Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 162 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
162
Dung lượng
1,33 MB
Nội dung
ROLE OF ALLERGY AND MUCOSAL INFLAMMATION IN NASAL POLYPS AND CHRONIC SINUSITIS HAO JING NATIONAL UNIVERSITY OF SINGAPORE 2004 ROLE OF ALLERGY AND MUCOSAL INFLAMMATION IN NASAL POLYPS AND CHRONIC SINUSITIS HAO JING (Bachelor of Medicine, Tianjin Medical University) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF OTOLARYNGOLOGY NATIONAL UNIVERSITY OF SINGAPORE 2004 Acknowledgments I would like to thank my supervisor, Dr. Wang De-Yun, for his guidance throughout my years of study in the National University of Singapore. I am also very grateful to Dr. Pang Yoke-Teen, without his help in collecting samples from clinics, my study would have been impossible. I wish to thank A/Prof Luke Tan (Head) and Prof Yeoh Kian Hian (former head) of the department for giving me the opportunity to work in our department. I would also like to thank all colleagues and administrative staff in our department for their kind help and assistance in my study. I want to thank Dr. Chew Fook-Tim and the following individuals in his group: Dr Shang Huishen, Dr. Bi Xuezhi, Wang Xiaoshan, Ong Tan Ching, Gao Yunfeng and so many others. Thank you so much for helping me out in my experiments. It has been a pleasure to work and share happiness together with you all. I wish to thank Professor Ling Eng Ang from department of Anatomy for giving me the opportunity to practice immunohistochemistry in his lab. My gratitude also goes to Mr. Ow Cheok Kee from the department of Pathology for his help in the establishment of our immunohistochemistry procedures. i I would like to thank all of my friends and colleagues, especially Li Xiujin, Chen Zhiqiang, Zhang Pengchi, Ouyang Hongwei, Foong Kok Heng, Liang Xiaohui, Li Chunwei and all the others. Thank you for your friendship. I would like to thank Professor Alan Kerr for kindly reviewing my paper. I owe a big thanks to Madam Christina for her kind help in the revision of my thesis. Lastly, I want to thank the National Medical Research Council (NMRC) of Singapore for the research grant (NMRC 0396/1999) which funded the work described in this thesis. I dedicate this thesis to my family. Thanks for standing by me all the way. Hao Jing 2004, Singapore ii Table of Contents Summary vii List of Tables x List of Figures xvi List of Abbreviations xxi Illustration of Contents xxv Publications and Presentations at Conferences xxvi Chapter 1. Nasal polyps and chronic sinusitis: state of the art 1.1 Anatomy and physiology of the nose 1.2 Prevalence of nasal polyps and chronic sinusitis 1.2.1 Nasal polyps, a disease with a long history 1.2.2 Prevalence of nasal polyps 1.2.3 Prevalence of chronic sinusitis 1.3 Nasal polyps and chronic sinusitis: multi-factorial diseases 1.3.1 Diseases related with nasal polyps 1.3.2 Diseases related with chronic sinusitis 1.4 Diagnosis of nasal polyps and chronic sinusitis 1.4.1 Diagnosis of nasal polyps 1.4.2 Diagnosis of chronic sinusitis 1.5 Histopathology of nasal polyps and chronic sinusitis 1.5.1 Histology of nasal polyps 1.5.2 Histology of chronic sinusitis 1.6 Pathogenesis of nasal polyps and chronic sinusitis 1.6.1 Pathogenesis of nasal polyps and chronic sinusitis 1.6.2 Inflammatory cell and chemical mediators in nasal polyps and chronic sinusitis 1.7 Treatment of nasal polyps and chronic sinusitis 1.7.1 Treatment of nasal polyps 1.7.2 Treatment of chronic sinusitis Reference list 1 3 8 25 30 30 34 39 39 41 42 43 56 Chapter 2. Inflammatory cell patterns in nasal polyps and chronic sinusitis 2.1 Introduction 2.2 Aim of study 2.2.1 Hypothesis 2.2.2 Specific aims 135 94 95 98 100 135 136 136 137 iii 2.3 Methodology 2.3.1 Working definitions 2.3.2 Study patients 2.3.3 Immunohistochemical study 2.3.4 Allergy test 2.3.5 Statistical analysis 2.4 Histology, etiology and serum IgE 2.4.1 Quality control staining for CD4+ and CD8+ T cells 2.4.2 Histopathology changes 2.4.3 Etiology of nasal polyps 2.4.4 Etiology of chronic sinusitis 2.5 Inflammatory cell scores in nasal polyps and chronic sinusitis 2.5.1 Inflammatory cell scores in nasal polyps and its paired middle turbinate, and middle turbinate of allergic rhinitis patients and controls 2.5.2 Inflammatory cell scores in inflamed sinus mucosa and its paired middle turbinate, middle turbinate from allergic rhinitis patients and controls 2.5.3 Inflammatory cell scores in the six patients with nasal polyp tissue, inflamed sinus mucosa and middle turbinate from the same side 2.6 Exact cell count of CD4+ and CD8+ T cells 2.6.1 CD4+ and CD8+ T cell numbers in nasal polyps 2.6.2 CD4+ and CD8+ T cell numbers in chronic sinusitis 2.7 Key results 2.7.1 Atopy and tIgE 2.7.2 Inflammatory cell scores in paired samples 2.7.3 Cell scores of nasal polyps and chronic sinusitis compared with allergic rhinitis and controls 2.7.4 Inflammatory cell scores comparison between nasal polyp and chronic sinusitis patients 2.7.5 CD4+ and CD8+ T cell numbers in nasal polyps and chronic sinusitis 2.8 Discussion 2.8.1 The role of inflammatory cells in the pathogenesis of nasal polyps 2.8.2 The role of inflammatory cells in the pathogenesis of chronic sinusitis 2.8.3 Relationship between nasal polyps and chronic sinusitis 2.8.4 Does persistent allergic rhinitis predispose for nasal polyps and chronic sinusitis? 2.9 Conclusion Reference list 138 138 139 141 144 145 147 147 148 149 151 152 152 173 190 194 194 204 211 211 211 212 216 220 223 225 233 238 240 246 247 iv Chapter 3. Role of natural killer cell in the pathogenesis of nasal polyps and chronic sinusitis 3.1 Biology of natural killer cells 3.1.1 Lymphocytes in innate and adaptive immunity 3.1.2 The role of NK cells in innate and adaptive immunity 3.1.3 NK cells in nasal polyps and chronic sinusitis 3.2 Aim of study 3.3 Methodology 3.3.1 Study patients 3.3.2 Method 3.4 Results 3.4.1 Allergy test 3.4.2 Specificity control 3.4.3 Correlation of NK cell with tIgE and sIgE 3.4.4 NK cell and other inflammatory cells in the same sample 3.4.5 NK cells in patients with and without atopy 3.4.6 NK cells in different study groups 3.4.7 Percentage of NK cells in total lymphocytes in different study groups 3.5 Discussion Reference list Chapter 4. Evaluating the association of IgE-mediated allergy in the pathogenesis of nasal polyps and chronic sinusitis by an immunodot blot array system 4.1 Testing for IgE-mediated allergy, a review 4.1.1 Allergy and IgE 4.1.2 Diagnosis of allergy 4.2 Aim of study 4.3 Methodology 4.3.1 Study patients 4.3.2 Immunoarray system 4.3.3 Determination of sIgE to Trichophyton rubrum by the ImmunoCAP system 4.3.4 Determination of sIgE to Trichophyton rubrum by ELISA 4.3.5 Statistical analysis 4.4 Result 4.4.1 Optimization of supporting media 4.4.2 Evaluation of transfer efficiency 4.4.3 Optimization of washing buffer 4.4.4 Validation of the immunoarray system 4.4.5 Common allergens identified in the study groups 256 256 256 256 258 259 260 260 262 264 264 265 266 266 269 269 272 273 279 283 283 283 286 287 288 288 289 299 299 299 300 300 300 301 302 306 v 4.4.6 Quantified sIgE to Trichophyton rubrum in nasal polyp and chronic sinusitis patients via ImmunoCAP 4.4.7 Quantified sIgE to Trichophyton rubrum in nasal polyp and chronic sinusitis patients via ELISA 4.5 Discussion Reference list Chapter 5. The involvement of Trichophyton rubrum in the pathogenesis of nasal polyps and chronic sinusitis 5.1 Role of fungi in the pathogenesis of nasal polyps and chronic sinusitis 5.1.1 Incidence of allergic fungal sinusitis (AFS) in nasal polyps and chronic sinusitis 5.1.2 Mechanism of AFS, IgE-Mediated allergy? 5.1.3 Superantigen, a rising theory in the pathogenesis of nasal polyps and chronic sinusitis 5.2 Epidemiology and biology of Trichophyton rubrum 5.2.1 Epidemiology of Trichophyton rubrum 5.2.2 Trichophyton rubrum related diseases 5.2.3 Role of Trichophyton rubrum in related diseases 5.3 Aim of study 5.4 Methodology 5.4.1 IgE Western blot 5.4.2 Protein identification by Micromass Q-ToF Tandem Mass spectrometer (Q-TOF™-MS/MS) 5.4.3 N-terminal sequencing of purified proteins by high-performance liquid chromatography (HPLC) 5.5 Results 5.5.1 One-dimensional SDS gel electrophoresis 5.5.2 IgE western blot of the study groups 5.5.3 IgE western blot to Trichophyton rubrum from different companies 5.5.4 Q-TOF™-MS/MS, HPLC and N-terminal sequencing 5.5.5 Homology identified by BLAST 5.6 Discussion 5.6.1 Evaluation of ImmunoCAP and commercial ELISA kit by western blot 5.6.2 Role of T. rubrum in the pathogenesis of nasal polyps and chronic sinusitis Conclusion and further studies proposed Conclusion Further studies proposed Reference list 306 306 308 311 312 312 312 314 315 319 319 320 323 330 330 330 336 341 342 342 343 350 350 354 356 357 357 370 370 373 376 vi Summary Background: Nasal polyps and chronic sinusitis are closely related diseases commonly identified worldwide. Their etiology and pathogenesis are still incompletely understood. Objective: To investigate the association between allergy and type of cellular inflammation in Asian patients with chronic sinusitis and/or nasal polyps. Methods: Immunohistochemical staining with a panel of antibodies against CD4+ and CD8+ T cells, B cells, Langerhans cells, mast cells, eosinophils, neutrophils, and natural killer (NK) cells was performed to investigate the pattern of cell present in nasal polyp tissue/inflamed sinus mucosa and the paired middle turbinate from the same side, as well as in middle turbinate from allergic rhinitis and control patients. Serum specific IgE (sIgE) levels to common local allergens were tested using the ImmunoCAP system. A self-developed immunoarray dot blot system was used to evaluate the presence of sIgE against a total of 185 allergens in nasal polyp, chronic sinusitis, allergic rhinitis and nonallergic rhinitis patients. Western blot experiments on the most important antigen source identified using sera nasal polyps and chronic sinusitis patients, Trichophyton rubrum, was carried out. Proteins with the strongest antigenicity were characterized by Q-TOF™-MS/MS. The proteins were further purified by HPLC and sent for N-terminal sequencing. Sequence alignment to the NCBI Genebank was performed by using the BLAST algorithm. Results: Cell scores were strongly correlated between the paired samples from nasal polyp patients. Nasal polyp and inflamed sinus mucosa showed a mixed cell pattern with significantly higher CD8+ T cells, eosinophils and neutrophils, a relatively vii higher percentage of NK cell, and an inverse median ratio of CD4+ and CD8+ T cells, as compared to the middle turbinate from control patients. The dot blot system revealed that Trichophyton rubrum was the most important allergen in nasal polyp and chronic sinusitis patients. A 15 kD and 60 kD of Trichophyton rubrum IgE reaction was shown to have the strongest allergenicity by western blot. These proteins showed homology to a 35 kD heat shock protein (sti35) and 1, 3-β-glucanosyltransferase of Fusarium spp. Conclusion: The similarity between the immunohistochemical cell pattern observed in nasal polyps and the paired middle turbinate suggested a diffuse mucosal inflammation. This is the first study that showed a combined inflammatory cell pattern in nasal polyps/inflamed sinus mucosa and adjacent middle turbinate, especially in Asian patients. This could explain the high recurrence rate of nasal polyps/chronic sinusitis, suggesting anti-inflammatory treatment of the adjacent mucosal is necessary in combination with a surgical removal of polyps/inflamed sinus mucosa. In addition to the well-recognized eosinophilic and neutrophilic inflammation in Caucasian studies, our study show for the first time that predominant infiltration of lymphocytes, especially CD8+ T cells and NK cells, may play a key role in the pathogenesis of nasal polyps and chronic sinusitis. Our study using the immunoarray system and western blot suggested that commercial allergen extracts, particularly fungi, need a much larger degree of standardization. Proteins from Trichophyton rubrum, i.e. proteins homologous to sti35 and 1, 3-β-glucanosyltransferase of Fusarium spp., were for the first time shown to be highly viii 281. 282. 283. 284. 285. 286. 287. 288. 289. 290. 291. 292. 293. polyp tissue from atopic subjects prolongs eosinophil survival. Eur Respir J 1997; 10(7):1476-1482. Gerber BO, Zanni MP, Uguccioni M, Loetscher M, Mackay CR, Pichler WJ et al. Functional expression of the eotaxin receptor CCR3 in T lymphocytes co-localizing with eosinophils. Curr Biol 1997; 7(11):836-843. Bartels J, Maune S, Meyer JE, Kulke R, Schluter C, Rowert J et al. Increased eotaxin-mRNA expression in non-atopic and atopic nasal polyps: comparison to RANTES and MCP-3 expression. Rhinology 1997; 35(4):171-174. Shin SH, Park JY, Jeon CH, Choi JK, Lee SH. Quantitative analysis of eotaxin and RANTES messenger RNA in nasal polyps: association of tissue and nasal eosinophils. Laryngoscope 2000; 110(8):1353-1357. Teran LM, Park HS, Djukanovic R, Roberts K, Holgate S. Cultured nasal polyps from nonatopic and atopic patients release RANTES spontaneously and after stimulation with phytohemagglutinin. J Allergy Clin Immunol 1997; 100(4):499-504. Takeno S, Hirakawa K, Ueda T, Furukido K, Osada R, Yajin K. Nuclear factor-kappa B activation in the nasal polyp epithelium: relationship to local cytokine gene expression. Laryngoscope 2002; 112(1):53-58. Pinto S, Gallo O, Polli G, Boccuzzi S, Paniccia R, Brunelli T et al. Cyclooxygenase and lipoxygenase metabolite generation in nasal polyps. Prostaglandins Leukot Essent Fatty Acids 1997; 57(6):533-537. Klapan I, Culo F, Culig J, Bukovec Z, Simovic S, Viseslav C et al. Arachidonic acid metabolites and sinonasal polyposis. I. Possible prognostic value. Am J Otolaryngol 1995; 16(6):396-402. Jung TT, Juhn SK, Hwang D, Stewart R. Prostaglandins, leukotrienes, and other arachidonic acid metabolites in nasal polyps and nasal mucosa. Laryngoscope 1987; 97(2):184-189. Jang YJ, Rhee CK, Oh CH, Ryoo HG, Kim HG, Ha M. Arachidonic acid metabolites in antrochoanal polyp and nasal polyp associated with chronic paranasal sinusitis. Acta Otolaryngol 2000; 120(4):531-534. Parnes SM, Chuma AV. Acute effects of antileukotrienes on sinonasal polyposis and sinusitis. Ear Nose Throat J 2000; 79(1):18-5. Ragab S, Parikh A, Darby YC, Scadding GK. An open audit of montelukast, a leukotriene receptor antagonist, in nasal polyposis associated with asthma. Clin Exp Allergy 2001; 31(9):1385-1391. Repka-Ramirez S, Naranch K, Park YJ, Clauw D, Baraniuk JN. Cytokines in nasal lavage fluids from acute sinusitis, allergic rhinitis, and chronic fatigue syndrome subjects. Allergy Asthma Proc 2002; 23(3):185-190. Lennard CM, Mann EA, Sun LL, Chang AS, Bolger WE. Interleukin-1 beta, interleukin-5, interleukin-6, interleukin-8, and tumor necrosis 119 294. 295. 296. 297. 298. 299. 300. 301. 302. 303. 304. 305. factor-alpha in chronic sinusitis: response to systemic corticosteroids. Am J Rhinol 2000; 14(6):367-373. Sobol SE, Christodoulopoulos P, Manoukian JJ, Hauber HP, Frenkiel S, Desrosiers M et al. Cytokine profile of chronic sinusitis in patients with cystic fibrosis. Arch Otolaryngol Head Neck Surg 2002; 128(11):1295-1298. al Ghamdi K, Ghaffar O, Small P, Frenkiel S, Hamid Q. IL-4 and IL-13 expression in chronic sinusitis: relationship with cellular infiltrate and effect of topical corticosteroid treatment. J Otolaryngol 1997; 26(3):160-166. Wright ED, Frenkiel S, Al Ghamdi K, Ghaffar O, Small P, Troutt T et al. Interleukin-4, interleukin-5, and granulocyte-macrophage colony-stimulating factor receptor expression in chronic sinusitis and response to topical steroids. Otolaryngol Head Neck Surg 1998; 118(4):490-495. Bachert C, Van Cauwenberge PB. Inflammatory mechanisms in chronic sinusitis. Acta Otorhinolaryngol Belg 1997; 51(4):209-217. Minshall EM, Cameron L, Lavigne F, Leung DY, Hamilos D, Garcia-Zepada EA et al. Eotaxin mRNA and protein expression in chronic sinusitis and allergen-induced nasal responses in seasonal allergic rhinitis. Am J Respir Cell Mol Biol 1997; 17(6):683-690. Lee HM, Choi JH, Chae SW, Hwang SJ, Lee SH. Expression of epidermal growth factor receptor and its ligands in chronic sinusitis. Ann Otol Rhinol Laryngol 2003; 112(2):132-138. Kramer MF, Ostertag P, Pfrogner E, Rasp G. Nasal interleukin-5, immunoglobulin E, eosinophilic cationic protein, and soluble intercellular adhesion molecule-1 in chronic sinusitis, allergic rhinitis, and nasal polyposis. Laryngoscope 2000; 110(6):1056-1062. Kassim SK, Elbeigermy M, Nasr GF, Khalil R, Nassar M. The role of interleukin-12, and tissue antioxidants in chronic sinusitis. Clin Biochem 2002; 35(5):369-375. Mucha SM, Baroody FM. Sinusitis update. Curr Opin Allergy Clin Immunol 2003; 3(1):33-38. Tosca MA, Cosentino C, Pallestrini E, Caligo G, Milanese M, Ciprandi G. Improvement of clinical and immunopathologic parameters in asthmatic children treated for concomitant chronic rhinosinusitis. Ann Allergy Asthma Immunol 2003; 91(1):71-78. Tosca MA, Cosentino C, Pallestrini E, Riccio AM, Milanese M, Canonica GW et al. Medical treatment reverses cytokine pattern in allergic and nonallergic chronic rhinosinusitis in asthmatic children. Pediatr Allergy Immunol 2003; 14(3):238-241. Kotsimbos TC, al Ghamdi K, Small P, Frenkiel S, Hamid QA. Upregulation of Th-2 cytokine receptors in atopy- and nonatopy-associated chronic sinusitis. J Otolaryngol 1996; 25(5):317-321. 