Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 140 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
140
Dung lượng
4,02 MB
Nội dung
CHIRALLY FUNCTIONALIZED METAL NANOPARTICLES WANG LU (B.S., NANKAI UNIVERSITY) A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF CHEMISTRY NATIONAL UNIVERSITY OF SINGAPORE 2009 Acknowledgement First of all, I would like to express my thanks to my supervisor, Assistant Professor Sim Wee Sun, for his guidance, help and patience throughout the whole project In addition, I express my great appreciation to the colleagues, Dr Wang Suhua and Dr Wu Huanan, Mr Dong Dong of Surface Chemistry Lab who gave me important guidance in experimental skills and computation I also would like to thank Mr Nguyen Ngoc Tu, Miss Zhuo Jing Mei, for their friendly encouragement and help I also give my thanks to the technologists in Chemical, Molecular and Materials Analysis Centre for training and helping me to finish the characterization Finally, financial support for my research from National University of Singapore is gratefully acknowledged I CHIRALLY FUNCTIONALIZED METAL NANOPARTICLES TABLE OF CONTENTS Pg No Acknowledgement I Table of Contents II Summary VI List of Tables VIII List of Figures IX Chapter Introduction 1.1 Background…………………………………………………………….……………1 1.2 1.3 1.4 1.1.1 Metal Nanopartilces (NPs).……………………….……………………………1 1.1.2 Monolayer-Protected Metal Nanoparticles (MPMNs)…………………………2 1.1.3 Chirality: From Molecules to MPMNs……………………………………… 1.1.3.1 General Chirality………………………………………………… ……3 1.1.3.2 Origin of Chirality for Extended Two-Dimensional Metal Surfaces…4 1.1.3.3 Origin of Chirality for MPMNs…………………………………………5 Synthesis of Chirally Modified Metal NPs…………………………………………7 1.2.1 Brust-Schiffrin Method: Two-Phase Synthesis….…….………………….……7 1.2.2 Single-Phase Synthesis: Without Phase Transfer Reagent…………………….8 1.2.3 Ligand Place-Exchange Reactions……………………………………… ……9 1.2.4 Modification of ω-Functional Groups on The Ligand of NPs…………………9 1.2.5 Comparison of The Synthesis Methods………………………………………10 VCD Studies of Chirally Modified Metal NPs .…………….…12 1.3.1 Fundamentals of VCD……………………………………………………… 12 1.3.2 Advantages of VCD………………………………………………………… 12 1.3.3 Computation Methodology………………………………………… ………13 1.3.3.1 Geometry Optimization……………………………………………… 14 1.3.3.2 Frequency Calculations (Predicting IR and VCD Spectra)……………14 Scope of Work…………………………………………………………………… 17 Figures……………………………………………………………………………………18 References………………………………………………………………………… ……23 Chapter 2.1 Experimental 26 Synthesis of Chirally Modified Metal Nanoparticles (NPs).……….…….……….26 II CHIRALLY FUNCTIONALIZED METAL NANOPARTICLES 2.1.1 Chemicals………………………………………………………………… …26 2.1.2 Synthesis of L-Cysteine/MUA Capped Au NPs….………….……….………27 2.1.2.1 Reduction of HAuCl4………………………………………………….27 2.1.2.2 Purification……………………………………………………….……27 2.1.2.3 Drying Procedure………………………………………………… …28 2.1.3 2.1.3.1 Reduction of NaAuCl4/ Na2PdCl4………………………… …………28 2.1.3.2 Purification and Drying……………………………………… ………29 2.1.4 2.2 Synthesis of Binaphthalene Derivative-Capped Au/Pd NPs……………… 28 Chirally Functionalization of MUA-Capped Au NPs………… …….