1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

almost periodic functions and differential equations

226 511 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 226
Dung lượng 2,82 MB

Nội dung

Almost periodic functions and differential equations Almost periodic functions and differential equations B.M.LEVITAN & V.V.ZHIKOV Translated by L W Longdon CAMBRIDGE UNIVERSITY PRESS Cambridge London New York New Rochelle Melbourne Sydney Published by the Press Syndicate of the University of Cambridge, The Pitt Building, Trumpington Street, Cambridge CB2 1RP 32 East 57th Street, New York, NY 10022, USA 296 Beaconsfield Parade, Middle Park, Melbourne 3206, Australia © Moscow University Publishing House 1978 English edition © Cambridge University Press 1982 Originally published in Russian as Pochti periodicheskie funktsii differentsial' nye uravneniya by the Moscow University Publishing House 1978 Assessed by E D Solomentsev and V A Sadovnichii First published in English, with permission of the Editorial Board of the Moscow University Publishing House, by Cambridge University Press 1982 - Printed in Great Britain at the University Press, Cambridge Library of Congress catalogue card number: 83 4352 British Library Cataloguing in Publication Data Levitan, B.M Almost periodic functions and differential equations Periodic functions I Title II Zhikov, V.V uravneniya English 515.8 QA331 ISBN 521 24407 III Pochtiperiodicheskie funktsii i differentsial'nye Contents Preface 1 2 Almost periodic functions in metric spaces Definition and elementary properties of almost periodic functions Bochner's criterion The connection with stable dynamical systems Recurrence A theorem of A A Markov 10 Some simple properties of trajectories 11 Comments and references to the literature 12 Harmonic analysis of almost periodic functions Prerequisites about Fourier—Stieltjes integrals Proof of the approximation theorem The mean-value theorem; the Bohr transformation; Fourier series; the uniqueness theorem Bochner—Fejer polynomials Almost periodic functions with values in a Hilbert space; Parseval's relation The almost periodic functions of Stepanov Comments and references to the literature Arithmetic properties of almost periods Kronecker's theorem The connection between the Fourier exponents of a ix function and its almost periods Limit-periodic functions 14 14 17 21 25 31 33 36 37 37 40 45 vi Contents Theorem of the argument for continuous numerical complex-valued almost periodic functions Comments and references to the literature 48 51 Generalisation of the uniqueness theorem (N-almost periodic functions) 53 Introductory remarks, definition and simplest properties of N-almost periodic functions Fourier series, the approximation theorem, and the uniqueness theorem Comments and references to the literature Weakly almost periodic functions Definition and elementary properties of weakly almost periodic functions Harmonic analysis of weakly almost periodic functions Criteria for almost periodicity Comments and references to the literature A theorem concerning the integral and certain questions of harmonic analysis The Bohl—Bohr—Amerio theorem Further theorems concerning the integral Information from harmonic analysis A spectral condition for almost periodicity Harmonic analysis of bounded solutions of linear 53 59 62 64 64 68 70 76 equations Comments and references to the literature Stability in the sense of Lyapunov and almost periodicity Notation The separation properties A lemma about separation Corollaries of the separation lemma Corollaries of the separation lemma (continued) A theorem about almost periodic trajectories Proof of the theorem about a zero-dimensional fibre Statement of the principle of the stationary point 77 77 81 87 91 92 96 98 98 98 101 105 107 109 113 116 Contents Realisation of the principle of the stationary point when the dimension m -._ Realisation of the principle of the stationary point under monotonicity conditions Comments and references to the literature Favard theory Introduction Weak almost periodicity (the case of a uniformly convex space) Certain auxiliary questions Weak almost periodicity (the general case) Problems of compactness and almost periodicity Weakening of the stability conditions On solvability in the Besicovitch class Comments and references to the literature 10 11 The method of monotonic operators General properties of monotonic operators Solvability of the Cauchy problem for an evolution equation The evolution equation on the entire line: questions of the boundedness and the compactness of solutions Almost periodic solutions of the evolution equation Comments and references to the literature Linear equations in a Banach space (questions of admissibility and dichotomy) Notation Preliminary results The connection between regularity and the exponential dichotomy on the whole line Theorems on regularity Examples Comments and references to the literature vii 117 121 123 124 124 127 130 134 135 140 142 147 149 149 153 157 161 165 166 166 166 170 172 176 181 The averaging principle on the whole line for parabolic equations Bogolyubov's lemma Some properties of parabolic operators 182 182 183 viii Contents The linear problem about averaging A non-linear