Xây dựng chương trình xử lý âm thanh số
Đồ án tốt nghiệp Xây dựng chương trình xử lý âm thanh số Giới thiệu chung 1. Giới thiệu chung Cùng với sự phát triển của cuộc cách mạng khoa học và công nghệ đang diễn ra một cách sôi động, chúng ta đang tiến dần tới thế giới của sự số hoá. Với các ưu điểm của xử lý số, nhanh gọn, chính xác với chất lượng cao, mọi lĩnh vực hoạt động của xã hội loài người, nhất là các ngành trong các lĩnh vực thông tin liên lạc, phát thanh truyền hình . đều tiến tới việc áp dụng một cách đồng bộ và có hiệu quả các công cụ cũng như các phép xử lý số. Trong đó, âm thanh là một lĩnh vực đặc biệt quan trọng, đây là một phương thức dùng để trao đổi cũng như cảm nhận tin, không chỉ là tiếng nói, bản nhạc mà đó là tất cả các âm mà ta cảm nhận được trong cuộc sống hàng ngày, do đó, lĩnh vực về âm thanh không thể nằm ngoài xu hướng phát triển chung mà còn cần sự nghiên cứu sâu hơn nữa. 2. Đặt vấn đề Với âm thanh số, bằng việc lưu trữ âm thanh dưới dạng các dãy số, chúng ta đạt được yêu cầu về tốc độ truyền cũng như về khối lượng lưu trữ và độ trung thực trong các phép xử lý như khử nhiễu, soạn thảo hay các hiệu quả tạo độ vang, trễ . Do vậy, ngoài các phương tiện sử dụng kỹ thuật số, như camera số, thiết bị ghi số, điện thoại số . với chất lượng cao, thì những âm thanh tương tự được ghi từ micro với các nhạc cụ truyền thống đều được chuyển đổi sang dạng số hoá. Hơn nữa, với âm thanh, chúng ta không chỉ quan tâm tới khả năng cảm nhận một cách trung thực nhất âm thanh tự nhiên, mà ta còn hướng tới việc tạo ra (hay tổng hợp) được những âm thanh mà ta mong muốn. Do đó, khi nói đến âm thanh số thì cần thiết phải xét tới 3 khía cạnh: Các khuôn dạng lưu trữ âm thanh với các đặc tính riêng biệt. Đây là yêu cầu trước tiên của bất kỳ quá trình thu thanh hay khi cần đọc dữ liệu để phân tích. Cần phải hiểu rõ các đặc tính cả từng khuôn dạng thì mới có thể lưu trữ một cách hiệu quả nhất. Thao tác với các tệp âm thanh qua một trình soạn thảo âm thanh với các phép sao chép, cắt, dán, lọc, trộn âm hay chuyển đổi khuôn dạng tệp lưu trữ cũng như phương thức lưu trữ dữ liệu. Đây là cách để chúng ta có thể cảm nhận được âm thanh một cách rõ nét. Phân tích tín hiệu của âm thanh bằng cách biểu diễn dữ liệu âm thanh dưới dạng tín hiệu tuỳ theo mục đích phân tích. Dữ liệu đọc từ tệp, sau đó qua các phép xử lý tín hiệu số như lọc, hàm cửa sổ, biến đổi FFT, Cepstrum . để có thể rút ra các tham số đặc trưng, các thông tin cần Đồ án tốt nghiệp Xây dựng chương trình xử lý âm thanh số thiết cho các quá trình nhận dạng hay tổng hợp âm sau đó. 3. Chủ đề của luận án Chính vì vậy, với đề tài “Xây dựng chương trình xử lý âm thanh số” thì nhiệm vụ trước tiên sẽ phải nghiên cứu, tìm hiểu các khuôn dạng lưu trữ dữ liệu, sau đó xây dựng một chương trình (xử dụng ngôn ngữ lập trình Delphi) để thao tác với các tệp âm thanh và phân tích tín hiệu của các âm thanh đó. Đồ án tốt nghiệp Xây dựng chương trình xử lý âm thanh số Chương 1 lý thuyết xử lý tín hiệu số 1. Tín hiệu số Tín hiệu là biểu