Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 198 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
198
Dung lượng
2,29 MB
Nội dung
SURFACE CHEMISTRY OF ORGANIC CARBONYL COMPOUNDS AND THEIR DERIVATIVES ON Ni(111) LI TINGCHENG NATIONAL UNIVERSITY OF SINGAPORE 2003 SURFACE CHEMISTRY OF ORGANIC CARBONYL COMPOUNDS AND THEIR DERIVATIVES ON Ni(111) LI TINGCHENG (B.Sc. WUHAN UNIVERSITY) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMISTRY NATIONAL UNIVERSITY OF SINGAPORE 2003 Acknowledgement Doing research is a tough, time-consuming task, especially to a novice researcher in a highly difficult field. Many people helped to turn my efforts into a success and make this thesis come true. I would like to take this opportunity to give my sincere appreciation to these individuals for their assistance. First and foremost, I am most indebted to my supervisor, Asst. Prof. Sim Wee Sun, who has guided and advised me in this thesis through numerous insightful and motivating discussion, and has spent enormous amount of time on proof-reading my drafts. I have learned many valuable skills from him, both research related and otherwise. I would also like to thank my colleague, Mr. Yeo Boon Siang, for his many valuable discussion and suggestions. My thanks are also due to my fellow students, Mr. Yang Peng Xiang, Mr. Chen Zhihua, Ms. Ye Suming, Mr. Liu Feng and Mr. Wu Huanan, with whom I have had the opportunity to work. I also wish to acknowledge two talented and diligent honours students, Miss Ng Ru Hui and Mr. Tai Chin Urn, I’ve worked with. The National University of Singapore is gratefully acknowledged for awarding me a research scholarship. Lastly, my grateful thanks go to my dear parents, brother and sisters, for their care and concern all these years. I Table of Contents Pg No Acknowledgement I Table of Contents II Summary List of Figures and Schematics List of Tables List of Publications and Presentations VII IX XIII XV Chapter 1. Introduction 1.1 Surface Chemistry and Heterogeneous Catalysis 1.2 Surface Chemistry and Chemical Vapor Deposition 1.3 Surface Chemistry and Chemical Vapor Etching 1.4 Surface Chemistry Studies on Ni(111) 1.5 Surface Chemistry of Oxygenates and the Effects of Surface Atomic Oxygen 1.6 Objectives of the Present Work References 11 Chapter 2. Experimental 15 2.1 Principles of Surface Analysis Techniques 15 2.1.1 Ultrahigh Vacuum (UHV) and Its Necessity 15 2.1.2 Auger Electron Spectroscopy (AES) 16 2.1.3 Low Energy Electron Diffraction (LEED) 17 2.1.4 Reflection Absorption Infrared Spectroscopy (RAIRS) 19 II 2.1.4.1 Physical Principles 19 2.1.4.2 Experimental Considerations 22 2.1.4.3 Spectral Interpretation 25 2.2 Experimental Procedures 29 References 39 Chapter Adsorption and Reactions of Acetaldehyde on Preoxidized Ni(111) 41 3.1 Introduction 41 3.2 Results 43 3.2.1 Adsorption of Acetaldehyde on Ni(111)-p(2×2)-O at 120K 43 3.2.2 Adsorption of Acetaldehyde on Ni(111)-p(2×2)-O between 180-350K 44 3.3 Discussion 47 3.3.1 Effects of Surface Atomic O on the Adsorption of Acetaldehyde on Ni(111) 47 3.3.2 Polymerisation and Oxidation of Acetaldehyde on Ni(111) 49 3.4 Conclusions 51 References 61 Chapter Adsorption and Reactions of Acetone on Preoxidized Ni(111) 