equation The Navier—Stokes equation The problem on the whole space Comments and references to the literature 186 189 193 195 199 Bibliography 200 Index 208 Preface The theory of almost periodic functions was mainly created and published during 1924-1926 by the Danish mathematician Harald Bohr Bohr's work was preceded by the important investigations of P Bohl and E Esclangon Subsequently, during the 1920s and 1930s, Bohr's theory was substantially developed by S Bochner, H Weyl, A Besicovitch,, J Favard, J von Neumann, V V Stepanov, N N Bogolyubov, and others In particular, the theory of almost periodic functions gave a strong impetus to the development of harmonic analysis on groups (almost periodic functions, Fourier series and integrals on groups) In 1933 Bochner published an important article devoted to the extension of the theory of almost periodic functions to vector-valued (abstract) functions with values in a Banach space In recent years the theory of almost periodic equations has been developed in connection with problems of differential equations, stability theory, dynamical systems, and so on The circle of applications of the theory has been appreciably extended, and includes not only ordinary differential equations and classical dynamical systems, but wide classes of partial differential equations and equations in Banach spaces In this process an important role has been played by the investigations of L Amerio and his school, which are directed at extending certain classical results of Favard, Bochner, von Neumann and S L Sobolev to differential equations in Banach spaces We survey briefly the contents of our book In the first three chapters we present the general properties of almost periodic functions, including the fundamental approximation theorem From the The problem on the whole space 199 Now we briefly outline a proof of Theorem First we must show that the L„, (co coo) are uniformly correct Assuming otherwise we have a sequence w a > co and sequences lual, {fn } c C such that Lu n = fn, Ilunlic = 1, Ilfnlic * We take a point za such that lua (zn )1 = ta ) - 1- and put va (z ) = tia(z +z) It is important that {v a } is locally compact in C (a Nash type estimate); we may assume that v a > io Now we must realise a passage to the limit similar to that in Theorem A small feature is that as well as the main averaging procedure, in this case we have a passage to the limit with respect to x Therefore, /5 is a solution not necessarily of Lu = but of some equation rhu = • But this contradicts the regularity of L The uniform correctness of L.* (co> coo) is proved in exactly the same way But then the regularity of L a, follows directly from Proposition The proof of the remaining assertions of the theorem should not present difficulty In conclusion we mention a most commonly used sufficient condition for the regularity of L: ão(x)0 and every doh(x) * O This condition is fulfilled if, for example, 'do - 0, ao € 6(R m) and * Comments and references to the literature Bogolyubov's lemma is proved in his book [8] A very extensive bibliography on the averaging method is given in the monograph of Mitropol'skii [90] The contents of Chapter 11 are mainly from Zhikov's article [56] The results in § were obtained by Zhikov jointly with L Tsend and M Otel'baev (unpublished) A technically different approach to averaging in parabolic problems which has been developed by Simonenko [101] must be mentioned At this point it is important that the mean values of the coefficients are uniform with respect to x e R Bibliography Amerio, L (1955) Soluzioni quasi-periodiche, o limitate, di sistemi differenzali non lineari quasi-periodiche, o limitati, Annali di Matematica Pura ed Applicata (4), 39,97 119 Amerio, L 8z Prouse, G (1971) Almost periodic functions and functional equations, New York and London, van Nostrand Reinhold Arnol'd, V I (1975) Matematicheskie metody klassicheskoi mekhaniki (Mathematical methods of classical mechanics), Moscow, `Nauka' Baskakov, A G (1970) On the almost-periodic functions of Levitan, in Studencheskie raboty Voronezhskii Gosudarstvennyi Univers itet, pp 91-4 Baskakov, A G (1973) Criteria for almost-periodicity, Trudy Matematicheskogo Fake teta Voronezhskii Gosudarstvennyi Universitet, 8, 1-8 Bogolyubov, N N (1939) Some arithmetic properties of almost periods, Zapiski Kafedry Matematichno Fiziki Institutu Bud Vel'ko Mekhaniki, Akademiya Nauk Ukrainskoi SSR, Bogolyubov, N N (1948) An application of the theory of positive definite functions, Sbomik Trudov Instituta Matematiki, Akademiya Nauk Ukrainskoi SSR, 11, 113 Bogolyubov, N N (1945) nekotorykh statisticheskikh metodakh v matematicheskoi fizike (On some statistical methods in mathematical physics), Kiev, Akademiya Nauk Ukrainskoi SSR Bogolyubov, N N & Krylov, N M (1934) Nov ye metody nelineinoi mekhaniki (New methods in non-linear mechanics), Kiev, `Naukova Dumka', pp 54-84 10 Boles Basit, R (1971) Connection between the almost-periodic functions of Levitan and almost automorphic functions, Vestnik Moskovskogo Universiteta, Seriya Matematika i Mekhanika, 26 (4), 11 15 11 Boles Basit, R (1971) A generalization of two theorems of M I Kadets on indefinite integrals of almost-periodic functions, Matematischeskie