………29 2.1.4.1 Ester/Amide Coupling Reaction……………………………………….29 2.1.4.2 Purification and Drying……………………………………………….30 Characterization…….……….……….……………………………………………30 2.2.1 Transition Electron Microscopy (TEM)………………………………… ….30 2.2.1.1 Introduction……………………………………………………………31 2.2.1.2 Instrument and Sample Preparation……………………………… …32 2.2.2 Powder X-Ray Diffraction (XRD)……………………………………… …32 2.2.2.1 Introduction……………………………………………………………32 2.2.2.2 Instrument……………………………………………………………35 2.2.3 Electron Diffraction (ED)……………………………………………….……35 2.2.3.1 Introduction………………………………………………………….35 2.2.3.2 Instrument and Sample Mounting………………………………… …36 2.2.4 Thermogravimetric Analysis (TGA) …………………………………………36 2.2.4.1 Introduction……………………………………………………………36 2.2.4.2 Instrument………………………………………………………… ….37 2.2.5 Elemental Analysis……………………………………………………… …37 2.2.5.1 Introduction……………………………………………………………37 2.2.5.2 Instrument………………………………………………………… …37 2.2.6 Ultraviolet-Visible (UV-Vis) Spectroscopy……….…………….……………38 2.2.6.1 Introduction……………………………………………………………38 2.2.6.2 Instrument and Sample Mounting…………………………………… 39 2.2.7 Nuclear Magnetic Resonance (NMR) Spectroscopy…………………………39 2.2.7.1 Introduction……………………………………………………………39 2.2.7.2 Instrument……………………………………………………………40 2.2.8 Fourier Transform Infrared (FT-IR) Spectroscopy.…….….……….…………40 III CHIRALLY FUNCTIONALIZED METAL NANOPARTICLES 2.2.8.1 Introduction……………………………………………………………40 2.2.8.2 Instrument and Sample Mounting…………………… ………………42 2.2.9 Electrospray Ionization-Mass Spectrometry (ESI-MS)……………….……42 2.2.9.1 Introduction……………………………………………………………42 2.2.9.2 Instrument……………………………………………………… ……43 2.2.10 Density Functional Theory (DFT) Calculations….……….………………….43 Figures……………………………………………………………………………………45 References……………………………………………………… ………………………49 Chapter Cysteine-Capped Au Nanoparticles 50 3.1 Introduction…………………………………………………………………… …50 3.2 Results and Discussion………….……………………….…………………….….51 3.3 3.2.1 Synthesis Scheme………………………………………………………….…51 3.2.2 Crystal Structure and Particle Size of L-Cysteine Capped Au NPs…… ……52 3.2.3 Composition of L-Cysteine-Au NPs…………………………………….……54 3.2.4 Vibrational Spectroscopic Character of L-Cysteine-Au NPs…….…….…….55 3.2.5 Predicted Chirooptical Activity of L/D-Cysteine-Capped Au NPs………… 56 3.2.5.1 Calculation Methodology…………………………… ………………56 3.2.5.2 Chirooptical Activity Prediction………………………………….……57 Conclusion…………….…………….……………………….……………………59 Figures……………………………………………………………………………………61 Tables…………………………………… ………………………………………………70 References………………………….…………………………….………………………72 Chapter Binaphthalene Derivative-Capped Au/Pd Nanoparticles 73 4.1 Introduction…………………………………………… …………………………73 4.2 Results and Discussion……………………………………………………………74 4.3 4.2.1 Synthesis Scheme and Results……………………………………… ………74 4.2.2 Crystal Structure and Particle Size of BINAP-Au/Pd NPs…………………78 4.2.3 Composition of BINAP-Au/Pd NPs………………………………….