64 4.1 Introduction 64 4.2 Results 66 4.2.1 Adsorption of Acetone on Preoxidized Ni(111) at 120K 66 4.2.2 Adsorption of Acetone on Ni(111)-p(2×2)-O between 180-340K 66 4.2.3 Adsorption of Acetone on Ni(111)-0.1ML-O between 180-340K 68 III 4.3 Discussion 68 4.3.1 Effect of O Preadsorption on η1(O)-Acetone Adsorption 68 4.3.2 Production of Propane-2,2-diyldioxy 71 4.3.3 Identification of Acetone Enolate 73 4.4 Conclusions 75 References 86 Chapter Adsorption and Reactions of Acetylacetone on Clean and Preoxidized Ni(111) 88 5.1 Introduction 88 5.2 Results 89 5.2.1 Adsorption of AcacH on Clean Ni(111) 89 5.2.2 Adsorption of AcacH on Ni(111)-p(2×2)-O 91 5.2.3 Adsorption of AcacH on Ni(111)-0.1ML-O 92 5.3 Discussion 93 5.3.1 Coordination Modes of Adsorbed AcacH on Ni(111) 93 5.3.2 Decomposition Mechanism of Adsorbed AcacH on Ni(111) 94 5.4 Conclusions 96 References 109 Chapter Adsorption and Reactions of Hexafluoroacetylacetone and Trifluoroacetylacetone on Clean and Preoxidized Ni(111) 112 6.1 Introduction 112 6.2 Results 114 6.2.1 Adsorption of HfacH on Ni(111) 114 6.2.1.1 Adsorption of HfacH on Clean Ni(111) 114 IV 6.2.1.2 Adsorption of HfacH on Ni(111)-p(2×2)-O 115 6.2.1.3 Adsorption of HfacH on Ni(111)-0.1ML-O 116 6.2.2 Adsorption of TfacH on Ni(111) 117 6.2.2.1 Adsorption of TfacH on Clean Ni(111) 117 6.2.2.2 Adsorption of TfacH on Ni(111)-p(2×2)-O 118 6.2.2.3 Adsorption of TfacH on Ni(111)-0.1ML-O 119 6.3 Discussion 120 6.3.1 Identification of Reaction Intermediates from HfacH and TfacH Decomposition on Ni(111) 120 6.3.2 Surface Reaction Mechanisms of HfacH and TfacH on Ni(111) 123 6.3.3 Comparison of the Surface Reactivity of AcacH, HfacH and TfacH 124 6.4 Conclusions 126 References 143 Chapter Adsorption and Reactions of 2,2-Dimethoxypropane and 1,1-Dimethoxyethane on Clean and Preoxidized Ni(111) 145 7.1 Introduction 145 7.2 Results 147 7.2.1 Adsorption of DMP on Ni(111) 147 7.2.1.1 Adsorption of DMP on Clean Ni(111) 147 7.2.1.2 Adsorption of DMP on Ni(111)-p(2×2)-O 149 7.2.1.3 Adsorption of DMP on Ni(111)-0.1ML-O 151 7.2.2 Adsorption of DME on Ni(111) 152 7.2.2.1 Adsorption of DME on Clean Ni(111) 152 7.2.2.2 Adsorption of DME on Ni(111)-p(2×2)-O 153 7.2.2.3 Adsorption of DME on Ni(111)-0.1ML-O 155 V 7.3 Discussion 155 7.3.1 Bonding Configurations of Chemisorbed DMP and DME on Ni(111) 155 7.3.2 Adsorbed Methoxy Species on Ni(111) 156 7.3.3 Identification of Adsorbed Methoxycarbyne on Ni(111) 157 7.3.4 Decomposition Mechanisms of DMP and DME on Ni(111) 160 7.4 Conclusions 161 References 178 VI Summary The adsorption and reactions of acetaldehyde, acetone, 2,2-dimethoxypropane (DMP), 1,1-dimethoxyethane (DME), acetylacetone (acacH), hexafluoroacetylacetone (hfacH) and trifluoroacetylacetone (tfacH) on clean and O-precovered Ni(111) have been investigated by Reflection Absorption Infrared Spectroscopy (RAIRS). On O-precovered Ni(111), acetaldehyde adsorbs in the η1(O)-configuration at 120K while the η2(C,O)-state which is present on clean Ni(111) is completely suppressed. Surface O also initiates polymerisation of acetaldehyde at 180K. On heating, polyacetaldehyde breaks down into free acetaldehyde and surface-bound ethane-1,1-dioxy, which dehydrogenates by 300K to yield a