Zametki, 9,311 21 (Mathematical Notes, 9,181 6) 12 Boles Basit, R (1971) Some problems of the theory of abstract almost periodic functions, Ph.D dissertation, Moscow State University 13 Boles Basit, R & Zhikov, V V (1971) Almost-periodic solutions of integro-differential equations in a Banach space, Vestnik Moskovskago Universiteta, Seriya Matematika i Mekhanika, 26 (1), 29 33 - - - - - - 201 Bibliography 14 Boles Basit, R & Tsend, L (1972) A generalized Bohr-Neugebauer theorem, Differentsiar nye Uravneniya, 8,1343 (Differential - Equations, 8,1031 5) 15 Bohl, P (1893) Uber die Darstellung von Funktionen einer Variablen durch trigonometrische Reihen mit mehreren einer Variablen proportionalen Argumenten, Magister dissertation, Dorpat 16 Bohl, P (1906) Uber eine Differentialgleichung der Storungstheorie, Crelles Journal, 131, 268 321 17 Bohr, H (1925) Zur Theorie der fastperiodischen Funktionen, I, Acta Mathematica, 45, 29 127 18 Bohr, H (1925) Zur Theorie der fastperiodischen Funktionen, II, sActa Mathematica, 46,101-214 19 Bohr, H (1934) Again on the Kronecker theorem, Journal of the London Mathematical Society, 9, 33 20 Bohr, H (1930); (1935) Kleinere Beitrage zur Theorie der fastperiodischen Funktionen, Dan ske Videnskabernes Selskab MatematiskFysiske Meddeleser, 10, 21 Bohr, H (1932) Uber fastperiodische ebene Bewegungen, Commentarii Mathematica Helvetici, 4,51 64 22 Bohr, H (1934) Fastperiodische Funktionen, Berlin, Springer-Verlag (Translation (1934): Pochti periodicheskie funktsii, Moscow, 0G1Z.) 23 Bohr, H & Neugebauer, (1926) Uber lineare Differentialgleichungen mit konstanten Koeffizienten und fastperiodischer rechter Seite, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 22 24 Bochner, S (1959) Lectures on Fourier integrals, Annals of Mathematics Studies, No 42, Princeton, N.J., Princeton University Press (Translation (1962): Lektsii oh integralakh Fur' e, Moscow, Fizmatgiz.) 25 Bochner, S (1927) Beitrage zur Theorie der fastperiodischen Funktionen, I, Mathematische Annalen, 96,119-47 26 Bochner, S (1933) Fastperiodische L6sungen der Wellengleichung, Acta Mathematica, 62, 227 37 27 Bochner, S (1933) Abstrakte fastperiodische Funktionen, Acta Mathematica, 61, 149 84 28 Bochner, S (1962) A new approach to almost periodicity, Proceedings of the National Academy of Sciences of the USA, 48,195 205 29 Bochner, S & von Neumann, J (1935) On compact solutions of operational differential equations, Annals of Mathematics (2), 36,255-91 30 Brodskii, M S & Mil'man, D P (1948), On the centre of a convex set, Doklady Akademii Nauk SSSR, 59, 837 40 31 Bronshtein, I U (1975) Rasshireniya minimal'nykh grupp preobrazovanii (Extensions of minimal groups of transformations), Kishinev, `Shtinitsa' 32 Bronshtein, I U & Chernyi, B F (1974) Extensions of dynamical systems with uniformly asymptotically stable points Differentsiar nye Uravneniya, 10, 1225 30 (Differential Equations 10, 946 50) 33 Wiener, N (1930) Generalized harmonic analysis, Acta Mathematica, 55, 117-258 34 Veech, W A (1965) Almost automorphic functions on groups, American Journal of Mathematics, 87, 719 51 35 Wolf, F (1938) Approximation by trigonometrical polynomials and almost periodicity, Proceedings of the London Mathematical Society, 11, 100-14 - - - - - - - - - - - - - - 202 Bibliography 36 Gerfand, I M (1938) Abstrakte Funktionen und lineare Operatoren, Matematicheskii Sbomik 4, 235 86 , 37 Gorin, E A (1970) A function algebra variant of a theorem of Bohr van Kampen, Matematicheskii Sbomik, 82, 260 72 (Mathematics of the USSR Sbomik, 11, 233-43) 38 Gottschalk, W A & Hedlund, G A (1955) Topological dynamics, Providence, R I., American Mathematical Society 39 Daletskii, Yu L & Krein, M G (1970) Ustoichivost' reshenii differentsial'nykh uravnenii v Banakhom prostranstve, Moscow, `Nauka' Translation (1974): Stability of solutions of differential equations in a Banach space, Providence, R I., American Mathematical Society 40 Dunford, N & Schwartz, J T (1958), Linear operators Part I: General theory, New York - London, Interscience (Translation (1962): Lineinye operatory Obshchaya teoriya, Moscow, Inostr Lit.) 41 Demidovich, B P (1967) Lektsii po matematicheskoi teorii ustoichivosti (Lectures on the mathematical theory of stability), Moscow, `Nauka' 42 Doss, R (1961) On bounded functions with almost periodic differences, Proceedings of the American Mathematical Society, 12, 488 43 Zhikov, V V (1965) Abstract equations with almost periodic coefficients, Doklady Akademii Nauk SSSR, 165, 555 (Soviet Mathematics Doklady, 6, 949 52) 44 Khikov, V V (1966) On the harmonic analysis of bounded solutions of operator equations, Doklady Akademii Nauk SSSR, 169, 1254 (Soviet Mathematics Doklady, 7, 1070 3) 45 Zhikov, V V (1967) Almost periodic solutions of differential equations in a Banach space, Teoriya Fun ktsii, Funktsional'nyi Analiz i ikh Prilozheniya, 4, 176 87 46 Zhikov, V V (1970) Almost periodic solutions of linear and non-linear equations in a Banach space, Doklady Akademii Nauk SSSR, 11, 278-81 (Soviet Mathematics Doklady, 11, 1457 61) 47 Zhikov, V V (1969) A problem of Bochner and von Neumann, Matematicheskie Zametki, 3,529 38 (Mathematical Notes, 3, 337-42) 48 Zhikov, V V (1970) A supplement to the