………79 4.2.4 Predicted Chirooptical Activity of S/R-BINAP-Capped Au NPs……………80 4.2.4.1 Calculation Methodology………………………………………….… 80 4.2.4.2 Chirooptical Activity Prediction………………………………………80 Conclusion………………………………………………………………………82 IV CHIRALLY FUNCTIONALIZED METAL NANOPARTICLES Figures……………………………………………………………………………………84 Tables………………………………………… ………………………………………98 References………………………………………………………………… ………101 Chapter Chiral Functionalization of 11-Mercapto-Undecanoic Acid-Capped Au Nanoparticles with 1,1′-Bi(2-Naphthol) /1,1′-Binaphthalene-2,2′-Diamine 102 5.1 Introduction……………………………………………………………………102 5.2 Results and Discussion…………………… ……………………………………103 5.3 5.2.1 Synthesis Strategy……………………………………….………………… 103 5.2.2 Composition of MUA-Au NPs………………….…………….……….……106 5.2.3 Crystal Structure and Particle Size of MUA-Au NPs Before and After Coupling with BINOL/DABN………………………………………………107 5.2.4 Formation of Ester and Amide on MUA-Au NPs…………………….…108 Conclusion…………………………………………………………….…………112 Figures………………………………….……………………………………………….112 Tables……………………………………………………………………………………124 References………………………………………………………………………………126 V Summary Chiral ligands-protected metal nanoparticles (NPs) were synthesized using a single-phase method or a two-step functionalization The NPs were characterized using transmission electron microscopy (TEM), electron diffraction (ED), X-ray diffraction (XRD), Ultraviolet-visible (UV-Vis) spectroscopy, infrared spectroscopy (IR), thermogravimetric analysis (TGA), mass spectrometry (MS), nuclear magnetic resonance (NMR) spectroscopy and elemental analysis (EA) Their chiralities were studied using vibrational circular dichroism (VCD) computation based on density functional theory (DFT) Cysteine-Au NPs were prepared in a methanol/water mixture using a single-phase synthesis method The cysteine molecule binds to the Au surface via its thiol and carboxylate groups The metallic core exhibits a face-centered cubic (fcc) structure The VCD computation results show that deprotonated L- and D-cysteine-capped Au NPs exhibit chirooptical activity as they show mirror image VCD spectra After L-cysteine is adsorbed on the Au cluster surface, the νasCOO- band reverses its sign of Δε which suggests the conformational change and the interaction between COO- and Au 2,2′-bis(diphenylphosphino)-1,1′-binaphthalene (BINAP)-capped Au/Pd NPs were prepared in tetrahydrofuran using single-phase synthesis The metallic core exhibits fcc structure The BINAP molecule caps the metal core via two P atoms VCD computation predicts that S- and R-BINAP-capped metal NPs show mirror image VCD spectra Unlike cysteine, the BINAP after capping does not twist significantly and the rotation of phenyl and the reducing of the angle of binaphthalene only have VI minor influence on the VCD spectra 1,1′-bi(2-naphthol) (BINOL) and 1,1′-binaphthalene-2,2′-diamine (DABN), which are axial chiral molecules like BINAP, can not directly cap the metal core because of their weak nucleophilicity Ester/amide coupling reactions between BINOL/DABN and ω-caboxylic acid-alkanthiolated NPs were