] J-P Serre - Classes des corps cyclotomiques (d'apres K Iwasawa), Sem Bourbaki 1958-1959, expose 174 (= Oe 41) [144] " " - Groupes Algebriques et Corps de Classes, Hermann, Paris, 1959 [145] " " - Corps Locaux, Hermann, Paris, 1962 206 Bibliography II II Cohomologie galoisienne des groupes algebriques lineaires, Colloque de Bruxelles, 1962,53-67 (= Oe.53) [147] II II Structure de certains pro-p-groupes (d'apres DemuSkin), sem Bourbaki 1962-1963, expose 252 (= Oe 58) [148] II II Sur les groupes de congruence des varietes abeliennes, Izv Akad Nauk S.S.S.R 28 (1964), 1-20 (= Oe 62); II, ibid 35 (1971), 731737 (= Oe 89) [149] II II Sur la dimension cohomologique des groupes profinis, Topology (1965), 413-420 (= Oe.66) [150] II II Representations Lineaires des Groupes Finis, Hermann, Paris, 1967 [151] II II Cohomologie des groupes discrets, Ann Math Studies 70, 77169, Princeton Univ Press, Princeton, 1971 (= Oe 88) [152] II II Une "formule de masse" pour les extensions totalement ramifiees de degre donne d'un corps local, C.R Acad Sci Paris 287 (1978), 183-188 (= Oe 115) [153] II II Sur Ie nombre des points rationnels d'une courbe algebrique sur un corps fini, C.R Acad Sci Paris 296 (1983), 397-402 (= Oe 128) [154] II II L'invariant de Witt de la forme Tr(x ), Comm Math Helv 59 (1984), 651-676 (= Oe 131) [155] II II Specialisation des elements de Br2(Q(Tl , Tn», C.R Acad Sci Paris 311 (1990),397-402 (= Oe 150) [156] II II Cohomologie galoisienne: progres et problemes, Sem Bourbaki 1993-1994, expose 783 (= Oe 166) [157] S.S Shatz - Profinite Groups, Arithmetic, and Geometry, Ann Math Studies 67, Princeton Univ Press, Princeton, 1972 [158] C Soule - K2 et Ie groupe de Brauer (d'apres A.S Merkurjev et A.A Suslin), sem Bourbaki 1982-1983, expose 601 (Asterisque 105-106, S.M.F., 1983, 79 93) [159] T.A Springer - Sur les formes quadratiques d'indice zero, C.R Acad Sci Paris 234 (1952), 1517-1519 [160] II II On the equivalence of quadratic forms, Proc Acad Amsterdam 62 (1959), 241-253 [161] II II The classification of reduced exceptional simple Jordan algebras, Proc Acad Amsterdam 63 (1960), 414-422 [162] II II Quelques resultats sur la cohomologie galoisienne, Colloque de Bruxelles, 1962, 129-135 [163] T.A Springer and F.D Veldkamp - Octonions, Jordan Algebras and Exceptional Groups, Springer-Verlag, 2000 [164] R Steinberg - Variations on a theme of Chevalley, Pacific J Math (1959),875-891 (= C.P 8) [165] II II Regular elements of semisimple algebraic groups, Publ Math I.H.E.S 25 (1965),281-312 (= C.P 20) [166] II II Lectures on Chevalley Groups, mimeographed notes, Yale, 1967 [146J Bibliography 207 [167] A.A Suslin - Algebraic K-theory and the norm-residue homomorphism, J Soviet Math 30 (1985), 2556-2611 [168] R Swan - Induced representations and projective modules, Ann of Math 71 (1960), 552-578 [169] " " - The Grothendieck ring of a finite group, Topology (1963), 85110 [170] J Tate - WC-groups over p-adic fields, Sem Bourbaki 1957-1958, expose 156 [171] " " - Duality theorems in Galois cohomology over number fields, Proc Int Congress Math Stockholm (1962), 288-295 [172] " " - The cohomology groups of tori in finite Galois extensions of number fields, Nagoya Math J 27 (1966), 709-719 [173] " " - Relations between K2 and Galois cohomology, Invent Math 36 (1976), 257-274 [174] G Terjanian - Un contre-exemple a une conjecture d'Artin, C.R Acad Sci Paris 262 (1966), 612 [175] J Tits - Groupes semi-simples isotropes, Colloque de Bruxelles, 1962, 137147 [176] " " - Groupes simples et geometries associees, Proc Int Congress Math Stockholm (1962), 197-221 [177] " " - Classification of algebraic semisimple groups, Proc Symp Pure Math 9, vol I, 33 62, A.M.S., Providence, 1966 [178] " " - Formes quadratiques, groupes orthogonaux et algebres de Clifford, Invent Math (1968), 19-41 [179] " " - Representations lineaires irroouctibles d'un groupe roouctif sur un corps quelconque, J Crelle 247 (1971), 196-220 [180] " " - Sur les degres des extensions de corps deployant les groupes algebriques simples, C.R Acad Sci Paris 315 (1992), 1131-1138 [181] V.E Voskresenski'l- Algebraic