classical Favard theory, Matematicheskie Zametki, 7, 239 46 (Mathematical Notes, 7, 142 6) 49 Zhikov, V V (1971) The existence of solutions almost periodic in the - - - - - - - - - - - - - - - sense of Levitan for linear systems (second supplement to the classical Favard theory), Matematicheskie Zametki, 9,409-14 (Mathematical Notes, 9, 235-8) 50 Zhikov, V V (1969) The problem of almost periodicity for differential and operator equations, Sbornik Nauchnye Trudy, Vladimirskii Vechernii Politekhicheskii Institut, 8, 94 188 51 Zhikov, V V (1971) Some remarks on the compactness conditions in connection with a paper of M I Kadets on the integration of abstract almost periodic functions, Funktsional'nyi Analiz i ego Prilozheniya, 5, 30 (Functional Analysis and its Applications, 5, 26 30) 52 Zhikov, V V (1973) Monotonicity in the theory of almost periodic - - - solutions of non-linear operator equations, Matematicheskii Sbornik, 90, 214 28 (Mathematics of the USSR Sbomik, 19, 209 23) 53 Zhikov, V V (1975) Some new results in abstract Favard theory, Mathematicheskie Zametki, 17, 33 40 (Mathematical Notes, 17, 20 4) - - - - - Bibliography 203 54 Zhikov, V V (1975) The solvability of linear equations in the Bohr and Besicovitch classes of almost periodic functions, Matematicheskie Zametki, 18, 553 60 (Mathematical Notes, 18, 918 22) 55 Zhikov, V V (1972) On the theory of the admissibility of pairs of function spaces, Doklady Akademii Nauk SSSR, 205, 1281 (Soviet Mathematics Doklady, 13, 1108 11) 56 Zhikov, V V (1973) The averaging principle for parabolic equations with variable principal term, Doklady Akademii Nauk SSSR, 208, 32-5 (Soviet Mathematics Doklady, 14, 26 30) 57 Zhikov, V V & Levitan, B M (1977) Favard Theory, Uspekhi Mathematicheskikh Nauk, 32 (2), 123 71 (Russian Mathematical Surveys, 32 (2), 129-80) 58 Zhikov, V V & Tyurin, V M (1976) The invertibility of the operator d/dt +A(t) in the space of bounded functions, Matematicheskie Zametki, 19, 99-104 (Mathematical Notes, 19, 58-61) 59 Jessen, B (1935) Uber die Sakulerkonstanten einer fastperiodischen Funktion, Mathematische Annalen, 111, 355-63 60 Jessen, B & Tornehave (1945) Mean motions and zeros of almost periodic functions, Acta Mathematica, 77, 137-279 61 Yosida, K (1965) Functional analysis, Berlin and New York, SpringerVerlag (Translation (1967): Funktsional' yni analiz, Moscow, `Mir') 62 Kadets, M I (1958) On weak and strong convergence, Doklady Akademii Nauk SSSR, 122, 13 16 63 Kadets, M I (1968) The method of equivalent norms in the theory of abstract almost periodic functions, Studia Mathematica, 31, 34-8 64 Kadets, M I (1969) The integration of almost periodic functions with values in a Banach space, Funktsional'nyi Analiz i ego Prilozheniya, 3, 71 (Functional Analysis and its Applications, 3, 228 30) 65 Corduneanu, C (1968) Almost periodic functions, New York, Interscience 66 Krasnosel'skii, M A., Burd, V S & Kolesov, Yu S (1970) Nelineinye pochti periodichieskie kolebaniya, Moscow, `Nauka' Translation (1973): Nonlinear almost periodic oscillations, New York, Wiley 67 Ladyzhenskaya, O A Solonnikov, V A & Uranseva, N N (1967) Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Moscow, `Nauka' Translation (1968): Linear and quasilinear equations of parabolic type, Providence, R.I., American Mathematical Society 68 Ladyzhenskaya, O A (1970) Matematicheskie voprosy dvizheniya vyazkoi neszhimaemoi zhidkosti (2nd revised augmented edition), Moscow, `Nauka' Translation (1969): The mathematical theory of viscous incompressible flow (lst edition revised), New York, Gordon and Breach 69 Lax, P D & Phillips, R S (1967) Scattering theory, New York, Academic Press 70 Levin, B Ya (1948) A new construction of the theory of the almost periodic functions of Levitan, Doklady Akademii Nauk SSSR, 62, 585-8 71 Levin, B Ya (1949) On the almost periodic functions of Levitan, Ukrainskii Matematicheskii Zhurnal, 1, 49 100 72 Levin, B Ya & Levitan, B M (1939) On the Fourier series of generalized almost periodic functions, Doklady Akademii Nauk SSSR, 22, 543-7 - - - - - - - - - - - 204 Bibliography Levitan, B M (1938) A new generalization of the almost periodic functions of H Bohr, Zapiski Mekhaniko-Matematicheskogo Fakulteta Khar'kovskogo Matematicheskogo Obshchestva, 15, 32 74 Levitan, B M (1947) Some questions in the theory of almost periodic functions II, Uspekhi Matematicheskikh Nauk, 11 (6), 174 214 75 Levitan, B M (1937) On an integral equation with almost periodic solutions, Bulletin of the American Mathematical Society, 43, 677 76 Levitan, B M (1953) Pochti periodicheskie funktsii (Almost periodic functions), Moscow, Gos Izdat Tekhn-Teor Lit 77 Levitan, B M (1966) Integration of almost periodic functions with values in a Banach space, Izvestiya Akademii Nauk SSSR, Seriya Matematika, 30, 1101 10 78 Levitan, B M (1967) On the theorem of the argument for an almost periodic function, Matematicheskie Zametki, 1, 35 44 (Mathematical Notes, 1,23 8) 79 Lions, J L (1969) Quelques méthodes de résolution des problèmes aux limites nonlinéaires, Paris, Dunod Gauthier Villars (Translation (1972): Nekotorye metody resheniya nelineinykh kraevykh zadach, Moscow, `Mir') 80 Lyubarskii, M G (1972) An extension of Favard theory to the case