adopted to introduce chirality onto 11-mercapto-undecanoic acid-Au NPs which prepared previously using single-phase synthesis The MS, IR, NMR results show the success of the indirect functionalization Keywords: chiral, nanoparticle, cysteine, binaphthalene derivative, synthesis, vibrational circular dichroism VII LIST OF TABLES Pg No Table 3.1 Comparison of calculated and literature value of d-spacing and lattice constant of L-cysteine-capped Au NPs L =12cm λ=0.25 Å 70 Table 3.2 Expected size of Au-cysteine NPs calculated using Scherrer’s Equation 70 Table 3.3 Vibrational frequencies and mode assignment for acidified free L-cysteine, deprotonated free L-cysteine and L-cysteine-capped Au NPs ν=stretching; δ=bending; as=asymmetric; s=symmetric .71 Table 3.4 Calculated IR absorption frequency and VCD of deprotonated free L-/Dcysteine and that adsorbed on Au NPs ν=stretching; δ=bending; as=asymmetric; s=symmetric 71 Table 4.1 Comparison of calculated and literature value of d-spacing and lattice constant of BINAP-Au/Pd NPs The radii of the diffraction rings scaled by the software “Digital Micrograph”, the corresponding λL of which is 321) Thus, d=321/R (unit Å) 98 Table 4.2 Observed vibrational frequencies and mode assignment for free BINAP, BINAP-Au NPs and BINAP-Pd NPs ν=stretching; δ=bending; IP =in plane; OOP=out of plane; N=naphthalene ring; B=benzene ring 99 Table 4.3 Calculated IR absorption frequency and VCD of deprotonated free L-/DCysteine and that adsorbed on Au NPs ν=stretching; δ=bending; IP =in plane; OOP=out of plane; N=naphthalene ring; B=benzene ring 100 Table 5.1 Comparison of calculated and literature value of d-spacing and lattice constant of MUA capped Au NPs The diameter 2R were measured using “Digital Micrograph” and the corresponding calibrated λL=321 Thus, d=321/R (unit Å) 124 Table 5.2 Expected size of MUA-Au NPs calculated using Scherrer’s Equation 124 Table 5.3 FT-IR peak assignment of Free MUA and MUA-Au NPs ν = stretching; OOP = out of plane bending 124 Table 5.4 FT-IR peak assignment of Free BINOL, DABN, MUA-Au-NPs and MUA-Au-BINOL/DABN NPs ν=stretching; OOP=out of plane bending 125 VIII LIST OF FIGURES Pg No Figure 1.1 The schematic structure of MPMNs 18 Figure 1.2 Chirality of organic molecules without chiral carbons 18 Figure 1.3 Antimer of D3 point group inorganic complex [Co(en)3 ]3+ .18 Figure 1.4 Geometry of an fcc (532) Different side length of the kink site makes it has two possible orientations 18 Figure 1.5 STM shows opposite chirality of R,R- or S,S- tartaric acid-modified Cu(110) 19 Figure 1.6 STM shows the coexistence of opposite chiral domains on Cu(110) 19 Figure 1.7 Schematic models to demonstrate the local distortion of nickel atoms on Ni(110) surface by adsorbate bitartrate 19 Figure 1.8 (A) Packing of Au atoms in Au102 nanoparticle (B) View down the 5-fold axis of the two enantiomeric particles Only Au atoms (in yellow) and sulfur of p-mercaptobenzoic acid (in cyan) are shown 20 Figure 1.9 Structure of the phase transfer reagent TOABr 20 