bidentate acetate species. On Ni(111)-p(2×2)-O, monolayer acetone adsorbs on the surface exclusively in the η1(O)-configuration and possesses a Cs symmetry at temperatures below 260K. On Ni(111)-0.10ML-O, η1(O)-acetone is also formed at temperatures below 260K, while an η1(O,O)-propane-2,2-diyldioxy species is formed at 180K and coexists with the η1(O)-acetone species. Higher exposures of acetone at 120K on both preoxidized surfaces result in the formation of acetone multilayer, which shows some orientational preference in the packing structure. At 340K acetone enolate and acetate are produced. AcacH adsorbs molecularly on the clean Ni(111) surface at 120K. Decomposition on this surface begins to occur at below 240K through β-scission of C-CH bond and produces surface bound acetone enolate. It further decomposes at higher temperatures (310K) and produces surface-bound CO. On O-precovered Ni(111), acacH deprotonates at 120K and the monolayer acac ligand adsorbs with its molecular plane perpendicular to the surface. This species is stable on Ni(111)-p(2×2)-O up to 280K but decomposes at 260K on Ni(111)-0.1ML-O. Similar decomposition products (acetone enolate and CO) as on the clean surface are produced upon further increasing VII the temperature of the substrate, with the additional production of surface-bound acetate that is stable up to 380K. HfacH deprotonates and binds to clean Ni(111) with its OCCCO plane parallel to the surface at 120K, while on O precovered Ni(111), the deprotonated hfac binds essentially in a standing-up configuration. TfacH adsorbs molecularly on clean Ni(111) but deprotonates on O-precovered Ni(111) at this temperature. The tfac species, however, adsorbs in both the “standing-up” and “lying-down” configuration. Physisorbed multilayers of hfacH and tfacH can be formed at this temperature in all cases and desorb between 170-180K. Decomposition of hfacH and tfacH on clean Ni(111) begins at 240K, and significant dissociation occurs at 300 and 280K, respectively. On Ni(111)-p(2×2)-O, they remain intact up to 340K and 310K respectively. The final decomposition product left on both clean and O precovered Ni(111) is CF2 species which desorbs or decomposes finally at above 600K. Adsorption of DMP and DME on both clean and O-precovered Ni(111) at 120K is mainly associative. On O-precovered Ni(111), DMP decomposes between 200-240K to yield methoxy, η1(O)-acetone and a hemiketal fragment. At higher temperatures, η1(O)-acetone desorbs, surface methoxy decomposes to CO while the hemiketal fragment decomposes to a methoxycarbyne species. DME decomposes between 200240K to yield methoxy, η1(O)-acetaldehyde and a hemiacetal fragment. Above 240K, η1(O)-acetaldehyde is oxidized to acetate while the surface-bound methoxy and hemiacetal fragments decompose to CO and methoxycarbyne respectively. Similar reaction products are observed on clean Ni(111), except that η1(O)-acetone and η1(O)acetaldehyde are not formed. VIII 957 1078 1228 1391 (a) DMP-Ni(111)-0.1ML-O/120K/0.0025L 870 1005 1241 1462 1376 1357 1678 2821 2927 (b) DMP-Ni(111)-0.1ML-O/240K/0.20L 1242 2928 2823 1457 1373 (c) DMP-Ni(111)-0.1ML-O/300K/0.20L 1006 ∆R R 80 884 1265 2018 1449 1422 (d) DMP-Ni(111)-0.1ML-O/350K/0.20L 1832 0.05% 3000 2500 2000 1500 1000 Wavenumbers (cm-1) Figure 7.4 RAIR spectra of Ni(111)-0.1ML-O exposed to DMP as a function of adsorption temperature. 