of a system of linear differential equations with unbounded Levitan almost periodic coefficients, Doklady Akademii Nauk SSSR, 206, 808 10 (Soviet Mathematics Doklady, 13,1316 19) 81 Lyubich, Yu I (1960) Almost periodic functions in the spectral analysis of operators, Doklady Akademii Nauk SSSR, 132, 518 20 (Soviet Mathematics Doklady, 1, 593 5) 82 Loomis, L H (1960) Spectral characteristics of almost periodic functions, Annals of Mathematics (2), 72, 362-8 83 Lyusternik, L A (1936) Basic concepts of functional analysis, Uspekhi Matematicheskikh Nauk, 1,77 140 84 Maizel', A D (1954) On stability of solutions of systems of differential equations, Trudy Ural'skogo Politekhnicheskogo Instituta, 51, 20 50 85 Marchenko, V A (1950) Methods of summation of generalized Fourier series, Zapiski Nauchno-Issledovaterskogo Instituta Matematiki i Mekhaniki i Khar'kovskogo Matematicheskogo Obshchestva, 20, 32 86 Marchenko, V A (1950) Generalized almost periodic functions, Doklady Akademii Nauk SSSR, 74, 893 87 Massera, J L & Schâffer, J J (1966) Linear differential equations and function spaces, New York, Academic Press (Translation: Lineinye differentsial'nye uravneniya i funktsional'nye prostranstva, Moscow, Izdat `Mie) 88 Millionshchikov, V M (1965) Recurrent and almost periodic trajectories of non-autonomous systems of differential equations, Doklady Akademii Nauk SSSR, 161, 43 (Soviet Mathematics Doklady, 7, 534 8) 89 Millionshchikov, V M (1968) Recurrent and almost periodic limit solutions of non-autonomous systems, Differentsial'nye Uravneniya, 4, 1555 (Differential Equations, 4,799 801) 90 Mitropol'skii, Yu A (1971) Printsip usredneniya y nelineinoi mekhanike (The averaging method in non-linear mechanics), Kiev, `Naukova Dumka' 91 Mishnaevskii, P A (1971) An approach to the almost periodic regime and the almost periodicity of solutions of differential equations in a 73 - - - - - - - - - - - - - - - - - - - - - 205 Bibliography Banach space, Vestnik Moskovskogo Universiteta Seriya Matematika i Mekhanika, 3, 69 76 92 Montgomery, D & Samelson, H (1943) Groups transitive on the n dimensional torus, Bulletin of the American Mathematical Society, 49, 455-6 93 Muckenhoupt, C F (1929) Almost periodic functions and vibrating systems, Journal of Mathematical Physics, 94 Mukhamadiev, E (1971) The invertibility of differential operators in the - - space of functions that are continuous and bounded on the real axis, Doklady Akademii Nauk SSSR, 196, 47 (Soviet Mathematics Doklady, 12, 49-52) 95 Nemytskii, V V & Stepanov, V V (1949) Kachestvennaya teoriya differentsial'nykh uravnenii, Moscow, Gos Tekh-Teor Lit Translation (1960): Qualitative theory of differential equations, Princeton, N.J., - Princeton University Press 96 Pelczynski, A (1957) On B-spaces containing subspaces isomorphic to the spaces co, Bulletin de l'Académie Polonaise des Sciences Class III, 5, 797-8 97 Perov, A I & Ta Kuang Khai (1972) The almost periodic solutions of homogeneous differential equations, Differentsial'nye Uravneniya, 8, 453 (Differential Equations, 8, 341 5) 98 Perron, O (1930) Die Stabilitatsfrage bei Differentialgleichungen, Mathematische Zeitschrift, 32 99 Pontryagin, L S (1954) Nepreryvnye gruppy, Moscow, Gostekhizdat Translation (1966): Topological groups, New York, Gordon and Breach 100 Reich, A (1970) Prdkompakte Gruppen und Fastperiodizitdt, Mathematische Zeitschrift, 116, 216 34 101 Simonenko, M B (1970) Justification of the averaging method for an abstract parabolic equation, Doklady Akademii Nauk SSSR, 191, 33-4 (Soviet Mathematics Doklady, 11, 323 5) 102 Sobolev, S L (1945) Sur la présque périodicité des solutions de l'équation des ondes I, II, III, Doklady Akademii Nauk SSSR, 48, 542 5; 48, 618 20; 49, 12 15 103 Sobolev, S L (1950) Nekotorye primeneniya funktsional'nogo analiza v matematicheskoi fizike, Leningrad, Leningrad Gos Universitet Translation (1963): Applications of functional analysis in mathematical physics, Providence, R I., American Mathematical Society 104 Stepanov, V V (1926) Uber einige Verallgemeinerungen der fastperiodischen Funktionen, Mathematische Annalen, 95, 437-98 105 Wallace, A D (1955) The structure of topological semigroups, Bulletin of the American Mathematical Society, 61, 95 112 106 Favard, J (1927) Sur les équations différentielles A coefficients présquepériodiques, Acta Mathematica, 51, 31-81 107 Favard, J (1933) Leçons sur les fonctions presque périodiques, Paris, - - - - - - - - - Gauthier-Villars 108 Furstenberg, H (1961) Strict ergodicity and transformations of the torus, American Journal of Mathematics, 83, 573 601 109 Furstenberg, H (1963) The structure of distal flows, American journal of Mathematics, 85, 477 515 110 Flor, P (1967) Rythmische Abbildungen abelscher Gruppen II, Zeitschrift fiir Wahrscheinlichkeitstheorie und Verwandte Gebiete, 7, 17-28 - - 206 Bibliography 111 Folner, F (1954) Generalization of a theorem of Bogolyubov on topological abelian groups, Mathematica Scandinavica, 2, 5-19 112 Foias, C & Zaidman, S (1963) Almost periodic solutions of parabolic systems, Annali della Scuola Normale Superiore di Pisa, 3,247 62 113 Cheresiz, V M (1972) Uniformly V-monotonic systems Almost periodic solutions, Sibirskii Matematicheskii Zhumal, 13,1107-22 (Siberian Mathematics Journal, 13,767 77) 114 Shcherbakov, B A (1966) Recurrent solutions of differential equations, Doklady Akademii Nauk SSSR, 167, 1004 (Soviet Mathematics Doklady, 7,534 8) 115 Shcherbakov, B A (1972) Topologicheskaya dinamika i ustoichivost' po Puassonu reschenii differentsial'nykh uravnenii (Topological - - - - dynamics and the Poisson stability of solutions of differential equations), Kishinev, `Shtinitsa' 116 Shcherbakov, B A (1973) A general property of compact transformations of abstract functions, Izvestiya Vysshikh Uchebnykh Zavedenii, Seriya Matematika, 11, 88 96 Hardy, G H., Littlewood, J E & Polya, G (1952) Inequalities (2nd edition), Cambridge University Press (Translation (1948): Neravenstva, Moscow, Inostr Lit.) Eidel'man, S D (1964) Parabolicheskie sistemy, Moscow, `Nauka' (Translation (1969): Parabolic systems, Amsterdam, North-Holland; Groningen, Wolters-Noordhoff) Ellis, R (1958) Distal transformation groups, Pacific Journal of Mathematics, 8,401 Esclangon, E (1904) Les fonctions quasi-périodiques, Thesis, Paris Esclangon, E (1919) Nouvelles recherches sur les fonctions quasipériodiques, Annales de l'Observatoire de Bordeaux Esclangon, E (1915) Sur les integrales bornées d'une équation differentielle linéaire, Comptes Rendus Hebdomadaires de Séances de l'Academie des Sciences, Paris, 160, 475 - 117 118 119 - 120 121 122 - Additional references Sell, G R (1973) Almost periodic solutions of linear partial differential equations, Journal of Mathematical Analysis and Applications, 42, 302 12 - Fink, A M (1974) Almost periodic differential equations, Lecture Notes in Mathematics, vol 377, Berlin-New York, Springer-Verlag Brom, J (1977) The theory of almost periodic functions in constructive mathematics, Pacific Journal of Mathematics, 70, 67 81 Shubin, M A (1978) Almost periodic functions and partial differential operators, Uspekhi Matematicheskykh Nauk, 32 (2), 47 (Russian - - Mathematical Surveys, 33 (2), 52) Kozlov, S M (1978) Homogenization of differential operators with almost periodic rapidly oscillating coefficients, Matematicheskii Sbornik, 107, 199 217 (Mathematics of the USSR Sbomik, 35,481 98) Zhikov, V V (1979) A pointwise stabilization criterion for second order parabolic equations with almost periodic coefficients, Matematicheskii Sbornik, 38, Sbornik, 110, 309 18 ((1980) Mathematics of the USSR 279-92) - - - - - - Bibliography 207 Zhikov, V V., Kozlov, S M & Oleinik, O A (1982) Homogenization of parabolic operators with almost periodic coefficients, Matematicheskii Sbornik, 117, 69-85 Kozlov, S M., Oleinik, O A & Zhikov, V V (1981) Sur l'homogénéisation d'opérateurs différentiels paraboliques a coefficients presque périodiques, Comptes Rendus des Séances de l'Académie de Sciences, Paris, 293, Series 1, no 4,245-8 Zhikov, V V & Sirazhudinov, M M (1981) Homogenization of nondivergent second order elliptic and parabolic operators, and the stabilization of the solution of the Cauchy problem, Matematicheskii Sbomik, 116, 166-86 Index admissible pair, 167 almost automorphic function, 63 almost period E-almost period, E,N-almost period, 53 almost periodic function, 1, 60, 71, 73, 75, 79, 84, 99, 100, 111, 115, 124, 144 almost periodic solution, 109, 113, 115, 117, 121, 126,.138, 146, 147, 148, 163, 164, 165 Amerio, L., 36, 76, 96, 147 Amerio, L & Prouse, G., 76, 96, 147 approximation theorem, 17, 36 for N-almost periodic functions, 60 for Stepanov almost periodic functions, 36 basic semigroup, 100 basis finite, 26 integer, 26 rational, 26, 69 Baskakov, A G., 63, 97 Besicovitch almost periodic function, 142 Besicovitch almost periodic solution, 143, 163 Birkhoff minimal set, 9, 131 Bochner, S., 13, 33, 36, 52, 62, 96, 148 Bochner, S & von Neumann, J., 148 Bochner's criterion, 4, 6, 42, 70, 73 Bochner-Fejer composite kernel, 28 Bochner-Fejer kernel of order n, 28 Bochner-Fejer polynomial, 29, 36, 69, 70 Bochner-Fejer sum, 25 Bochner-Fejer summation method for weakly almost periodic functions, 69 Bogolyubov, N N., 15, 36, 199 Bogolyubov, N N & Krylov, N M., 36 Bogolyubov's lemma, 182, 189, 199 Bohl, P., 12, 96 Bohr, H., 12, 52, 96 Bohr, H & Neugebauer, 0., 97 Bohr's example, 100, 144 Bohr transformation, 23 of weakly almost periodic functions, 69 Boles Basit, R., 63, 97 Boles Basit, R & Tsend, L., 97 bounded almost periodic function, 70, 75 bounded solutions, 77, 92, 93, 94, 118, 120, 157, 160, 174, 177, 178 Brodskii, M S & Mil'man, D P., 13 Bronshtein, I U., 97, 123 Bronshtein, I U slir Chernyi, B F 0., 123 Cheresiz, V M., 123 coercive estimate, 156 coercive inequality, 184 coercive property, 151 compactness condition, 160, 1.73 compactness lemma, 137 compactness of a set of almost periodic functions, compact solution, 107, 140 condition for almost periodicity, 70, 91, 92, 97 condition of right solvability, 166 condition for uniform positive stability, 138 condition of weak continuity, 124 conditional exponential stability, 191 conditionally periodic function, 12 contraction mapping principle, 153, 192 Index convolution, 16 criterion for almost periodicity, 70, 91 criterion for N-almost periodicity, 58 criterion for a point spectrum, 139 Daletskii, Yu, L & Krein, M G., 179, 181 demicontinuity, 150 derivative of an almost