Viết phương trình mặt phẳng. 1. Viết phương trình mặt phẳng: a) Đi qua điểm M(1; -2; 4) và nhận = (2; 3; 5) làm vectơ pháp tuyến. b) Đi qua điểm A(0 ; -1 ; 2) và song song với giá của các vectơ (3; 2; 1) và (-3; 0; 1). c) Đi qua ba điểm A(-3 ; 0 ; 0), B(0 ; -2 ; 0) và C(0 ; 0 ; -1). Hướng dẫn giải: a) Măt phẳng (P) đi qua điểm M(1; -2; 4) và nhận = (2; 3; 5) làm vectơ pháp tuyến có phương trình: 2(x - 1) + 3(x +2) + 5(z - 4) = 0 ⇔ (P) : 2x + 3y + 5z -16 = 0. b) Xét = (2 ; -6 ; 6), khi đó ⊥ (Q) là mặt phẳng qua A (0 ; -1 ; 2) và song song với , (nhận , làm vectơ chỉ phương). Phương trình mặt phẳng (Q) có dạng: 2(x - 0) - 6(y + 1) + 6(z - 2) = 0 ⇔ (Q) :x - 3y + 3z - 9 = 0 c) Gọi (R) là mặt phẳng qua A, B, C khi đó , là cặp vectơ chỉ phương của (R). = (2 ; 3 ; 6) Vậy phương trình mặt phẳng (R) có dạng: 2x + 3y + 6z + 6 = 0 >>>>> Luyện thi ĐH-THPT Quốc Gia 2016 bám sát cấu trúc Bộ GD&ĐT bởi các Thầy Cô uy tín, nổi tiếng đến từ các trung tâm Luyện thi ĐH hàng đầu Hà Nội, các Trường THPT Chuyên và Trường Đại học.
Viết phương trình mặt phẳng. 1. Viết phương trình mặt phẳng: a) Đi qua điểm M(1; -2; 4) và nhận = (2; 3; 5) làm vectơ pháp tuyến. b) Đi qua điểm A(0 ; -1 ; 2) và song song với giá của các vectơ 1). (3; 2; 1) và (-3; 0; c) Đi qua ba điểm A(-3 ; 0 ; 0), B(0 ; -2 ; 0) và C(0 ; 0 ; -1). Hướng dẫn giải: a) Măt phẳng (P) đi qua điểm M(1; -2; 4) và nhận trình: = (2; 3; 5) làm vectơ pháp tuyến có phương 2(x - 1) + 3(x +2) + 5(z - 4) = 0 ⇔ (P) : 2x + 3y + 5z -16 = 0. b) Xét với = (2 ; -6 ; 6), khi đó , (nhận ⊥ (Q) là mặt phẳng qua A (0 ; -1 ; 2) và song song , làm vectơ chỉ phương). Phương trình mặt phẳng (Q) có dạng: 2(x - 0) - 6(y + 1) + 6(z - 2) = 0 ⇔ (Q) :x - 3y + 3z - 9 = 0 c) Gọi (R) là mặt phẳng qua A, B, C khi đó , là cặp vectơ chỉ phương của (R). = (2 ; 3 ; 6) Vậy phương trình mặt phẳng (R) có dạng: 2x + 3y + 6z + 6 = 0 >>>>> Luyện thi ĐH-THPT Quốc Gia 2016 bám sát cấu trúc Bộ GD&ĐT bởi các Thầy Cô uy tín, nổi tiếng đến từ các trung tâm Luyện thi ĐH hàng đầu Hà Nội, các Trường THPT Chuyên và Trường Đại học.