Figure 1.10 Synthesis of Au NPs coated with organic shells by reduction of Au(III) precursor in the presence of thiols 20 Figure 1.11 Ligand place-exchange reactions between thiol-stabilized Au NPs of the Brust type and various functionalized thiols 20 Figure 1.12 The S N substitution between ω-bromo-functionalized Au and alkylamine 21 Figure 1.13 The amide coupling reactions between –COOH-terminated Au NPs and amine derivatives .21 Figure 1.14 Energy-level diagram for VCD and four forms of ROA 22 Figure 2.1 Comparison of 3.05 mm copper grid having different number of meshes (A) 50 mesh (B) 100 mesh (C) 200 mesh (D) 600 mesh 45 Figure 2.2 Geometry of the Bragg “reflection” analogy 45 Figure 2.3 Geometrical features of the Debye-Scherrer technique 45 IX Chapter 5.3 Conclusion The BINOL/DABN functionalization of MUA-Au NPs was achieved by a two-step scheme: synthesizing ω-carboxylic acid-alkanethiolated Au NP using a single-phase method followed by coupling BINOL/DABN via forming ester or amide bonds with –COOH using BOP/DMAP/NMM The MUA molecules adsorbed on the surface of the Au NPs are negatively charged because of the alkaline reaction environment Thus the particles without acidification are dispersible in water After acidification, particles are only dispersible in DMF Both of these solutions show their SPR bands at ~535 nm TEM, ED and powder XRD results of the MUA-Au NPs show that the Au core is zero-valent and exhibits fcc structure The average NP size is ~7 nm After coupling BINOL/DABN, the particle size remains unchanged The C=O stretching of both BINOL-MUA-Au and DABN-MUA-Au NPs shift in the FT-IR spectra compared to that of MUA-Au NPs ESI-MS gives the evidence of the existence of BINOL-MUA-Au and DABN-MUA-Au fragments The H NMR also shows binaphthalene ring protons after coupling All the evidences above show the successful coupling of chiral molecules BINOL/DABN on achiral MUA-Au NPs Thus, this method opens an avenue to modifying metallic NPs using chiral compound that cannot directly cap the metallic surface Figures G-B G G G HAuCl4 S S S S Au S S S S SH / NaBH4 Step G B-G G B B-G G Step G G G Figure 5.1 G-B S S S S Au S S S S G-B G-B B-G G-B Indirect chiral functionalization of Au NPs 112 Chapter A B C D E 35 Normalized Frequency % 30 25 20 15 10 5 10 11 Particle Size (nm) Figure 5.2 HR-TEM micrographs of (A) MUA-Au NP monolayer prepared by simple drop-cast from a dilute DMF solution; and (B)(C) its representative detailed section Electron diffraction (D) shows an fcc Au structure The histogram (E) shows particle size distribution with a peak at 7.06 ± 1.01 nm 113 Chapter (A) 2000 (111) 1800 Intensity (a.u.) 1600 1400 1200 1000 (311) (220) (200) 800 (222) 600 400 200 30 40 50 60 70 80 90 2θ (degree) 1200 (B) Intensity (a.u.) 1000 (111) (200) 800 600 (220) 400 200 30 40 50 60 70 80 90 2θ (degree) Figure 5.3 (A) Powder XRD of MUA capped Au NPs in the scanning range of 25–95˚ of 2θ (B) Powder XRD of 0.25 mm Au foil in the scanning range of in the scanning range of 25–70˚ of 2θ 