periodic function, deviation from an almost periodic function, 31 duality, 154 Dunford, N & Schwartz, J T., 13 dynamical system (flow), Ellis, R., 123 Ellis semigroup, 101, 104 equi-almost periodic set, equitransitive system, 114, 140 Esclangon, E., 12 Esclangon's lemma, 97 exponential dichotomy, 167, 168, 169 extension completely non-distal, 132 distal, 98 of a minimal flow, 98 positively stable, 106 extreme point, 131 evolution equation, 99, 157, 160, 161, 164 Favard, J., 52, 97, 147, 148 Favard minimal set, 130, 131, 134, 135 Fejer sum, 25 Fejer kernel, 28 fibre, 99 distal, 99, 104, 105 minimal, 116 positively stable, 132 semidistal, 99 Flor, P., 123 flow, compact, 98 distal, 98, 105 equicontinuous, semidistal, 98 strictly ergodic, 101 two-sidely stable, Fourier coefficients of almost periodic function, 24 of N-almost periodic function, 60 of Stepanov almost periodic function, 35 minimal property of, 32 Fourier exponent, 24, 32, 40, 41, 50 Fourier-Bohr exponent, 42, 43 209 Fourier series of almost periodic function, 24 of N-almost periodic function, 59, 60 Fourier-Stieltjes integral, 16, 36, 56 Fourier-Stieltjes transform, 14 Fourier transform, 87 Furstenberg, H., 123 Gel'fand, I M., 148 Gorin, E A., 52 Gottschalk, W A & Hedlund, G A., 114, 123 harmonic analysis of weakly almost periodic functions, 68 homogeneous space, 118 hyperbolic equation, 140, 148, 165 identical invariance, 107 indefinite integral, 77, 81, 138 invariant section, 142, 143 Jessen, B., 52 Jessen, B (Sr Tornehave, H., 52 Kadets, M I., 74, 96, 133, 148 Krasnosel'skii, M A., Burd, B Sh & Kolesov, Yu, S., 181 Ladyzhenskaya, O A., 194 Ladyzhenskaya, O A., Solonnikov, V A Sr Uranseva, N N., 196 Lax, P D & Phillips, R S., 148 Levin, B Ya., 62 Levin, B Ya, & Levitan, B M., 62 Levitan, B M., 36, 52, 62, 76, 97, 144 limit periodic function, 46 linearly independent set, 26 Lions, J.-L., 165 local convergence, 87 Loomis, L H., 97 Lyapunov stable semigroup, 10 Lyapunov solution, 100 Lyapunov trajectory, 13 Maizel', A D., 181 Marchenko, V A., 62 Massera, L L & Schaffer, I I., 178, 181 mean value, 22 mean-value theorem, 22 measure of oscillation of an operatorfunction, 179 Millionshchikov, V M., 123 minimax method, 127, 135, 147 Mitropolskii, Yu A., 199 210 Index module, 59 rational hull ?rat, 115 Montgomery, D & Samelson, H., 118 Muckenhoupt, C F., 13 Mukhamadiev, E., 181 Sell, G R., 123 semigroup continuous, 11 distal, 98 Lyapunov stable, 10 semidistal, 98 semiseparated solution, 100 semiseparation condition, 127, 134, 147 semitrajectory, separated solution, 100 separation lemma, 102, 105 N-almost periodic function, 54, 57, 58, 63, 84, 111, 112, 146 N-almost periodic solution, 127 Navier-Stokes equation, 193 Nemytskii, V V & Stepanov, V V., 13, 123 sequence operator averaged, 182 coercive, 151, 152, 184 correct, 167, 169 evolution, 154 set monodromy, 178 monotonic, 149 non-expansive, 152 parabolic, 183, 189, 190, 196 regular, 167 semicontinuous, 149 strongly correct, 167 strongly elliptic, 184 uniformly regular, 172 weakly regular, 167 orbit, 116 Parsevars relation, 31, 32, 36 Pelczynski, A., 96 Perov, A I & Ta Kuang Khai, 148 Pérron, 0., 181 point of almost periodicity, 91 of non-almost periodicity, 91 regular, 87 stationary, 117 point spectrum of homogeneous problems, 143 P-property, 173 Poisson stable function, 80, 86, 97, 173, 185 Pontryagin, L S., 118 positive definite function, 17, 19, 55 principle of the stationary point, 116, 117, 121 quasiperiodic function, 12 f-increasing, 42 f-normal, 42 f-returning, 80 returning, 57, 78, 80, 81 weakly convergent, 64 equi-almost periodic, A-invariant, 116 invariant, minimal, 9, 130 relatively dense, 1, 86 Shcherbakov, B A., 96, 97, 123 Simonenko, N B., 199 space co, 81 C(X), 6(X), H8 (0), 193 Y, 1, 87 2'' (X), 33 21) (-00, co; B), 166 lte(X), 34 Ye(X), 34 et, 157 Xcomp, 157 komp 190 X, 190 not containing c o, 82 , reflexive embedded, 183 weakly complete, 64 spectrum, 24, 87, 143 spectral condition for almost periodicity, 91 stationary equation, 161 stationary subgroup, 118 Stepanov, V V., 33, 36 Stepanov almost periodic function, 33, 34, 36, 80 strictly convex norm, 121 rarified subset, 92 rational hull Erat, 115 recurrent function, 12, 80, 84 Reich, A., 63 resolvent, 93 theorem Amerio, 109, 111, 112 Birkhoff, 9, 102, 125, 139 Bochner-Khinchin, 17, 19, 36 Index theorem-continued Bogolyubov, 13, 41, 55, 62, 97 Bohl-Bohr-Amerio, 77, 80 Ellis, 104, 116 Favard, 62, 109 Kronecker, 37, 39, 46, 63, 66, 71, 115 Kronecker-Weyl, 51, 52, 144 Levitan, 109 Lyusternik, 7, 13 Markov, 10, 13, 136, 141 Zhikov, 110 theorem of the argument, 49, 101 trajectory absolutely recurrent, 10, 106 compact, 8, 20, 106, 137 compatibly recurrent, of a group, minimal closure of, recurrent, 9, 102, 115 of a semigroup, semiseparated, 100, 103, 106 separated, 100 weakly recurrent, 137 unconditionally bounded series, 82 uniform exponential dichotomy, 167 uniform positive stability, 108, 135 uniformly convex space, 74 uniformly exponentially stable to the right, 170 uniformly stable to the right, 170 211 uniqueness theorem for almost periodic functions, 24 for N-almost periodic functions, 62 two sided, 108 Valikov, K V., 148 Veech, W A., 63 V-monotonic equation, 107, 121, 123 Wallace, A D., 123 weak convergence, 64 weak limit, 64 weakly almost periodic function, 65, 66, 68, 69, 70, 71, 72, 75, 81, 126 weakly almost periodic solution, 127, 129, 131, 134, 140 weakly compact solution, 125, 130, 143 weakly N-almost periodic solution, 126, 127, 128, 134, 135 weakly recurrent solution, 139, 140, 141 Wiener, N., 36 Wintner, A., 52 Wolff, F., 97 Zhikov, V V , 62, 76, 97, 123, 148, 165, 181, 199 Zhikov, V V & Levitan, B M., 165 Zhikov, V V & Tyurin, V M., 181 Zhikov, V V & Valikov, K V., 181 [...]