Tori (in Russian), Izdat "Nauka", Moscow, 1977 [182] A Weil- On algebraic groups and homogeneous spaces, Amer J Math 77 (1955), 493-512 (= Oe [1955b]) [183] " II - The field of definition of a variety, Amer J Math 78 (1956), 509-524 (= Oe [1956]) [184] II II - Algebras with involutions and the classical groups, J Indian Math Soc 24 (1960), 589 623 (= Oe [1960b]) [185] II II - Adeles and Algebraic Groups (notes by M Demazure and T Ono), Inst for Adv Study, Princeton, 1961; Birkhauser, Boston, 1982 [186] II II - Basic Number Theory, Springer-Verlag, 1967 [187] E Witt - Theorie der quadratischen Formen in beliebigen Korpern, J Crelle 176 (1937), 31-44 [188] V.1 Yanchevski'l- K-unirationality of conic bundles and splitting fields of simple central algebras (in Russian), Dokl Akad Nauk S.S.S.R 29 (1985), 1061-1064 [189] H Zassenhaus - The Theory of Groups, 2nd ed., Chelsea, New York, 1949 Index (1.1.5) = chap I, §1.5 associated (profinite group - to a discrete group) 1.1.1 Bayer-Lenstra (theory) III.App.2.6 Borel - (subgroup) 111.2.1 - (theorem of -) I1I.4.6 Cartan (subgroup) 111.2.1 cocycle (of G in a G-group) 1.5.1 cohomology - (exact sequence) 1.5.4 - (of a profinite group) 1.2.2 - set (first -) 1.5.1 condition (F) I1I.4.1 conjecture I 111.2.3 conjecture II 111.3.1 corestriction 1.2.4 DemuSkin (group) 1.4.5 DemuSkin-Labute (classification theorem) 1.4.5 dimension ~ (field of -) 11.3.1 dimension (cohomological- of a profinite group) 1.3.1 discrete (G-module) 1.2.1 dualizing (module) 1.3.5 Euler-Poincare (characteristic) 11.5.4 1.4.1, finiteness (theorem) 11.6.2 form 111.1 free (pro-p-group) 1.1.5 Galois cohomology 11.1.1,111.1.1 G-group 1.5.1 G-set 1.5.1 Golod-Shafarevich (theorem) 1.4.4 good (group) 1.2.6 Hasse (principle) I1I.4.7 Hasse-Witt (invariant) I1I.3.2 index (of a closed subgroup) induced (module) 1.2.5 lifting (property) 1.5.9 1.1.3 Manin conditions II.App Merkurjev-Suslin (theorem) 11.4.5 Milnor (conjectures) III.App.2.2.3 multiplicative type (groups of -) 11.5.8 negligible (cohomology class) III.App.2.7 order (of a profinite group) 1.1.3 p-adic (field) 11.5 parabolic (subgroup) 111.2.1 p-cohomological dimension 1.3.1 p-completion (of a discrete group) 1.3.1 p-dimension (cohomological-) 1.3.1 p-extension (maximal- of a field) 11.2 Poincare (group) 1.4.5 Poitou-Tate (theorems) 11.6.3 principal (homogeneous space) 1.5.2 profinite (group) 1.1.1 projective (profinite group) 1.5.9 pronilpotent (profinite group) 1.5.9 pro-p-group 1.1.4 property (C ) 11.3.2 property (C r ) 11.4.5 quasi-split (semisimple group) 111.2.2 radical (of an algebraic group) 111.2.1 rank - (of a pro-p-group) 1.4.2 - (of a free pro-p-group) 1.1.5 - (of a normal subgroup) 1.4.3 residue (of a cohomology class) II.App residue formula II.App 210 Index restriction 1.2.4 Schinzel (hypothesis) II.App section (of a projection onto a quotient) 1.1.2 self-dual (normal basis) III.App.2.6 semisimple (algebraic group) 111.2.1 Shapiro-Faddeev (theorem) 1.2.5 Shafarevich (theorem) 1.4.4 simply connected (semisimple group) I1I.3.1 split - (extension) 1.3.4 - (group) I1I.2.2 Springer (theorem) 111.2.4 Steinberg (theorem) 111.2.3 Stiefel-Whitney (classes) I1I.App.2.2.1 strict (cohomological dimension) 1.3.2 supernatural (number) 1.1.3 Sylow (subgroups of a profinite group) 1.1.4 Tate (theorems) 11.5.1,11.5.7 torsor 1.5.2 tower (class field -) 1.4.4 trace form III.App.2.5 twisting 1.5.3, I1I.1.3 unipotent (algebraic group) 111.2.1 unramified (module) 11.5.5 weak approximation II.App Zp-algebra (of a pro-p-group) 1.1.5 [...]