114 Chapter o 220 C 100 90 41.15% 80 % Weight 70 60 o 460 C 50 40 30 20 10 0 100 200 300 400 500 600 700 o Temperature ( C) Figure 5.4 TGA of MUA-Au NPs in the range of room temperature –700 ˚C A Absorbance (a.u) 299 534.5 B 535.5 C 300 400 500 600 700 800 Wavelength (nm) Figure 5.5 UV-Vis spectra of (A) HAuCl4 aqueous solution; (B) MUA-stabilized Au NPs in mol/L KOH (aq); (C) MUA-stabilized Au NPs in DMF 115 Chapter Figure 5.6 A ESI-MS cation spectrum of MUA-Au NPs Free MUA % Transmittance νC-O νC-O νS-H OH OOP νC=O νC-H νO-H B MUA-Au NPs νC-O OH OOP νO-H νC=O νC-H 4000 3500 3000 2500 2000 1500 1000 500 -1 Wavenumber (cm ) Figure 5.7 Comparison of FT-IR spectra of the (A) pure MUA before capping (KBr pellet) and (B) MUA-stabilized Au NPs (KBr pellet) ν = stretching 116 Chapter A B C D (A) TEM image of BINOL-MUA-Au NPs in 200 nm scale; (B) TEM Figure 5.8 image of BINOL-MUA-Au NPs in 10 nm scale; (C) TEM image of DABN-MUA-Au NPs in 200 nm scale; (D) TEM image of DABN-MUA-Au NPs in 10 nm scale 117 Chapter BINOL-coupled 562 Absorbance (a.u) A 566 B 300 400 500 600 700 800 wavelength (nm) Absorbance (a.u.) DABN-coupled 539 C D 300 544 400 500 600 700 800 wavelength (nm) Figure 5.9 UV-Vis spectra of (A) BINOL coupled MUA-Au NPs in DMF; (B) BINOL coupled MUA-Au NPs in DCM; (C) DABN coupled MUA-Au NPs in DMF; (D) DABN coupled MUA-Au NPs in DCM O A O SH O SH O O B N H H N SH O Figure 5.10 (A) BINOL+2MUA; (B) DABN+2MUA-CH2SH 118 10 20 30 40 50 60 70 80 90 100 200 300 269.3 301.7 135.0 180.1 224.8 400 10 20 30 40 50 60 70 80 90 100 135.1 151.1 145.2 200 211.1 255.6 300 338.7 309.3 286.4 400 397.5 BINOL-H+ 500 500 466.5 449.4 460.5 383.0 428.4 MUABIN #22 RT: 0.65 AV: SB: 0.38-0.41 NL: 7.71E6 T: - c ESI Full ms [50.00-2000.00] 285.3 100 Relative Abundance Figure 5.11 Relative Abundance MUABIN #29-30 RT: 0.88-0.90 AV: SB: 0.21 NL: 1.68E8 T: + c ESI Full ms [50.00-2000.00] 448.3 100 600 587.1 639.4 600 539.3 566.9 604.4 659.9 534.9 700 700 m/z 736.4 m/z 709.9 753.7 BINOL-2MUA+Na+ 800 818.7 800 900 900 1000 1041.6 1032.5 1000 988.4 941.0 936.4 880.8 920.3 828.4 864.4 891.5 1100 1115.2 1100 1200 1186.2 1200 1300 1273.7 1300 1133.6 1105.2 1189.9 1233.6 1275.4 1345.6 1348.1 Chapter ESI-MS of BINOL-MUA-Au NPs at operating temperature of 200 ˚C 119 100 134.8 78.5 200 180.1 207.1 167.0 300 285.5 466.7 400 444.4 384.0 417.4 DABN + H+ 500 553.4 200 211.1 269.0 300 313.0 361.3 400 500 460.3 502.3 445.2 600 561.3 603.3 CH2CH2CH3 100 133.4 134.1 muadab m/z 700 m/z 685.0 700 900 907.1 900 820.1 856.0 892.1 836.3 800 800 758.9 699.3 728.3 639.4 782.9 (DABN+2MUA) – (CH2SH) + H+ 638.4 3(CH2) 10 20 30 40 50 60 70 80 90 600 596.4 10/29/2008 3:17:31 PM muadab_081029151731 #36-37 RT: 1.09-1.12 AV: SB: 0.25-0.31 NL: 4.40E6 T: - c ESI Full ms [50.00-2000.00] 145.2 100 10 20 30 40 50 60 70 80 90 3(CH2) Relative Abundance Figure 5.12 Relative Abundance muadab_081029151731 #25-27 RT: 0.76-0.81 AV: SB: 0.08-0.10 NL: 2.75E7 T: + c ESI Full ms [50.00-2000.00] 511.4 100 D:\ms lab\ \muadab_081029151731 DR SIM W S, 250C 1000 1100 