... for f 2 Now we are going to deduce further properties of almost periodic functions that are obtained more simply from Bochner's criterion than from our definition Property 6 The sum f(t)+g(t) of two almost periodic functions is almost periodic The product of an almost periodic function f(t) and a numerical almost periodic function 0 (t) is almost periodic Proof Let hn } be an arbitrary sequence of real... E -almost period for f(t) The position of conditionally periodic functions in the class of continuous almost periodic func- Comments and references 13 tions is discussed in Chapter 3, § 3, and the role of the system of inequalities (8) in the theory of almost periodic functions is considered in Chapter 3, § 2, and Chapter 4, § 1 (Bogolyubov's theorem) The extension of the theory of almost periodic functions. .. teJ Comments and references to the literature 1 The definition of an almost periodic function and its simplest properties for numerical functions is due to Bohr [17] and [22] Long before the publication of Bohr's work, Bohl [15] and Esclangon [120], [121] had discussed a special case of almost periodic functions § which are now known as conditionally periodic (or sometimes, quasiperiodic) functions In... spectral theory and in the theory of homogenisation of partial differential equations with almost periodic coe ffi cients The additional references are, in the main, concerned with this theme L W Longdon 1 Almost periodic functions in metric spaces 1 Definition and elementary properties of almost periodic functions Throughout the book J denotes the real line, X a complete metric space, and p = p(xl,... numbers nT is relatively dense It is easy to produce examples of almost periodic functions that are not periodic, for instance, f(t)= cos t + cos t.s12 2 Almost periodic functions in metric spaces We prove some of the simplest properties of almost periodic functions; these are straight-forward consequences of the definition Property 1 An almost periodic function f :J *X is compact in the is compact sense... arbitrarily, and take an e -almost period 7 = re such that to + T 1/2, that is, to+ //2 Then P(f(t0+ 7 ), fit0))= 8 Because to -FT E [-1/2, 1/2], the set Rfa is an e-net for Rf, as we required to prove Remark For numerical almost periodic functions (that is, when X = R 1 ) and for almost periodic functions with values in a finitedimensional Banach space, Property 1 reduces to the following: if f is an almost periodic. .. = (5, and so p i(g(f(t + r)), g(f(t))) -5 E Corollary Let f be a continuous almost periodic function with values in a Banach space X Then l[f(t)li k is a continuous numerical almost periodic function for all k > 0 Property 5 Suppose that fis an almost periodic function with values in a Banach space X If the (strong) derivative f' exists and it is uniformly continuous on J, then f' is an almost periodic. .. s' = t'+ re, and s"= t" + rE, From (1), (2) and the triangle inequality we have - PU (t" ), fit'))=P(Pt"), fis"))+P(Ps"),Ps1)) +P(fis'), f(e))< E Definition and elementary properties 3 Property 3 Let fn : J X, n = 0, 1, 2, , be a sequence of continuous almost periodic functions that converges uniformly on J to a function f Then f is almost periodic Proof We take an arbitrary e > 0 and let n = ne... x2, , Xn) and the norm 11x11 = kil l lixkil It follows easily from Bochner's criterion that if fi (t), f2(t), , fn (t) are almost periodic functions from J into X 1 , X2, , Xn, then the function f(t)= (Mt), f2(t), , fn (t)) is an almost periodic function from J into X The next property is easily deduced from this remark Property 7 Let fi(t), f2(t), , fn(t) be almost periodic functions from... Chapter 4 is devoted to the theory of N -almost periodic functions In comparison with the corresponding chapter of the book AlmostPeriodic Functions by B M Levitan (Gostekhizdat, Moscow (1953)), we have added a proof of the fundamental lemma of Bogolyubov about the structure of a relatively dense set Chapter 5 is concerned with the theory of weakly almost periodic functions developed mainly by Amerio Chapter .. .Almost periodic functions and differential equations Almost periodic functions and differential equations B.M.LEVITAN & V.V .ZHIKOV Translated by L W Longdon CAMBRIDGE... sum f(t)+g(t) of two almost periodic functions is almost periodic The product of an almost periodic function f(t) and a numerical almost periodic function (t) is almost periodic Proof Let hn... weakly almost periodic functions Harmonic analysis of weakly almost periodic functions Criteria for almost periodicity Comments and references to the literature A theorem concerning the integral and

Ngày đăng: 29/10/2015, 12:29

TỪ KHÓA LIÊN QUAN

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN