trình bày về mở đầu và các ký hiệu trong nghiên cứu phép biến hình K
Trang 1CHUaNG 1
Trang ly thuytt hlnh hQc ham mN bitn phuc, phep bitn hlnh K - a baa
giac (vitt t~t PBHKABG- xem dinh nghia d m\lc 1.1) gill mQt vai tro rfft quail trQng trang sl,t phat tri€n cua ly thuytt cling nhu' ling d\lng vao cat nganh ky thu~t Trong d6 vi~c danh gia cac d<;lilu'Qnghlnh hQc cua mi€n anh d6i vdi cac lOpham nao d6 Ia htt suc c~n thitt
Nhu' chung ta dii bitt, vdi cac phep bitn hlnh baa giac (vitt t~t PBHBG)
mi€n don lien ngu'oi ta dii xay dl,tng du'Qc rfft nhi€u danh gia t6i Uu Nhu'ng vdi
cac lOp PBHBG va PBHKABG mi€n da lien thl cac danh gia can it va so lu'Qc.
Lu~n van nay la mQt d6ng g6p d€ b6 sung vao cac danh gia cho mi€n da lien
M~t khac, theo Goluzin[5], hai mi€n n - lien vdi n ~ 2 c6 th€ bitn baa giac
don di~p len nhau khi va chI khi chung d€u c6 th€ bitn baa giac don di~p len
cling mQtmi€n n - lien c6 hlnh dang don gian gQila mi€n chuffn.
d day ta quail tam mi€n chuffn Ia m~t phclng md rQng bi c~t theo cac cling trail d6ng tam t<;lig6c to<;ldQ Tit d6, ta c6 dinh 1:9v€ sl,tt6n t<;liva duy nhfft cua PBHBG len mi€n chuffn nhu'sau:
Dinh ly 1.1:
MQt mi€n da lien B tuy y trang m~t phclng w chua di€m w=0 va w=00
c6 th€ bitn baa giac don di~p bdi z = g (w) len mQt mi€n A la m~t phclng vdi
cac nhat c~t theo nhung cling trail d6ng tam 0 sao cho g(O)=O,g(oo)=oo Ntu
buQckhai tri€n Laurent cua g (w) quanh 00 c6 d<;lngg (w) = w+ ao+~w+ wa;+ thl
phep bitn hlnh Ia duy nhfft
Trang 2Chu y: Ne'u miSn B khong chua w=O va w=oo ma chua w=a va w=b thl
b~ng phep bie'n hinh tuye'n tinh ;:;:,=w - a
w-b c6 th€ bie'n Bien B chua ;:;:,=0 va w=oo.
Khi d6 cac ban klnh cua cac duong trail chua nhat ciit, g6c ma cac nh:it ciit
va cac g6c giua 111latn,lCthljc duang voi cac tia tIT0 qua trung di€m GaCnhat ciit duQcgQila cac modun baa giac cua miSn da lien dfi chao Chung d6ng vai tro r~t quail trQng VIcac modun baa giac la nhung b~t bie'n d6i voi PBHBG va c6 th€ thay d6i trang ph(,l.mvi nh~t dinh d6i voi PBHKABG B~ng cach sa sanh cac c~p
modun baa giac cua hai miSn n - lien cha truoc ta c6 th€ bie't duQc hai miSn d6
c6 bie'n baa giac don dit%pha~c a baa giac len nhau hay khong
Trang lu~n van nay chung toi di tim cac danh gia cac modun baa giac d6
w=00 d6i xung quay !en miSn chu£n Ia m~t ph~ng bi ciit thea cac cling trail d6ng Him d6i xung quay saa cha g(O) = 0, g( 00)= 00 va duQC chu£n boa t(,l.i w =00 (Xem dinh nghla chinh xac lOp ham G t(,l.itrang 6)
NQi dung chinh cua lu~n van baa g6m:
Chuang 1 la ph~n t6ng quail va gioi thit%ukhai quat vS PBHKABG cling cac ky hit%uva cac ham phl,lsa dl,lngtrang cac chuang can l(,l.i
Chuang 2 trlnh bay mQt sO'cong Cl,lc~n thie't cha vit%cdanh gia cac d(,l.i luQng Cong Cl,ldanh gia chu ye'u Ia slj ma rQng cac b~t d~ng thuc Carleman [4, tr 212], Grotzsch[6, tr 372], KUhnau[9, tr 288], bell c(,l.nhd6 can c6 cac b~t
d~ng thuc dlja vaa ly thuye't dQ dai cljc trio
Chuang 3 trlnh bay cac ke't qua chinh cua lu~n van: danh gia Ig(w)1 va cac d(,l.iluQng d~c tIling cua miSn anh bai lOp cac PBHKABG g E G
Cu6i cling la ph~n ke't lu~n va cac tai lit%utham khaa chinh cua lu~n van
Trang 31.1 Dfnh nghla va tinh cha't cua PBHKABG
PBHKABG la s1lmd rQng t1l nhien cua PBHBG, ra doi nam 1928 bdi nha loan hQc Duc Grotzsch[7] PBHKABG duejc dinh nghia bdi nhi€u cach, nhung dinh nghia hinh hQc duoi day co th€ xem Ia t6ng quat nh§t:
M(Jt song anh lien t1;lChai chdu w=fez) tit mdn A vaG miin B, bao loan
chdu duang tren bien, du(/c gQi la m(Jt PBHKABG nfu tan tt;lim(Jtsff K 21, saD cho modun m cua m(Jt ta giac cong V bat kY trang A (tac tll~ giila hai ct;lnhcua hinh chil nh(it tuang duang bao giac veYiV) va modun m' cua V' = f(V) luon thoa
m -::S;m'::S;Km
hoi;ic bat kY miin nhj lien D naG trong A co modun M ~00 (tac tll~ giila ban kfnh lan va ban kfnh nho cua hinh vanh khan tuang duang bao giac VlYiD) thi D' = feD) co modun M' thoa
Truong hejp xay ra cac d£ng thuc: Theo Grotzsch[7, tr 505], ta co:
+ Ne"u w=f(z)=u(x,y)+iv(x,y), z=x+iy la PBHKABGhinh chITnh~t
V={x+iyIO<x<m,O<y<l} len hinh chITnh~t V'={u+ivIO<u<m',O<v<l}sao
cho cae dlnh tudng ling voi nhau thi
{
{
X
u=-m'=Km<=> va m'=-<=> K.