1110.9 1100 1113.2 1082.7 1039.5 977.8 1012.5 1000 984.4 997.6 1200 1181.0 1200 1300 1379.4 1400 1343.4 1386.4 1248.3 1305.3 1300 1217.9 1270.1 Chapter ESI-MS of DABN-MUA-Au NPs at operating temperature of 250 ˚C 120 Chapter A B Figure 5.13 H NMR of (A) BINOL-MUA-Au NPs and (B) DABN-MUA-Au NPs 121 Chapter A) BINOL ν C-H aromatic ν O-H ν C=C aromatic % Transmittance B) MUA-Au NPs OH OOP ν C-O ν OH ν C=O ν C-H C) BINOL-MUA-Au NPs ν C-O ν C=O ν C-H aromatic νC-H 4000 3500 3000 2500 2000 1500 1000 500 -1 wavenumber (cm ) Figure 5.14 FT-IR spectra of (A) Free BINOL; (B) MUA-Au NPs; (C) BINOL-MUA-Au NPs ν=stretching, OOP= out of plane bending A ν N-H % Transmittance N-H Scissor B OH ν C-O OOP H2O ν O-H ν C=O ν C-H C ν C-N N-H Scissor ν C=O ν N-H&H2O 4000 3500 ν C-H 3000 2500 2000 1500 1000 500 -1 Wavenumber (cm ) Figure 5.15 FT-IR spectra of (A) Free DABN; (B) MUA-Au NPs; (C) DABN-MUA-Au NPs ν=stretching, OOP= out of plane bending 122 Chapter (BOP) (Au-MUA) O H3C C Au + OH S + P N H3C O (NMM) CH3 N N N N + PF6O + P C O S Au CH3 N O CH3 O N CH3 N N + N H + + + PF6 O O C CH3 O P + N Au CH3 P BO C Au S Figure 5.16 N N S R-OH O N O R-NH2 BO P O C R O Au S R N H Esterification/amidification of MUA-Au NPs 123 Chapter Tables d(111) d(200) d(220) d(311) Lattice Constant (Å) 2R 267.8 315.1 457.1 543.5 Calculated d (Å) 2.395 2.040 1.406 1.181 4.032 Literature d (Å) 2.350 2.039 1.440 1.230 4.08 Table 5.1 Comparison of calculated and literature value of d-spacing and lattice constant of MUA capped Au NPs The diameter 2R were measured using “Digital Micrograph” and the corresponding calibrated λL=321 Thus, d=321/R (unit Å) 2θ (degree) 38.03 44.03 64.44 d(111) d(200) d(220) Average Table 5.2 β(exp) (degree) 1.851 1.995 2.277 β(ins) (degree) 0.25 0.33 0.47 (nm) 5.829 5.716 5.772 5.772 Expected size of MUA-Au NPs calculated using Scherrer’s Equation Mode ν O-H ν C-H ν S-H ν C=O ν C-O ΟΗ OOP Wavenumber (cm-1) Free MUA MUA-Au NPs 3300–2400 3300–2400 2922,2849 2918,2849 2556 1701 1707 1300-1200 1300-1200 930 930 Table 5.3 FT-IR peak assignment of Free MUA and MUA-Au NPs ν = stretching; OOP = out of plane bending 124 Chapter Mode BINOL DABN ν O-H ν O-H(Ar) 3300-2400 3487, 3404 ν NH ν C-H(Ar) ν C-H ν C=O NH scissor ν C-O ν C-N(amide) ΟΗ OOP (on COOH) Wavenumber (cm-1) BINOLMUA-Au MUA-Au NPs NPs - - 3500–3300 3053 DABNMUA-Au NPs 3055 2918,2849 1707 3057 2918,2849 1757 1300–1200 1200–1100 930 - 1620 3500–3300 overlap with H2O 3055 2918,2849 1636 1593 1408 - FT-IR peak assignment of Free BINOL, DABN, MUA-Au-NPs and Table 5.4 MUA-Au-BINOL/DABN NPs ν=stretching; OOP=out of plane bending 125 Chapter References 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Brust, M.; Fink, J.; Bethell, D.; Schiffrin, D J.; Kiely, C., J Chem Soc., Chem Commun 1995, 1655-1656 Yee, C K.; Jordan, R.; Ulman, A.; White, H.; King, A.; Rafailovich, M.; Sokolov, J., Langmuir 1999, 15, 3486-3491 Yao, H.; Miki, K.; Nishida, N.; Sasaki, A.; Kimura, K., J Am Chem Soc 2005, 127, 15536-15543 Gautier, C.; Burgi, T., J Am Chem Soc 2006, 128, 