hiện vật lý của thông tin. Về mặt toán học, tín hiệu được coi là một hàm của một hay vài biến độc lập. Để phân loại tín hiệu, ta có thể xét đến tính chất của biến độc lập thời gian hay phân loại theo biên độ tín hiệu (liên tục hay rời rạc). Từ đó ta có định nghĩa: Tín hiệu số (Digital Signal) là tín hiệu rời rạc (theo biến độc lập thời gian) đồng thời có biên độ cũng rời rạc hoá (lượng tử hoá). t x 3 2 -1 0 1 -2 -3 Hình 2.1: Tín hiệu số Theo định nghĩa trên, tín hiệu có vai trò là vật mang thông tin. Nên tín hiệu cần phải được xử lý sao cho có thể dễ dàng rút ra các thông tin mong muốn hay lưu trữ thông tin một cách tối ưu. Cho nên việc phát triển các kỹ thuật cũng như các hệ thống xử lý tín hiệu đóng vai trò hết sức quan trọng. Thông thường các phép xử lý tín hiệu là các phép biến đổi tín hiệu thành dạng khác mong muốn, tuỳ theo yêu cầu thu nhận thông tin từ tín hiệu đó. Ví dụ như việc lọc bỏ nhiễu ra khỏi tín hiệu có ích, hay xác định thông số mang tin nào đó. 2. Xử lý tín hiệu số (DSP - Digital Signal Processing) Xử lý tín hiệu được sử dụng trong rất nhiều lĩnh vực khoa học khác nhau, và xử lý âm thanh là một trong số đó. Trong quá trình xử lý, các phép xử lý DSP chuẩn cơ bản là: FFT, lọc, thiết kế các bộ lọc thời gian, decimation, interpolation (nội suy), tích chập (convolution), . Các chức năng DSP (Digital Signal Processing) được thực hiện bởi soundcard tương đương với một tập các khả năng của phần cứng tổng hợp âm Đồ án tốt nghiệp Xây dựng chương trình xử lý âm thanh số nhạc điện tử analog: trộn, lọc, điều chế tần số, biên độ . và nén. Tất cả các hiệu quả được tạo ra bằng cách dùng bộ trễ tín hiệu như: vang, lặp đều có thể sử lý bằng DSP. Sự khác nhau là DSP (cả phần cứng và phần mềm) có thể thực hiện các chức năng trên dạng sóng số hóa. Nhiều soundcard có tích hợp DSP để tăng tốc độ xử lý. Việc phân tích và thiết kế của các hệ thống tuyến tính đã được thực sự đơn giản hoá bởi các phép biểu diễn trong miền tần số của cả tín hiệu và hệ thống. Trong đó biến đổi Fourier và biến đổi Z đóng vai trò quan trọng trong việc biểu diễn các tín hiệu và hệ thống rời rạc theo thời gian. 2.1. Phép biến đổi Z Nói chung, phép biến đổi Fourier là một công cụ mạnh để nghiên cứu tín hiệu số và tương tự về cả mặt lý thuyết và thực hành. Nhưng đối với tín hiệu rời rạc, phép biến đổi Z được sử dụng rộng rãi hơn bởi đây là phép biến đổi mạnh về phương diện lý thuyết. Định nghĩa Phép biến đổi z của tín hiệu x(n) là: X(z) = ∑ ∞ −∞=n x(n).z -n (1.1) Trong đó X(z) là hàm biến phức của biến phức z. Chuỗi X(z) còn được gọi là chuỗi Laurent. X(z) và các đạo hàm của nó đều là liên tục trong miền hội tụ. Đây là phép biến đổi z hai bên (n chạy từ -∞ tới ∞), được dùng để nghiên cứu hệ thống xác lập của hệ thống. Với tín hiệu nhân quả, ta dùng phép biến đổi z một phía: X(z) = ∑ ∞ = − 0 )( n n znx (1.2) Phép biến đổi z một phía dùng để nghiên cứu chế độ quá độ của hệ thống. Phép biến đổi z ngược Về mặt lý thuyết, phép biến đổi z ngược có thể thiết lập sau khi dùng định lý Côsi (Cauchy) về