v=y
+ Ne"u w = fez) la PBHKABG hinh vanh khan D = {zll < Izi< M} len hinh vanh khan D' = {wll< Iwl< M'} saGcho Izi= 1 tudng ling voi Iwl= 1 thl
M'=Mt <=>f(z)=azlzlt-l ,lal=l(tuc a= 1 thl argw=argz, Iwl=lzIK), M'=MK <=>f(z)=azlz(-I,lal=l(tuc a= lthi argw=argz,lwl=lzl*)
Trang 4PBHKABG co mQt s6 tinh cha't cd ban nhu' sau:
. Ne'u K = 1 thl PBHKABG trd thanh PBHBG.
mQt PBHKABG voi mQt PBHBG cling la mQt PBHKABG
1.2 Cac ky hi~u va m\lc dich nghien cuu
Gia sa B lamQt mi~n p (p EN, p:2:1) lien cho tru'oc trong m~t phAng
phlic w chlia ditim w = 0, w =00 voi cac thanh phffn bien (JI,(J2, ,(J p kh6ng thoai
hoa thanh cac ditim roi qc va B bie'n thanh chinh no bdi phep quay t=e2;'w
GQi G la lOp cac PBHKABG z=g(w) mi~n B leu mi~n chua"n A(g) la
m~t phAng z bt ca:t bdi p nhat ca:t theo cac cling troll d6ng tam, d6ng ban kinh,
d6i xling quay
1C
0 < R(g) < 00,0 < a(g) < -, g E G,
p
saG cho cae (J; tu'dng ling voi cae LI (J = 1,2, , p), g(O) = 0, g (00)= 00 va
m*(oo,g) = 1,Vg E G trong do ky hi~u m*(oo,f) du'Qc dtnh nghla d trang 8.
z=g(w)
~
A
Hlnh 1.1: PBHKABG mi~n B 1en mi~n chua"n A ling voi p = 2
Trang 5Nhu' v~y, theo (1.3) cac nhat c~t Lj la nhfi'ng cling cua du'ong troll Him 0
ban kinh R, 0 < R(g) <00 va g6cma 2~(g)=2(; -a(g)) thoa 0<~(g)<;,g E G
Hdn nfi'a, gia thie't g co tinh d6i xling quay cffp p, nghia la:
g(e7 w)=e~ g(W),VWEB,g EG. (1.4)
M~tkhac, gQi F la lOp cac PBHKABG w=f(Z),ZEA, f=g-J,gEG, bie'n
m6i mi@nchuffn A ten mi@nB voi f(O) = O,f( 00)= 00.
Do (1.4), ta co:
e7 f(z)= f(/f Z),VZE A =g(B),f E F. (1.5)
V~y ham w = f(z ),f E F ctlng d6i xling quay cffp p.
D~t
c=mill {Iwllw E crj }, (J = 1,2, , p),
d = max {IwllwE crj},(J = 1,2, ,p), m(r,f) = {minlwllwE E(r,f)}, M(r,f) = {maxlwllwE E(r,f)},
(1.6) (1.7) (1.8) (1.9)
D(r,f) = {maxlwJ -w21IwJ, w2 E E(r,f)}, (1.10) voi E(r,f) la t~p h<;1p cac di~m w tu'dng ling voi du'ong troll
Izi= r, 0 < r < 00 k~ ca r = R b(ji f E F .