166 1218 867 1137 1119 1077 1448 1387 1353 2815 3002 (a) DME-Ni(111)/0.005L 812 992 1253 871 1093 1050 ∆R R 1215 1196 1462 1394 2992 2958 2910 2832 1741 (b) DME-Ni(111)/0.08L 1145 0.1% 3000 2500 2000 1500 1000 Wavenumbers (cm-1) Figure 7.5 RAIR spectra of DME adsorbed on Ni(111) at 120K as a function of exposure. 167 867 1137 1119 1077 1218 3002 2815 1448 1387 1353 (a) DME-Ni(111)/120K/0.005L 1134 1120 1079 1019 1452 1384 1353 1218 869 2818 2995 2979 2915 (b) DME-Ni(111)/200K/0.20L 869 1218 1185 1119 1081 1008 1360 1456 1767 1083 1006 1251 1188 1344 1454 1787 2822 (d) DME-Ni(111)/300K/0.20L 2924 1266 1822 1448 906 (e) DME-Ni(111)/350K/0.20L 3000 2500 2000 1447 1260 0.1% 905 (f) DME-Ni(111)/380K/0.20L 1823 ∆R R 2820 2998 2925 (c) DME-Ni(111)/240K/0.20L 1500 1000 Wavenumbers (cm-1) Figure 7.6 RAIR spectra of Ni(111) exposed to DME as a function of adsorption temperature. 168 867 1222 1140 1073 3007 1451 1391 (a) DME-Ni(111)-p(2×2)-O/120K/0.005L 869 1122 1076 1015 1454 1392 1365 1296 1221 1672 3000 2923 (b) DME-Ni(111)-p(2×2)-O/200K/0.20L 868 1009 1125 1452 1431 1394 1366 1301 1221 1670 2822 2928 (c) DME-Ni(111)-p(2×2)-O/240K/0.20L 998 2826 2931 ∆R R 1431 1394 (d) DME-Ni(111)-p(2×2)-O/300K/0.20L 1278 1454 1428 897 1806 (e) DME-Ni(111)-p(2×2)-O/350K/0.20L 1269 (f) DME-Ni(111)-p(2×2)-O/380K/0.20L 3000 1428 0.1% 2500 2000 1500 1000 Wavenumbers (cm-1) Figure 7.7 RAIR spectra of Ni(111)-p(2×2)-O exposed to DME as a function of adsorption temperature. 169 867 1120 1076 1024 1220 1452 1390 2998 2937 1672 (a) DME-Ni(111)-0.1ML-O/120K/0.0025L 869 1121 1078 1020 1220 1291 1451 1387 1679 2815 2994 2919 (b) DME-Ni(111)-0.1ML-O/200K/0.20L 869 1453 1429 1363 1303 1220 1196 1120 1084 1012 1674 2819 2925 (c) DME-Ni(111)-0.1ML-O/240K/0.20L 1002 901 1199 1262 1453 1430 1793 2929 ∆R R 2823 (d) DME-Ni(111)-0.1ML-O/300K/0.20L 897 1276 1453 1429 1824 (e) DME-Ni(111)-0.1ML-O/350K/0.20L 898 1271 0.1% 1453 1429 1811 (f) DME-Ni(111)-0.1ML-O/380K/0.20L 3000 2500 2000 1500 1000 Wavenumbers (cm-1) Figure 7.8 RAIR spectra of Ni(111)-0.1ML-O exposed to DME as a function of adsorption temperature. 170 120K CH3 H3C Multilayer H3 C CH3 O O CH3 H3C Monolayer H3C CH3 O 240K CH3 O H3C H3C O CH3 O CH3 350K O O C C Figure 7.9 Reaction scheme of DMP on clean Ni(111). 171 120K CH3 H3C Multilayer H3 C CH3 O O CH3 H3C Monolayer H3C CH3 O O H3C 240K CH3 CH3 H3C H3C O O O CH3 CH3 300K CH3 O O C CH3 350 K O C O C Figure 7.10 Reaction scheme of DMP on Ni(111)-p(2×2)-O. 172 120K H3C Multilayer H H3 C CH3 O H3C Monolayer O H H3C CH3 O 240K O CH3 H O H3C CH3 O CH3 350 K O O C C Figure 7.11 Reaction scheme of DME on clean Ni(111). 