tích phân trên đường cong khép kín trên mặt phẳng phức: I = dzz j l ∫ Γ −1 2 1 π (1.3) trong đó Γ là đường cong khép kín bao quanh gốc toạ độ trên mặt phẳng z. Kết quả là: I = 00 01 ≠ = lv lv íi íi Bằng cách nhân hai vế của biến đổi z với z l-1 /2πj, lấy tích phân quanh gốc toạ độ và nằm trong vùng hội tụ, và sau đó can thiệp tích phân và tổng, ta có biểu thức biến đổi z ngược như sau: x(l) = dzzzX j l ∫ Γ −1 )( 2 1 π (1.4) Biểu thức thoả mãn với mọi l, đường cong Γ là đường cong khép kín, nằm trong Đồ án tốt nghiệp Xây dựng chương trình xử lý âm thanh số miền hội tụ và chạy theo chiều dương (ngược chiều kim đồng hồ). Phép biến đổi z được áp dụng trong quá trình giải các phương trình sai phân tuyến tính hệ số hằng. Và các tính chất của biến đổi z tạo nhiều thuận lợi trong các vấn đề xử lý tín hiệu số. Như tính tuyến tính cho ta cách tính biến đổi z ngược thông qua việc phân tích một hàm phức tạp thành các hàm đơn giản. Quan hệ của phép biến đổi Z với phép biến đổi Fourier Từ công thức định nghĩa phép biến đổi z (1.1), thay z=e j θ , tức là biểu diễn trong toạ độ cực, và với θ = 2πf. X(z) = ∑ ∞ −∞=n x(n).r -n .e -j2 π fn Qua công thức trên, ta thấy phép biến đổi z là phép biến đổi Fourier của tích tín hiệu này với một tín hiệu hàm số mũ r -n . Hơn nữa, phép biến đổi Fourier của tín hiệu rời rạc là phép biến đổi z tính trên đường tròn đơn vị (|z| = 1 hay r = 1), với điều kiện miền hội tụ của phép biến đổi z phải chứa đường tròn đơn vị. Hay nói cách khác, trên đường tròn đơn vị phép biến đổi z và Fourier là đồng nhất. X(f) = X(z) = ∑ ∞ −∞=n x(n).e -2j π fn với |z| = 1 (1.5) So với phép biến đổi Laplace Xét tín hiệu tương tự X a (t), phép biến đổi Laplace của tín hiệu này là: X a (t) = ∫ ∞ ∞− x a (t).e -st dt Nếu tín hiệu X a (t) được lấy mẫu đều với chu kỳ T s và δ(t) là hàm xung Dirac, thì phép biến đổi Laplace của tín hiệu lấy mẫu là: X e (s) = ∑ ∫ ∞ −∞= ∞ ∞− n x a (t). σ (t-n.T s ).e -st dt X e (s) = ∑ ∞ −∞= − n sTn sa s eTnx ) ( (1.6) So sánh biểu thức này với biến đổi z của tín hiệu x(n) = x a (nT s ), ta thấy biến đổi Laplace của tín hiệu lấy mẫu là biến đổi z của tín hiệu số tương ứng và được tính với z = exp(s.T s ). Có nghĩa là: X(z) = X e (s) với z = s Ts e . . 2.2. Biến đổi Fourier rời rạc (DFT - Discrete Fourier Transform) DFT được sử dụng rộng rãi trong quá trình tính toán sự đánh giá phổ, các hàm tự tương quan và việc cài đặt các bộ lọc số. Đây là phép biến đổi Fourier rời rạc của tín hiệu x(n) có độ dài hữu hạn và có trục tần số cũng được rời rạc hoá. Trong đó, tín hiệu x(n) có độ dài hữu hạn là tín hiệu có giá trị khác 0 trong một khoảng hữu hạn thời gian nào đó và chúng bằng 0 trong khoảng còn lại. Với x(n) được dùng như là một chu trình của tín hiệu, ta có thể xây dựng Đồ án tốt nghiệp Xây dựng chương trình xử lý âm thanh số tín hiệu x p (n) tuần hoàn với chu kỳ N bằng cách xếp chồng tuần hoàn x(n): X p (n) = ∑ ∞ −∞= + i iNnx )( (1.7) Khi xếp chồng tuần hoàn, nếu M ≤ N (với M = N 2 - N 1 +1, trong đó N 1 và N 2 là thời điểm mà trong đó tín hiệu tồn tại), thì hiện tượng trùm thời gian giữa các phần của x p (n) sẽ không xảy ra, nghĩa là có thể dễ dàng lấy ra x(n) ban đầu. Lúc này tín hiệu x(n) có độ dài là N với các mẫu từ M tới N-1 có giá trị bằng 0. Và ta quy ước: x p (n) = x((n)) N . Ta có các công thức biến đổi Fourier như sau: X(k) = −≤≤ ∑ − = l¹i cßn k víi0 10).( 1 0 N n nk N NkWnx (1.8) x(n) = −≤≤ ∑ − = − l¹i cßn nvíi0 10).( 1 1 0 N k nk N NnWkX N (1.9) Trong đó X(k) là một chu kỳ của X p (k), với X p (k) là các mẫu trên đường tròn đơn vị của biến đổi z một chu kỳ của x p (n), hay biến đổi Fourier X(f) của một chu kỳ của x p (n). 2.3. Lọc tín hiệu Các bộ lọc được sử dụng để thay đổi giá trị tần số của âm thanh. Đây là khâu xử lý cơ bản cho một chuỗi các bước xử lý âm thanh tiếp theo. Ví dụ như, quá trình lọc có thể là gỡ bỏ nhiễu ra khỏi quá trình thu thanh hay tách biệt một âm, giọng nào đó bằng cách chỉ cho các tần số xác định nào đó đi qua. Chính vì vậy, lọc số là một ứng dụng quan trọng nhất của xử lý tín hiệu. Các bộ lọc số đã dần dần thay thế các bộ lọc tương tự. Việc thiết kế các bộ lọc số thực tế đều đi từ lý thuyết các bộ lọc số lý tưởng. Các bộ lọc số tiêu biểu là: Bộ lọc số thông thấp (Low pass filter) Bộ lọc số thông cao (High pass filter) Bộ lọc số thông dải (Band pass filter) Bộ lọc số chắn dải (Band stop filter) Trong đó, các bộ lọc được sử dụng để lọc tần số chính, nên tất cả các đặc trưng của lọc tần số đều được cho theo đáp ứng biên độ. 2.4. Hàm cửa sổ Như ta đã biết, phép biến đổi Fourier rời rạc DFT tác động trên tín hiệu có độ dài hữu hạn, nên cần thiết phải hạn chế độ dài đối với các tín hiệu có độ dài vô cùng hoặc quá lớn để có thể nghiên cứu phổ của chúng. Để làm điều này ta thường dùng hàm cửa sổ, tức là nhân tín hiệu x(n) với cửa sổ w(n-n 0 ) để nhận Đồ án tốt nghiệp Xây dựng chương trình xử lý âm thanh số được một đoạn x N (n) trong khoảng n 0 tới n 0 +N-1 để phân tích. x N (n) = x(n). w(n- n 0 ) = −+≤≤ l¹i cßn nvíi0 1)( 00 Nnnnnx (1.10) Việc nhân tín hiệu với hàm cửa sổ theo thời gian tương đương với việc nhân chập phổ của tín hiệu x(n) với phổ của cửa sổ: X N (f) = ∫ +1 0 0 f f X(g)W(f-g)dg = X(f)*W(f) (1.11) Trong đó X N (f), X(f), và W(f) là biến đổi Fourier tương ứng của x N (n), x(n), và w(n). Kết quả nhận được từ tín hiệu sau khi đã cho qua cửa sổ không những phụ thuộc vào dạng cửa sổ mà còn phụ thuộc vào số điểm tín hiệu phân tích N, cũng như vị trí cửa sổ được đặt ở đâu, tức là tìm n 0 phù hợp. Ta phải chọn vị trí cửa sổ sao cho cửa sổ bao trùm lên phần quan trọng của tín hiệu và bỏ qua những chỗ có biên độ nhỏ, và phải chọn N sao cho một chu kỳ x p (n) là xấp xỉ của x(n) với sai số cho phép và không để xảy ra hiện tượng trùm thời gian. Như vậy, với những tín hiệu bất kỳ, do không có đủ thông tin để có thể chọn n 0 và N một cách hợp lý thì sẽ không thể nhận được một kết quả phân tích tối ưu. Khi đó tốt nhất ta nên xem xét ở khía cạnh tần số để xác định N. 2.5. Phép biến đổi nhanh Fourier (FFT - Fast Fourier Transform) Đây thực chất là DFT nhưng với một thuật toán nhanh, gọn và hiệu quả. FFT đã tạo ra một bước ngoặt mới và thực sự đóng vai trò hết sức quan trọng trong việc phân tích, thiết kế và thực hiện các thuật toán xử lý tín hiệu số cũng như tín hiệu tương tự. Tuy có nhiều thuật toán tính FFT khác nhau, nhưng nguyên tắc chung của tất cả các thuật toán này là dựa trên việc phân tích cách tính DFT cuả một dãy N số (gọi tắt là DFT N điểm) thành các phép tính DFT của các dãy nhỏ hơn, trong đó số phép tính tỷ lệ với N.log(N). Trong các cách tính này, FFT có 2 lớp cơ bản: thuật toán FFT được phân chia theo thời gian và phân chia theo tần số. Cả hai thuật toán đều sử dụng phép tính toán tại chỗ (in place), và số phép nhân phức trong cả hai thuật giải là như nhau. Sự khác nhau cơ bản giữa hai cách tính là thứ tự xắp xếp dữ liệu đầu vào và đầu ra. Thông thường, ta xét tới 2 cách tính FFT: tính FFT thuận và FFT ngược. Bắt đầu từ cặp công thức biến đổi Fourier rời rạc thuận và ngược: X(k) = ∑ − = 1 0 N k x(n).W N kn với k = 0, 1, , N-1 x(n) = N 1 ∑ − = 1 0 N k X(k).W N -kn với n = 0, 1, , N-1 Cặp công thức trên là tương tự nhau, chỉ khác ở hệ số tỷ lệ N 1 và dấu của mũ của hệ số W. Như vậy, ta có thể dùng công thức tính FFT thuận để tính FFT ngược bằng cách lấy liên hợp phức của cả hai vế công thức * và chuyển hệ Đồ án tốt nghiệp Xây dựng chương trình xử lý âm thanh số số tỷ lệ N sang trái: N.x ∗ (n) = ∑ − = 1 0 N k X ∗ (k).W kn N (1.12) Vế phải chính là DFT của dẫy X * (k) nên có thể tính được bằng bất kỳ chương trình tính FFT nào. Còn dãy x(n) có thể tính bằng cách lấy liên hợp phức hai vế công thức * và chia cho n: x(n) = N 1 ∗ − = ∗ ∑ 1 0 ).( N k kn N WkX (1.13) Tóm lại, để tính FFT ngược từ chương trình tính FFT thuận ta thực hiện các bước sau: Lấy liên hợp phức của X(k) bằng cách đổi dấu phần ảo của X(k). Tính FFT của dãy X(k) đã đổi dấu. Đổi dấu phần ảo của kết quả thu được, sau đó chia dãy cho hệ số tỷ lệ N để có kết quả cuối cùng. 2.6. Cepstrum Phép biến đổi tín hiệu sang dạng Cepstrum tương ứng là một phép biến đổi homomorphic, phép giải các bài toán không tuyến tính bằng các công cụ toán tuyến tính đã biết. Cepstrum là từ đảo của từ Spectrum (phổ) có nghĩa là chúng ta đang tiếp tục thực hiện việc phân tích phổ nào đó trên một phổ tần số. Khái niệm về Cepstrum là một phần cơ bản của lý thuyết trong các hệ thống homomorphic cho quá trình xử lý tín hiệu. Ngoài ra, ta có khái niệm: Cepstrum phức có nghĩa là biến đổi ngược Fourier (hay Z) của logarit tự nhiên phức của phổ phức; và Cepstrum thực là phép biến đổi của Fourier ngược của logarit thực của biến đổi Fourier của hàm đó. HÖ thèng homomorphic A F A x(n) y(n) x(n) y(n) -1 Hình 2.2: Hệ thống xử lý Homomorphic Ưu điểm của hệ thống xử lý này là thuật toán có thể được tách thành các thuật toán mắc dây chuyền như trên. Trong đó, các khối A và A -1 là các khối nghịch đảo của nhau. Còn khối F là hệ thống tuyến tính, bất biến, hay nói chung đó là một bộ lọc tuyến tính đơn giản. Đồ án tốt nghiệp Xây dựng chương trình xử lý âm thanh số Đồ án tốt nghiệp Xây dựng chương trình xử lý âm thanh số Chương 2 giới thiệu chung về âm thanh số 1. Âm thanh và đặc tính của âm thanh 1.1. Sóng âm và cảm giác âm Khi một vật dao động về một phía nào đó, nó làm cho các lớp không khí liền trước bị nén lại, và lớp không liền sau dãn ra. Sự nén và dãn không khí như vậy lặp đi lặp lại một cách tuần hoàn nên đã tạo ra trong không khí một sóng đàn hồi. Sóng này truyền tới tai, nén vào màng nhĩ khiến cho màng nhĩ cũng dao động với cùng tần số. Khi màng nhĩ dao động, các vị trí phân biệt của màng nhĩ trên bề mặt giống như nó chuyển động về trước hay sau đáp ứng với các sóng âm vào. Khi cùng một thời điểm, ta nghe thấy nhiều âm, thì mọi âm thanh phân biệt này được trộn với nhau một cách tự nhiên trong tai giống như một hình mẫu đơn của áp suất không khí thay đổi. Tai và óc làm việc cùng nhau để phân tích tín hiệu này ngược lại thành những cảm giác về âm riêng biệt. 1.2. Độ cao của âm Độ cao của âm là một đặc tính sinh lý của âm và nó phụ thuộc vào một đặc tính của âm là tần số. Những âm có tần số khác nhau, tạo nên cảm giác về các âm khác nhau: âm có tần số lớn gọi là âm cao hay âm thanh; âm có tần số nhỏ gọi là âm thấp hay âm trầm. Sự cảm nhận về mức độ to nhỏ của âm thanh được gọi là cường độ (pitch). Và cường độ có liên quan rất gần với một thuộc tính về mặt vật lý gọi là tần số (frequency). 1.3. Âm lượng của âm (độ to của âm) Năng lượng của âm Giống như các sóng cơ học, sóng âm cũng mang năng lượng sóng tỷ lệ với bình phương biên độ sóng. Và cường độ âm chính là năng lượng được sóng âm truyền trong một đơn vị thời gian qua một đơn vị diện tích đặt vuông góc với phương truyền (đơn vị W/m 2 ). Tuy nhiên, để cảm nhận một âm, ta không đánh giá qua giá trị tuyệt đối của cường độ âm I, mà xét theo mức cường độ âm L. Tức là: L(B) = lg(I/I 0 ) , với I 0 là một giá trị chuẩn nào đó. Thông thường, L lấy đơn vị là deciben (ký hiệu là dB). Với L=1dB (I lớn gấp 1,26 lần I 0 ) là mức cường độ nhỏ nhất mà tai ta có thể phân biệt được. [...]... liệu Quá trình chuyển đổi âm thanh tương tự sang dạng âm thanh số cũng như việc lưu trữ âm thanh số liên quan tới 2 vấn đề: Lấy mẫu (sampling): Quá trình lấy mẫu liên quan tới việc tính toán một cách tuần hoàn tín hiệu tương tự, và sử dụng các mẫu này thay cho tín hiệu gốc trong quá trình xử lý Đồ án tốt nghiệp Xây dựng chương trình xử lý âm thanh số Lượng tử hoá (quantization): Quá trình xử lý các...Đồ án tốt nghiệp Xây dựng chương trình xử lý âm thanh số Âm lượng của âm Để có thể tạo ra cảm giác âm, cường độ âm phải lớn hơn một ngưỡng nào đó Với các tần số trong khoảng 1000-5000Hz, ngưỡng nghe khoảng 1012W/m2 Với tần số 50Hz thì ngưỡng nghe lớn gấp 105 lần Và mức âm lượng của âm phụ thuộc vào cả cường độ âm và tần số 1.4 Âm sắc của âm Âm sắc là một đặc tính sinh lý của âm và nó được cấu thành... Khối âm thanh liên tiếp (dạng 2) (Sound Continuation Block) Một tệp Voc có thể chỉ có một khối dữ liệu âm thanh dạng 1 Tuy nhiên, dữ liệu âm thanh có thể cần phải được làm vỡ ra qua các khối multiple Điều này thường xuyên xuất hiện bởi ta muốn