Sở GD-ĐT thái Bình Trờng THPT Đông Thụy Anh đề thi thử đại học đợt năm 2011 Môn: Toán-Khối A-B Thời gian làm bài: 180 phút không kể thời gian phát đề Phần chung cho tất thí sinh (7 điểm) x (C) x 1 Kho sỏt s bin thiờn v v th (C) hm s Vit phng trỡnh tip tuyn vi th (C), bit rng khong cỏch t giao điểm hai tiệm cận ca th (C) n tip tuyn Câu II (2 điểm) ( cos x sin x ) = Gii phng trỡnh: tan x + cot 2x cot x Câu I (2 điểm) Cho hm s y = Cho phng trỡnh x + x + 2m x (1 x ) x (1 x ) = m3 Tỡm m phng trỡnh cú mt nghim thc nht Câu III (1 điểm) Tớnh tớch phõn: K = + sin x sin 2x.ln sin x dx Câu IV (1 điểm) Cho tứ diện ABCD có trọng tâm G nằm đoạn HK đoạn vuông góc chung AB CD (H thuộc AB, K thuộc CD) Chứng minh tâm mặt cầu ngoại tiếp tứ diện ABCD nằm đờng HK Đặt AB = 2a, CD = 2b, HK = h, chứng minh bán kính mặt cầu ngoại tiếp tứ diện ABCD R h + (a + b) Câu V (1 điểm) Cho ba số thực không âm x, y, z thỏa mãn x2011 + y2011 + z2011 = Tìm giá trị lớn biểu thức: F = x4 + y4 + z4 Phần riêng (3 điểm) Thí sinh đợc làm hai phần (phần A phần B) A Theo chơng trình Chuẩn Câu VI.a (2 điểm) x y2 Trong mt phng to Oxy cho elớp (E) : + = v A(3;-2) , B(-3;2) Tỡm trờn (E) im C cú honh v tung dng cho tam giỏc ABC cú din tớch bng Trong hệ trục Oxyz, cho cho ABC với đỉnh A, B, C thứ tự thuộc Ox, Oy, Oz cho G( ; ;1 ) trọng tâm ABC Viết phơng trình đờng phân giác góc A 3 Câu VII.a (1 điểm) Cho A B hai điểm mặt phẳng phức lần lợt biểu diễn số phức z1 z2 khác thỏa mãn: z12+z22 = z1z2 Chứng minh OAB (O gốc tọa độ) B Theo chơng trình Nâng cao Câu VI.b (2 điểm) Trong mặt phẳng tọa độ Oxy, cho parabol (P): y2 = 2x Gọi (C) đờng tròn qua đỉnh (P), có tâm (với tung độ dơng) thuộc đờng chuẩn (P) cắt (P) điểm thứ hai cho khoảng cách hai giao điểm (C) (P) 2 , viết phơng trình đờng tròn (C) x y3 z Trong hệ trục Oxyz, cho hai đờng thẳng cắt (d1): , (d2) giao tuyến = = 2 hai mặt phẳng: 5x-6y-6z+13 = x-6y+6z-7 = Gọi I giao điểm (d1) (d2), tìm tọa độ A, 41 B thứ tự thuộc (d1), (d2) cho IAB cân I có diện tích 42 3.25x + (3y 10).5x = y Câu VII.b (1 điểm) Giải hệ: log (cos y sin y) + log (cos y + cos 2y) = , với y [ 1;1] x x -Hết -Thí sinh không đợc sử dụng tài liệu-Cán coi thi không giải thích thêm Sở GD-ĐT thái Bình Trờng THPT Đông Thụy Anh đáp án-thang điểm đề thi thử đại học đợt năm 2011 Môn: Toán-Khối A-B (Đáp án-thang điểm gồm 05 trang) Câu I (2điểm) Điể m Đáp án (1đ) TX : D = R\{1} 0.25 Chiu bin thiờn lim f (x) = lim f (x) = nờn y = l tim cn ngang ca th hm s x + x lim+ f (x) = +, lim = nờn x = l tim cn ng ca th hm s x 0.25 x 1 ... x2011 ta có: 2011 2011 2011 2011 1 + 1 + + 2011. 2011 x 2011. x 2011. x 2011. x 2011 = 2011x (1) + x + x + x + x 0,25 0,25 0,25 0,25 2007 Tơng tự ta có: 2011 2011 2011 2011 2011 2011 2011 2011... 2011 2011 2011 2011 1 + 1 + + = 2011y (2) + y + y + y + y 2011 y y y y 0,25 2007 1 + 1 + + + z 2011 +z 2011 +z 2011 +z 2011 2011 2011 z 2011 z 2011 z 2011 z 2011 = 2011z (3) 2007... z 2011 = 2011z (3) 2007 Cộng theo vế (1), (2), (3) ta đợc: 6021 + 4(x 2011 + y 2011 + z 2011 ) 2011( x + y + z ) 6033 2011( x + y + z ) VI.a (2điểm) Từ đó: F = x + y + z Mặt khác x = y = y