173 120K H H3C Multilayer H3 C CH3 O O H H3C Monolayer H3C CH3 O O H3C 240K CH3 H H O H3C 300K CH3 CH3 O CH3 O O O C CH3 CH3 350-380K CH3 O O O O O C Figure 7.12 Reaction scheme of DME on Ni(111)-p(2×2)-O. 174 Table 7.1 Vibrational Frequencies and Mode Assignments for DMP Solid-phase Multilayer DFT calculations (cm-1)a Ni(111) (cm-1)b (cm-1)b Clean Ni(111) (cm-1)b Ni(111)p(2×2)-O (cm-1)b νa(CH3), 2δa(CH3) 2993 2982 2956 2942 2992 2960 3007-3035 3001 3002 νs(CH3), 2δs(CH3) 2907 2873 2832 2829 2858-2941 δa(CH3) 1468 1434 1468 1429 1390-1441 1475 1460 δs(CH3) 1382 1373 1381 1375 1331 1314 1387 1370 1386 1376 1391 1287 1264 1215 1192 1174 1144 828 1264 1221 1179 1146 1080 831 1193 1178 1163 1137 1128 1121 1117 1099 917 1264 1226 1179 1146 1076 816 1227 1080 819 1228 1078 857 ν(O-CH3) 1052 1044 1056 1038 954 943 957 ρ(CH3) 993 932 992 940 856 Assignment ν(COCOC) skeletal modes a Monolayer Ni(111)0.1ML-O (cm-1)b 2846 from reference 19, b this work. 175 Table 7.2 Vibrational Frequencies and Mode Assignments for Adsorbed Methoxy Methoxy Species on Metal Surfaces Assignment Ni(111) -1 a Ni(111) Ni(110) -1 b Ag(111) Cu(111) (cm ) (cm ) (cm ) (cm ) (cm-1)f 2δa(CH3) 2931 2921 2920 2908 2907 2918 2916 2δs(CH3) 2878 2878 2877 2874 2882 2868 νs(CH3) 2825 2817 2822 2801 2792 2818 2811 ν(CO) 1000 1027 1026 1048 1036 1024 this work, b from reference 20, reference 23, f from reference 24. c -1 d from reference 21, -1 e Mo(110) (cm ) a -1 c d from reference 22, e from Table 7.3 Vibrational Frequencies and Mode Assignments for Methoxycarbyne and Related Species Methoxycarbyne Ni(111)-p(2×2)-O (cm-1)a Methyl Pyruvate Methyl Acetate (cm-1)b (cm-1)b δa(CH3) 1452 1448 1462 νa(COC) 1270 1299 1249 νs(COC) 897 931 847 Assignment a [Fe5(CO)13 (COCH3)C] (cm-1)c 1291 this work, b from reference 34, c from reference 64. 176 Table 7.4 Vibrational Frequencies and Mode Assignments for DME Matrix isolated Multilayer DFT calculations (cm-1)a Ni(111) (cm-1)b (cm-1)b Clean Ni(111) (cm-1)b Ni(111)0.1ML-O (cm-1)b Ni(111)p(2×2)-O (cm-1)b νa(CH3), 2δa(CH3) 3011 2998 2966 2946 2940 2912 2992 2958 2910 2914-3030 3002 2998 2937 3007 νs(CH3), 2δs(CH3) 2836 2832 2775-2860 2815 1462 1395-1433 1448 1452 1451 δs(CH3) 1390 1370 1351 1394 1309-1328 1387 1353 1390 1391 νs(OCO) 1214 1215 1189 1218 1220 1222 ν(COCOC) skeletal modes 1195 1160 1131 1092 878 871 812 1299 1126 1117 1104 1086 1079 859 1119 1077 867 1076 867 1073 867 νas(OCO) 1144 1145 1143 1137 1120 1140 ν(O-CH3) 1056 1050 1033 1050 1024 ρ(CH3) 996 992 1016 Assignment δa(CH3) a from reference 36, b 1253 1196 1093 871 Monolayer this work. 177 References: 1. Morrison, R. T.; Boyd, R. N.; Organic Chemistry, 6th ed.; Prentice-Hall Inc.: New Jersey, 1992. 2. Greene, T. W. Protective Groups in Organic Synthesis; Wiley: New York, 1981. 3. Goissis, G.; Yoshioka, S. A.; Braile, D. M.; Ramirez, V. D. A. Artificial Organs 1998, 22, 210. 4. Groth, T.; Meldal, M. J. Combinatorial Chem. 2001, 3, 34. 5. Arai, E.; Tokuyama, H.; Linsell, M. S.; Fukuyama, T. Tetrahedron Lett. 1998, 39, 71. 6. Cherkauskas, J. P.; Cohen, T. J. Org. Chem. 1992, 57, 6. 7. Cherkauskas, J. P. Ph.D. Thesis; University of Pittsburgh, 1993. 8. Critchfield, F. E.; Bishop, E. T. Anal. Chem. 1961, 33, 1034. 9. Erley, D. S. Anal. Chem. 1957, 29, 1564. 10. Bistricki, T.; Silverberg, B. A. Proc. Microscopic. Soc. Can. 1976, 3, 182. 11. Ishikawa, H.; Mukaiyama, T.; Ikeda, S. B. Chem. Soc. Jpn. 1981, 54, 776. 12. Ghribi, A.; Alexakis, A.; Normant, J. F. Tetrahedron Lett. 1984, 25, 3079. 13. Ghribi, A.; Alexakis, A.; Normant, J. F. Tetrahedron Lett. 1984, 25, 3083. 14. McNamara, J. M.; Kishi, Y. J. Am. Chem. Soc. 1982, 104, 7371. 15. Johnson, W. S.; Kelson, A. B.; Elliott, J. D. Tetrahedron Lett. 1988, 29, 3757. 