1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bài 23 trang 12 sgk toán 8 tập 1

2 732 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 3,84 KB

Nội dung

Chứng minh rằng: 23. Chứng minh rằng: (a + b)2 = (a – b)2 + 4ab; (a – b)2 = (a + b)2 – 4ab. Áp dụng: a) Tính (a – b)2 , biết a + b = 7 và a . b = 12. b) Tính (a + b)2 , biết a - b = 20 và a . b = 3. Bài giải: a) (a + b)2 = (a – b)2 + 4ab - Biến đổi vế trái: (a + b)2 = a2  +2ab + b2 = a2 – 2ab + b2 + 4ab = (a – b)2 + 4ab Vậy (a + b)2 = (a – b)2 + 4ab - Hoặc biến đổi vế phải: (a – b)2 + 4ab = a2 – 2ab + b2 + 4ab = a2 + 2ab + b2  = (a + b)2 Vậy (a + b)2 = (a – b)2 + 4ab b) (a – b)2 = (a + b)2 – 4ab Biến đổi vế phải: (a + b)2 – 4ab = a2  +2ab + b2 – 4ab = a2 – 2ab + b2 = (a – b)2 Vậy (a – b)2 = (a + b)2 – 4ab Áp dụng: Tính: a)    (a – b)2 = (a + b)2 – 4ab = 72 – 4 . 12 = 49 – 48 = 1 b)    (a + b)2 = (a – b)2 + 4ab = 202 + 4 . 3 = 400 + 12 = 412  

Chứng minh rằng: 23. Chứng minh rằng: (a + b)2 = (a – b)2 + 4ab; (a – b)2 = (a + b)2 – 4ab. Áp dụng: a) Tính (a – b)2 , biết a + b = 7 và a . b = 12. b) Tính (a + b)2 , biết a - b = 20 và a . b = 3. Bài giải: a) (a + b)2 = (a – b)2 + 4ab - Biến đổi vế trái: (a + b)2 = a2 +2ab + b2 = a2 – 2ab + b2 + 4ab = (a – b)2 + 4ab Vậy (a + b)2 = (a – b)2 + 4ab - Hoặc biến đổi vế phải: (a – b)2 + 4ab = a2 – 2ab + b2 + 4ab = a2 + 2ab + b2 = (a + b)2 Vậy (a + b)2 = (a – b)2 + 4ab b) (a – b)2 = (a + b)2 – 4ab Biến đổi vế phải: (a + b)2 – 4ab = a2 +2ab + b2 – 4ab = a2 – 2ab + b2 = (a – b)2 Vậy (a – b)2 = (a + b)2 – 4ab Áp dụng: Tính: a) (a – b)2 = (a + b)2 – 4ab = 72 – 4 . 12 = 49 – 48 = 1 b) (a + b)2 = (a – b)2 + 4ab = 202 + 4 . 3 = 400 + 12 = 412 ...a) (a – b)2 = (a + b)2 – 4ab = 72 – 12 = 49 – 48 = b) (a + b)2 = (a – b)2 + 4ab = 202 + = 400 + 12 = 412

Ngày đăng: 10/10/2015, 02:07

TỪ KHÓA LIÊN QUAN

w