M~t khac, ky hi~u S(r,f) la di~n tich (trong) (1)cua mi@nddn lien chlia
w= 0 gioi h<;lnboi t~p E(r,f) neu tren; s la di~n tich (ngoai)(2)cua t~p dong cac
di~m trong m~t ph~ng w gioi ht;ln b(ji tfft ca cac thanh ph~n bien CTI'CT2'."'CTpcua
Trang 6B; s] la di~n tich eua t~p d6ng gioi h"n bC1i0"1'Do tinh d6i xung (1.4), ro rang
ta e6 S=PSI'
Voi cae ky hi~u tren va f E F , ta d~t
m'(O,f) = lim m(r,f) r~O
.1 '
rK
m*(O,f) = lim m(r,f)
~
(O,f) = lim r,f)
r~O rK '
S '(0,f) = lim S(r,f)
1frK
Tu'dng t1,1'voi f E F , ta d~t
m '(00,f) = lim m(r,f) r~oo
.1 '
rK
m*(00,f) = lim m(r,f)
S '(00,f) = lim S(r,f) r~oo .l.'
1frK
VI E(r,f),f E F la du'ong cong kin bao bQc di€m z = 0 nen
1fm(r,f)2 ~ S(r,f) ~ 1fM(r,fi Tird6
m'(0,f)2 ~S'(0,f)~M'(0,f)2, m'(oo,fi ~ S '(00,f) ~M'(00,f)2.
(1.11) (1.12)
-(I) Di~n rich (trang) cua mQt tqp diim D fa cqn tren dung (sup) cua di~n rich
cae da giac ndm trang D.
(2)Di~n tich (ngoai) cua mQt tqp diim D fa cqn duoi dung (inf) cua di~n rich
cae da giac chaa D.
Trang 7Ml,lcdich cua lu~n van nay la tim cac danh gia cho Ig(w)1va cac d~i hi<Jng
c~n trong cac danh gia thu du'<JctIll danh gia {J(g) d~u dung ho~c ti~m c~n
dung, chung co th€ tinh toan nho cac cong thuc Cl,l th€ theo cae d~i lu'<Jng
K, p, c, d, va Iwl ho~c d1!a tren cac ham phl,l T(p,r,s) va R(p,t,s) du'<Jc dinh
nghla d ph~n 1.3
1.3 Cae ham pht;lT(p,r,s) va R(p,t,s)
D€ xay d1!ng cac danh gia cac d~i lu'<Jnghinh hQc cho lOp F va lOp G chung ta c~n cac ham phl,l t=T(p,r,s),(O:S;s<r<l) va r=R(p,t,s),(O:S;s<t<l)
vdi pEN. Cac ham phl,l nay la cac ham s6 th1!c du'<Jcdinh nghla saD cho hinh
vanh khan (0 <)r < Izi< 1 tu'dng du'dng baa giac vdi hinh vanh khan s < Iwl< 1,
(°::;s < r < 1)vdi p nha t c~ t dQc theo ban kinh
}
.
~= w s::; w ::;t,argw =p ,(O:S;s < t < l),J = 1,2, ,p.
w=f(z)
~
Hinh 1.2: PBHBG hinh vanh khan r < Izi< 1 !en hinh vanh khan s < Iwl< 1 vdi
p =2 nha t c~ t theo ban kinh
Trang 8Theo [10, tr 295], [11, tr 101-105] ho~c [ 19, IT 13-18] ta co bi€u thuc
giai tich cua cae ham phv T(p,r,s) va R(p,t,s) nhu'sau:
-JrK'(u)
(
l+s4pj
)
4
k(1 +a ) ' j=l 1+s 4pj-2p ,
a=sn(b+i2~bln~,k) voi sn(z,k) la ham sin eliptic theo tham s6 k,
I
b ~K(k) YO; K(k) ~ 0f ~(1- X2)(1- dx eX2) , K'(k) ~ K(,fl-k').
-tri 1 dx 2pK(k) ~(l x2)(1 k2X2 )
T(p,r,s)=se 0 - - , (O<s<t<l,peN) (1.14)
voi K(k) nhu'tren
(
l+r4pj
)
4
Do tinh chfft don di~u cua modun mi€n nhi lien (xem h~ qua 2.3) va (1.13),
(1.14) , ta suy ra cae tinh chfft san cua T(p,r,s) va R(p,t,s):
r <T(p,r,s) <1 ,(O~s <r <1), (1.15)
(1.16)
T(p,r,sl»T(p,r,s2),(0~SI <S2 <r<I), T(p,lj,s) <T(p,r2,s), (O~s<lj <r2 <1), (1.17)
(1.18)
T(p,r,s) <T(1,r,s) ,(0 ~ s < r < l,p ~ 2),
s < R(p,t,s) <t ,(O~s <t<I), R(p,t\,s)<R(p,t2,S),(0~S<tl <t2 <1),
(1.19) (1.20)
R(P,t,SI)<R(p,t,S2),(0~SI <S2 <t<I), (1.21)
Trang 9R(p, t, s) > R(1, t, s) , (0 ~ s < t < 1,P 22) , (1.22)
I
I
I
I
R(p,t,0)~4-Pt,khi t-)O,
R(p,t,s)~t,khi p-)oo.
(1.26)
(1.27)