16. Denmark, S. E.; Almstead, N. G. J. Am. Chem. Soc. 1991, 113, 8089. 17. Howard, W.; Brown, J. H., Jr. J. Org. Chem. 1961, 26, 1026. 18. Moreau, C.; Lecomte, J.; Mseddi, S.; Zmimita, N. J. Mol. Catal. A 1997, 125, 143. 19. Kumar, K.; Verma, A. L. J. Mol. Struct. 1974, 22, 173. 20. Zenobi, R.; Xu, J.; Yates, J. T. J.; Persson, B. N. J.; Volokitin, A. I. Chem. Phys. Lett. 1993, 208, 414. 21. Dastoor, H. E.; Gardner, P.; King, D. A. Chem. Phys. Lett. 1993, 209, 493. 22. Sim, W. S.; Gardner, P.; King, D. A. J. Phys. Chem. 1995, 99, 16002. 23. Chesters, M. A.; McCash, E. M. Spectrochimica Acta, A 1987, 43A, 1625. 24. Uvdal, P.; Weldon, M. K.; Friend, C. M. Phys. Rev.B 1994, 50, 12258. 178 25. Camplin, J. P.; McCash, E. M. Surf. Sci. 1996, 360, 229. 26. Mudalige, K.; Warren, S.; Trenary, M. J. Phys. Chem. B 2000, 104, 2448. 27. Queeney, K. T.; Friend, C. M. J. Chem. Phys. 1998, 109, 6067. 28. Xu, Z.; Surnev, L.; Uram, K. J.; John, T., Jr. Surf. Sci. 1993, 292, 235. 29. Yang P.X. M. Sc. Thesis; National University of Singapore: 2000. 30. Demuth, J. E.; Ibach, H. Chem. Phys. Lett. 1979, 60, 395. 31. Vannice, M. A.; Erley, W.; Ibach, H. Surf. Sci. 1991, 254, 1. 32. Anton, A. B.; Avery, N. R.; Toby, B. H.; Weinberg, W. H. J. Am. Chem. Soc. 1986, 108, 684. 33. Houtman, C.; Barteau, M. A. J. Phys. Chem. 1991, 95, 3755. 34. Castonguay, M.; Roy, J. R.; Rochefort, A.; McBreen, P. H. J. Am. Chem. Soc. 2000, 122, 518. 35. Zahidi, E.; Castonguay, M.; McBreen, P. J. Am. Chem. Soc. 1994, 116, 5847. 36. Venkatesan, V.; Sundararajan, K.; Viswanathan, K. S. J. Phys. Chem. A 2002, 106, 7707. 37. Lamont, C. L. A.; Stenzel, W.; Conrad, H.; Bradshaw, A. M. J. Electron Spectrosc. Relat. Phenom. 1993, 64-5, 287. 38. Wu, G.; Stacchiola, D.; Collins, M.; Tysoe, W. T. Surf. Rev. Lett. 2000, 7, 271. 39. Shekhar, R.; Barteau, M. A.; Plank, R. V.; Vohs, J. M. J. Phys. Chem. B 1997, 101, 7939. 40. Ryberg, R. J. Chem. Phys. 1985, 82, 567. 41. Chesters, M. A.; McCash, E. M. Spectrochimica Acta, A 1987, 43A, 1625. 42. Sexton, B. A. Surf. Sci. 1979, 88, 299. 43. Wachs, I. E.; Madix, R. J. J. Catal. 1978, 53, 208. 44. Huberty, J. S.; Madix, R. J. Surf. Sci. 1996, 360, 144. 45. Attard, G. A.; Chibane, K.; Ebert, H. D.; Parsons, R. Surf. Sci. 1989, 224, 311. 46. Hrbek, J.; DePaola, R. A.; Hoffmann, F. M. J. Chem. Phys. 1984, 81, 2818. 47. McBreen, P. H.; Erley, W.; Ibach, H. Surf. Sci. 1983, 133, L469. 48. Ko, E. I.; Madix, R. J. Surf. Sci. 1981, 112, 373. 179 49. Sim, W. S.; Gardner, P.; King, D. A. Surf. Rev. Lett. 1994, 1, 673. 50. Outka, D. A.; Madix, R. J. J. Am. Chem. Soc. 1987, 109, 1708. 51. Asmundsson, R.; Uvdal, P. J. Chem. Phys. 2000, 112, 366. 52. Andersson, M. P.; Uvdal, P.; MacKerell, A. D., Jr. J. Phys. Chem. B 2002, 106, 5200. 53. Schaff, O.; Hess, G.; Fritzsche, V.; Fernandez, V.; Schindler, K. M.; Theobald, A.; Hofmann, P.; Bradshaw, A. M.; Davis, R. Surf. Sci. 1995, 331, 201. 54. Yang, H.; Whitten, J. L.; Friend, C. M. Surf. Sci. 1994, 313 , 295. 55. Hofmann, P.; Schindler, K. M.; Bao, S.; Bradshaw, A. M.; Woodruff, D. P. Nature 1994, 368, 131. 56. Ammon, C.; Bayer, A.; Held, G.; Richter, B.; Schmidt, T.; Steinruck, H. P. Surf. Sci. 2002, 507, 845. 