chèn thêm vài dạng khối khác (như một dấu hiệu vòng lặp) trong phần giữa của dữ liệu âm thanh Dữ liệu âm thanh Đồ án tốt nghiệp Xây dựng chương trình xử lý âm thanh. .. sở các đặc tính vật lý của âm là tần số và biên độ Đây là một đặc trưng riêng của từng nguồn phát âm Khi một nguồn phát ra một âm có tần số f1, thì đồng thời cũng phát ra các âm có tần số f2=2* f1, f3=3* f1 Âm có tần số f1 gọi là âm cơ bản hay hoạ âm thứ nhất Các âm có tần số f2, f3, gọi là các hoạ âm thứ hai, thứ ba Tuỳ theo đặc tính của từng nguồn phát âm mà tạo ra các hoạ âm khác nhau với biên... dạng tệp từ đuôi tệp song nó cũng tự động xác định các đặc điểm SoX cũng có thể chuyển đổi tần số lấy mẫu và các phép xử lý hiệu ứng âm thanh Ví dụ như chuyển tệp au thành wav với dòng lệnh sau: sox filename.au filename.wav Đồ án tốt nghiệp Xây dựng chương trình xử lý âm thanh số Chương 3 khuôn dạng tệp âm thanh 1 Khuôn dạng lưu trữ 1.1 Au/ Snd Dạng tệp Au là đơn giản và hiện nay được sử dụng khá rộng... nghiệp Xây dựng chương trình xử lý âm thanh số TÝn hiÖu t¬ng tù TÝn hiÖu sè Hình 2.3: Chuyển đổi tín hiệu sang dạng các mẫu số Đây là hai lỗi cơ bản trong tín hiệu âm thanh số Lỗi này có thể được kiểm soát bằng cách thay đổi khuôn dạng chi tiết của dạng biểu diễn âm thanh, nhưng không thể loại bỏ được hoàn toàn Chính vì vậy, tuỳ theo ứng dụng ta sẽ phải chấp nhận một số lỗi nhất định Và các hệ số khác... trữ rất đơn giản nên ta thường chuyển đổi các tệp âm thanh sang dạng Au và sau đó sử dụng nó như một dạng cơ sở cho các quá trình xử lý tiếp theo 1.2 Voc Dạng của Sound Blaster và Sound Blaster Pro Đây là dạng chỉ đáp ứng các âm 8-bit; dạng đơn (mono) cho 44.1 kHz, và các âm nổi (stereo) cho 22 Đồ án tốt nghiệp Xây dựng chương trình xử lý âm thanh số kHz Các tệp Voc có thể chứa thông tin cho sự lặp... tệp âm thanh với dạng dữ liệu không nén Một khi đã nén, chương trình xử lý sẽ phải giải nén mỗi khi sử dụng, và với bất cứ lưu đồ (giải thuật) nén nào cũng đều gây nguy hiểm tới chất lượng âm thanh, không kể đến thời gian dùng để giải nén Vì thế các tệp âm thanh số dùng để phát lại (playback) không nên sử dụng dạng nén 4 Khuôn dạng lưu trữ 4.1 Khuôn dạng chung Đồ án tốt nghiệp Xây dựng chương trình xử. .. dạng 1, và nó ghi đè lên tần số lấy mẫu và thông tin nén trong khối dữ liệu âm thanh Sau đây là cấu trúc dữ liệu khối mở rộng dạng 8: Độ dài 2 1 1 Mô tả Mã tần số lấy mẫu Mã phương thức nén Chế độ: 0 - mono; 1 - stereo Dữ liệu trong khối này sao chép ở mức độ lớn thông tin trong khối dữ Đồ án tốt nghiệp Xây dựng chương trình xử lý âm thanh số liệu âm thanh Đặc biệt, mã tần số lấy mẫu là một dạng có độ... AWave Với một máy PC chạy Windows 95, AWave là một bộ chuyển đổi tệp âm thanh Nó không chạy trên Win 3.1 thậm chí với mã mở rộng win32 Nếu chỉ có một máy tính cũ và bộ soạn thảo dạng sóng âm thanh không cho phép lưu tệp âm thanh trong một khuôn dạng đặc biệt, tốt nhất nên dùng SoX SoX Đồ án tốt nghiệp Xây dựng chương trình xử lý âm thanh số SoX là viết tắt của Sound Exchange, bộ dịch tệp tổng hợp chấp