... extension of a group G satisfying A2 (a) Assume first that N is finite Let 1 be the centralizer of N in E Show that 1 is of finite index in Ej deduce th~t 1/(1 n N) satisfies A2 [apply 1, (d)], since there exists subgroup Eo of finite index in E such that Eo n N = {1} (b) Assume from now on that N is finitely generated Show (using (a )) that every subgroup of N of finite index contains a subgroup of the form... profinite group G, and let A E C H The induced module A* = MlJ (A) is defined as the group of continuous maps a* from G to A such that a*(hx) = h· a*(x) for h E H,x E G The group G acts on A* by (ga *)( x) = a*(xg) If H = {I}, one writes MG(A)j the G-modules obtained in this way are called induced ("co-induced" in the terminology of [145 ]) If to each a* E MlJ (A) one associates its value at the point... H/(HnU )) , where U runs over the set of open normal subgroups of G It is also the km of the indices (G : V) for open V containing H Proposition 2 (i) If K C H C G are profinite groups, one has (G: K) = (G: H) (H: K) (ii) If (Hi) is a decreasing filtration of closed subgroups of G, and if H = nHi , one has (G: H) = km(G: Hi) (iii) In orner that H be open in G, it is necessary and sufficient that (G : H)... obtains a homomorphism MlJ (A) t A which is compatible with the injection of H into G (cf §2.4)j hence the homomorphisms Hq(G,MlJ(A )) ~ Hq(H,A) Proposition 10 The homomorphisms Hq(G, MlJ (A )) above are isomorphisms t Hq(H, A) defined One first remarks that, if BE CG, one has HomG(B, MlJ (A )) = Hom H (B, A) This implies that the functor MlJ transforms injective objects into injective objects Since,... pro finite group G One has cdp(H) scdp{H) ~ ~ cdp(G) scdp{G) with equality in each of the following cases: (i) (G : H) is prime to p (ii) H is open in G, and cdp{G) < +00 We will consider only cdp, since the argument is analogous for scdp If A is a discrete torsion H-module, MlJ (A) is a discrete torsion G-module and Hq{G,MlJ{A» = Hq{H,A), whence obviously the inequality cdp{H) ~ cdp{G) The inequality... hypothesis "H is open in G" by ''the exponent of pin (G : H) is finite" 2) With the same notation as in prop 15, assume that the exponent of p in (G : H) is not zero (Le cdp(GjH) #- 0) Show that one has the inequality scdp(G) :::; cdp(H) + scdp(GjH) 3) Let n be an integer Assume that for each open subgroup H of G, the p-primary components of Hn+l(H, Z) and Hn+2(H, Z) are zero Show that scdp ( G) ::; n [If... element of N) 6 1.§1 Profinite groups Let us show (i): if U is an open normal subgroup of G, set Gu = GjU, Hu = Hj(H n U), Ku = Kj(K n U) One has Gu : :) Hu : :) K u , from which (G u : Ku) = (Gu : Hu)· (Hu : Ku) By definition, lcm(Gu : Ku) = (G : K) and lcm(Gu : Hu) = (G: H) On the other hand, the H n U are cofinal with the set of normal open subgroups of H; it follows that lcm(Hu : Ku) = (H: K), and from... morphism f : F(I) - G(I) the family = (f(Xi )) ' The fact that the correspondence obtained in this way is bijective is clear (g ,) Remark Along with F(I) one may define the group F8(I) which is the projective limit of the L(I)jM for those M just satisfying a) This is the p-completion of L(I); the morphisms of F8(I) into a pro-p-group are in one-to-one correspondence with arbitrary families (gi)iEI of elements... of f(G) in G' is prime to p (2p) For any p-primary G'-module A, the homomorphism Hl(G',A) -+ Hl(G,A) is injective [Reduce this to the case where G and G' are pro-p-groups.] (b) Show the equivalence of: ( 1) f is surjective ( 2) For any G'-module A, the homomorphism H 1 (G',A) -+ Hl(G,A) is injective ( 3) Same assertion as in ( 2), but restricted to finite G'-modules A 2.5 Induced modules 13 2.5 Induced... 14 6) One thus has Hl(G, ZjpZ) 1= 0, whence cdp(G) 2: 1 Corollary 3 If cdp { G) 1= 0,00, the exponent of p in the order of G is infinite 20 1.§3 Cohomological dimension Here again, one may assume G is a pro-p-group If G were finite, part (ii) of the proposition would show cdp(G) = cdp({l }) = 0, in contradiction to our hypothesis Therefore G is infinite Corollary 4 Assume cdp ( G) = n is finite In order .. .Springer Monographs in Mathematics Springer- Verlag Berlin Heidelberg GmbH Jean- Pierre Serre Galois Cohomology Translated from the French by Patrick Ion , Springer ]ean -Pierre Serre College... G .) = dim Hi(G) (Notice that We make use of the exact sequence in §2.6, and of H (F(n )) = 0-+ HI(G) -+ HI(F(n )) -+ HI(R)G ~ H2(G) -+ o One finds: This exact sequence shows that HI(R)G and H2(G)... Tokyo : Springer 2002 (Springer monographs in mathematics) Einheitssacht.: Cohomologie galoisienne ISBN 978-3-642-63866-4 DOI 10.1007/978-3-642-59141-9 ISBN 978-3-642-59141-9 (eBook) Corrected