57. Barros, R. B.; Garcia, A. R.; Ilharco, L. M. Journal of Physical Chemistry B 2001, 105, 11186. 58. de Barros, R. B.; Garcia, A. R.; Ilharco, L. M. Surf. Sci. 2002, 502, 156. 59. Davis, J. L.; Barteau, M. A. Surf. Sci. 1987, 187, 387. 60. Russell, J. N., Jr.; Chorkendorff, I.; Yates, J. T., Jr. Surf. Sci. 1987, 183, 316. 61. Sexton, B. A. Surf. Sci. 1981, 102, 271. 62. Chesters, M. A.; McCash, E. M. Surf. Sci. 1987, 187, L639. 63. Zhu, X. Y.; White, J. M. Catal. Lett. 1988, 1, 247. 64. Kolis, J. W.; Basolo, F.; Shriver, D. F. J. Am. Chem. Soc. 1982, 104, 5626. 65. Fong, R. H.; Hersh, W. H. Organometallics 1985, 4, 1468. 66. Wang, B.; Hersh, W. H.; Rheingold, A. L. Organometallics 1993, 12 , 4714. 67. Luo, W. Ph.D. Thesis; City University of New York; 2000, p242. 68. Gavens, P. D.; Mays, M. J. J. Organometallic Chem. 1978, 162, 389. 69. Torkelson, J. R.; Oke, O.; Muritu, J.; McDonald, R.; Cowie, M. Organometallics 2000, 19, 854-864. 70. Friedman, A. E. and Ford, P. C. Photochem. Photophys. Coord. Compd., Proc. Int. Symp. 7th; 1987. 71. Alvarez, M. A.; Garcia, M. E.; Riera, V.; Ruiz, M. A.; Robert, F. Organometallics, 2002, 21, 1177. 180 72. Collins, C. A.; Salter, I. D.; Sik, V.; Williams, S. A.; Adatia, T. J. Chem. Chem. Soc., Dalton T. 1998, 1107. 73. Farrugia, L. J. Acta Crystallographica, C 1986, C42, 680. 74. Fong, R. H.; Hersh, W. H. J. Am. Chem. Soc. 1987, 109, 2843. 75. Fong, R. H.; Hersh, W. H. Organometallics 1988, 7, 794. 76. Davis, J. L.; Barteau, M. A. Surf. Sci. 1992, 268, 11. 77. Hoffmann R. Solids and Surfaces: A Chemist's View of Bonding in Extended Structures; VCH Publishers: 1988. 78 Sim, W. S.; King, D. A. J. Phys. Chem. 1996, 100, 14794. 79 Ayre, C. R.; Madix, R. J. J. Am. Chem. Soc. 1995, 117, 2301. 181 [...]... hfacH and two of its derivatives, trifluoroacetylacetone (tfacH) and acetylacetone (acacH) on Ni( 111) Identification of their adsorption, desorption and decomposition mechanism on the surface will provide insights on better controlling the etching process so as to avoid new contaminant incorporation 1.5 Surface Chemistry of Oxygenates and the Effects of Surface Atomic Oxygen The reactions of O-containing... metal bonding configurations, η1(O) or η2(C,O) In the η1(O) configuration, the carbonyl compound is datively bound to the surface through the O lone pair electrons The second configuration involves the interaction of the carbonyl π* orbital with backdonation from the metal, plus π or σ-electron donation from the carbonyl group.66,67 The specific bonding configuration of carbonyl compounds on transition... Figure 4.7 Bonding configuration of η1(O)-acetone on Ni( 111) and packing geometry of acetone in the condensed multilayer 83 Figure 5.1 RAIR spectra of acacH adsorbed on Ni( 111) at 120K as a function of exposure 98 Figure 5.2 RAIR spectra of Ni( 111) exposed to acacH as a function of adsorption temperature 99 Figure 5.3 RAIR spectra of acacH adsorbed on Ni( 111)-p(2×2)-O at 120K as a function of exposure... Figure 5.8 Reaction scheme of acacH on clean Ni( 111) 105 Figure 5.9 Reaction scheme of acacH on Ni( 111)-p(2×2)-O 106 Figure 5.10 Reaction scheme of acacH on Ni( 111)-0.1ML-O 107 Figure 6.1 RAIR spectra of hfacH adsorbed on Ni( 111) at 120K as a