11079-11087 Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D J.; Whyman, R., J Chem Soc., Chem Commun 1994, 801-802 Gautier, C.; Taras, R.; Gladiali, S.; Burgi, T., Chirality 2008, 20, 486-493 Green, S J.; Stokes, J J.; Hostetler, M J.; Pietron, J.; Murray, R W., J Phys Chem B 1997, 101, 2663-2668 Hostetler, M J.; Green, S J.; Stokes, J J.; Murray, R W., J Am Chem Soc 1996, 118, 4212-4213 Ingram, R S.; Hostetler, M J.; Murray, R W., J Am Chem Soc 1997, 119, 9175-9178 Nishida, N.; Yao, H.; Kimura, K., Langmuir 2008, 24, 2759-2766 Templeton, A C.; Hostetler, M J.; Kraft, C T.; Murray, R W., J Am Chem Soc 1998, 120, 1906-1911 Templeton, A C.; Wuelfing, M P.; Murray, R W., Acc Chem Res 2000, 33, 27-36 Templeton, A C.; Hostetler, M J.; Warmoth, E K.; Chen, S W.; Hartshorn, C M.; Krishnamurthy, V M.; Forbes, M D E.; Murray, R W., J Am Chem Soc 1998, 120, 4845-4849 McCafferty, D G.; Bishop, B M.; Wall, C G.; Hughes, S G.; Mecklenberg, S L.; Meyer, T J.; Erickson, B W., Tetrahedron 1995, 51, 1093-1106 Le-Nguyen, D.; Castro, B., Peptide Chemistry In Protein Research Foundation, Shiba, T.; Sakakibara, S., Eds Osaka, 1987; pp 231-238 Henklein, P.; Beyermann, M.; Sohr, R., In Peptides 1992,Proceedings of the 21st European Peptide Symposium, Schneider, C H.; Eberle, A N., Eds ESCOM: Leiden, 1993; pp 224-225 Combs, M.; Ashraf-Khorassani, M.; Taylor, L., J Sup Fluids 1996, 9, 122-127 Lamy Pitara, E.; N'Zemba, B.; Barbier, J.; Barbot, F.; Miginiac, J Mol Catal A: Chem 1996, 106, 235-240 Tan, H.; Zhan, T.; Fan, W Y., J Phys Chem B 2006, 110, 21690-21693 Akhtar, J.; Khan, N.; Memon, S.; Ashraf, Z.; Abbas, G.; Anwar, U.; Yilmaz, M., J Macromol Sci., Part A: Pure Appl Chem 2005, 42, 1627-1638 Daubert, B.; Fricke, H.; Longenecker, H., J Am Chem Soc 1943, 65, 2142 Hale, K J.; Cai, J.; Williams, G., Synlett 1998, 149-152 Kim, K H.; Yamada, M.; Park, D W.; Miyake, M., Chem Lett 2004, 33, 344-345 Waters, C A.; Mills, A J.; Johnson, K A.; Schiffrin, D J., Chem Commun 2003, 540-541 Pavia, D L.; Lampman, G M.; Kriz, G S., Introduction to spectroscopy : a guide for students of organic chemistry W B Saunders Co., : Philadelphia, 1979 Davey, W P., Zeitschrift fuer Physikalische Chemie (Leipzig) 1926, 121, 78 Shichibu, Y.; Negishi, Y.; Tsukuda, T.; Teranishi, T., J Am Chem Soc 2005, 127, 13464 Song, Y.; Huang, T.; Murray, R W., J Am Chem Soc 2003, 125, 11694 126 ... References………………………………………………………………………… ……23 Chapter 2.1 Experimental 26 Synthesis of Chirally Modified Metal Nanoparticles (NPs).……….…….……….26 II CHIRALLY FUNCTIONALIZED METAL NANOPARTICLES 2.1.1 Chemicals…………………………………………………………………... synthesize chiral metal NPs is generally the chemical reduction of metal salts in solution Metal NPs could be chirally functionalized directly through single-/biphasic synthesis or functionalized. .. Instrument……………………………………………………………40 2.2.8 Fourier Transform Infrared (FT-IR) Spectroscopy.…….….……….…………40 III CHIRALLY FUNCTIONALIZED METAL NANOPARTICLES 2.2.8.1 Introduction……………………………………………………………40 2.2.8.2 Instrument and