function of exposure 128 Figure 6.2 RAIR spectra of Ni( 111) exposed to hfacH as a function of adsorption temperature 129 Figure 6.3 RAIR spectra of Ni( 111)-p(2×2)-O... of the Present Work The objectives of the present work are to investigate the adsorption and reactions of several groups of carbonyl compounds and their derivatives, including aldehydes, ketones, carboxylic acids, β-diketones, ketals and acetals, on clean and O-modified Ni( 111) surfaces, using primarily RAIRS Although the surface chemistry of simple carbonyl compounds such as acetaldehyde and acetone... Presentations 1 Isolation and Identification of Surface- Bound Acetone Enolate on Ni( 111) Sim, Wee-Sun*; Li, Ting-Cheng; Yang, Peng-Xiang; Yeo, Boon-Siang J Am Chem Soc 2002, 124, 4970 2 Surface Chemistry of Acetylacetone on Clean and Oxygen-Modified Ni( 111) Li Ting-Cheng; Sim Wee-Sun.* Proceedings of Singapore International Chemical Conference – 2, 2001, 292 XV Chapter 1 Introduction Organic carbonyl compounds. .. adsorption temperature 134 Figure 6.8 RAIR spectra of Ni( 111)-0.1ML-O exposed to tfacH as a function of adsorption temperature 135 Figure 6.9 RAIR spectrum of standing-up hfac on Ni( 111)-p(2×2)-O and infrared spectrum of crystalline Ni( hfac)2 (not to scale) 136 Figure 6.10 Reaction scheme of hfacH on Ni( 111) 137 Figure 6.11 Reaction scheme of tfacH on Ni( 111) 138 Figure 7.1 RAIR spectra of DMP adsorbed on. .. adsorbed on Ni( 111) at 120K as a function of exposure 163 Figure 7.2 RAIR spectra of Ni( 111) exposed to DMP as a function of adsorption temperature 164 Figure 7.3 RAIR spectra of Ni( 111)-p(2×2)-O exposed to DMP as a function of adsorption temperature 165 XI Figure 7.4 RAIR spectra of Ni( 111)-0.1ML-O exposed to DMP as a function of adsorption temperature 166 Figure 7.5 RAIR spectra of DME adsorbed on Ni( 111)... function of exposure 167 Figure 7.6 RAIR spectra of Ni( 111) exposed to DME as a function of adsorption temperature 168 Figure 7.7 RAIR spectra of Ni( 111)-p(2×2)-O exposed to DME as a function of adsorption temperature 169 Figure 7.8 RAIR spectra of Ni( 111)-0.1ML-O exposed to DME as a function of adsorption temperature 170 Figure 7.9 Reaction scheme of DMP on clean Ni( 111) 171 Figure 7.10 Reaction scheme... function of adsorption temperature 130 Figure 6.4 RAIR spectra of Ni( 111)-0.1ML-O exposed to hfacH as a function of adsorption temperature 131 Figure 6.5 RAIR spectra of tfacH adsorbed on Ni( 111) at 120K as a function of exposure 132 Figure 6.6 RAIR spectra of Ni( 111) exposed to tfacH as a function of adsorption temperature 133 Figure 6.7 RAIR spectra of Ni( 111)-p(2×2)-O exposed to tfacH as a function of . Adsorption of DMP on Ni( 111) 147 7.2.1.1 Adsorption of DMP on Clean Ni( 111) 147 7.2.1.2 Adsorption of DMP on Ni( 111)-p(2×2)-O 149 7.2.1.3 Adsorption of DMP on Ni( 111)-0.1ML-O 151 7.2.2 Adsorption of. SURFACE CHEMISTRY OF ORGANIC CARBONYL COMPOUNDS AND THEIR DERIVATIVES ON Ni( 111) LI TINGCHENG NATIONAL UNIVERSITY OF SINGAPORE 2003 SURFACE CHEMISTRY OF ORGANIC. 114 6.2.1.1 Adsorption of HfacH on Clean Ni( 111) 114 IV 6.2.1.2 Adsorption of HfacH on Ni( 111)-p(2×2)-O 115 6.2.1.3 Adsorption of HfacH on Ni( 111)-0.1ML-O 116 6.2.2 Adsorption of TfacH on Ni( 111) 117 6.2.2.1