120 306. Ghaffar O, Lavigne F, Kamil A, Renzi P, Hamid Q. Interleukin-6 expression in chronic sinusitis: colocalization of gene transcripts to eosinophils, macrophages, T lymphocytes, and mast cells. Otolaryngol Head Neck Surg 1998; 118(4):504-511. 307. Hamilos DL, Leung DY, Wood R, Meyers A, Stephens JK, Barkans J et al. Chronic hyperplastic sinusitis: association of tissue eosinophilia with mRNA expression of granulocyte-macrophage colony-stimulating factor and interleukin-3. J Allergy Clin Immunol 1993; 92(1 Pt 1):39-48. 308. Stoop AE, van der Heijden HA, Biewenga J, van der BS. Eosinophils in nasal polyps and nasal mucosa: an immunohistochemical study. J Allergy Clin Immunol 1993; 91(2):616-622. 309. Schmid-Grendelmeier P, Altznauer F, Fischer B, Bizer C, Straumann A, Menz G et al. Eosinophils express functional IL-13 in eosinophilic inflammatory diseases. J Immunol 2002; 169(2):1021-1027. 310. Nonaka M, Nonaka R, Woolley K, Adelroth E, Miura K, Okhawara Y et al. Distinct immunohistochemical localization of IL-4 in human inflamed airway tissues. IL-4 is localized to eosinophils in vivo and is released by peripheral blood eosinophils. J Immunol 1995; 155(6):3234-3244. 311. Simon HU, Yousefi S, Schranz C, Schapowal A, Bachert C, Blaser K. Direct demonstration of delayed eosinophil apoptosis as a mechanism causing tissue eosinophilia. J Immunol 1997; 158(8):3902-3908. 312. Molinaro RJ, Bernstein JM, Koury ST. Localization and quantitation of eotaxin mRNA in human nasal polyps. Immunol Invest 2003; 32(3):143-154. 313. Coste A, Lefaucheur JP, Wang QP, Lesprit E, Poron F, Peynegre R et al. Expression of the transforming growth factor beta isoforms in inflammatory cells of nasal polyps. Arch Otolaryngol Head Neck Surg 1998; 124(12):1361-1366. 314. Ohno I, Nitta Y, Yamauchi K, Hoshi H, Honma M, Woolley K et al. Eosinophils as a potential source of platelet-derived growth factor B-chain (PDGF-B) in nasal polyposis and bronchial asthma. Am J Respir Cell Mol Biol 1995; 13(6):639-647. 315. Gauthier MC, Racine C, Ferland C, Flamand N, Chakir J, Tremblay GM et al. Expression of membrane type-4 matrix metalloproteinase (metalloproteinase-17) by human eosinophils. Int J Biochem Cell Biol 2003; 35(12):1667-1673. 316. Fujisawa T, Kephart GM, Gray BH, Gleich GJ. The neutrophil and chronic allergic inflammation. Immunochemical localization of neutrophil elastase. Am Rev Respir Dis 1990; 141(3):689-697. 317. Di Lorenzo G, Drago A, Esposito PM, Candore G, Colombo A, Gervasi F et al. Measurement of inflammatory mediators of mast cells and eosinophils in native nasal lavage fluid in nasal polyposis. Int Arch 121 Allergy Immunol 2001; 125(2):164-175. 318. Abu-Ghazaleh RI, Gleich GJ, Prendergast FG. Interaction of eosinophil granule major basic protein with synthetic lipid bilayers: a mechanism for toxicity. J Membr Biol 1992; 128(2):153-164. 319. Wassom DL, Gleich GJ. Damage to Trichinella spiralis newborn larvae by eosinophil major basic protein. Am J Trop Med Hyg 1979; 28(5):860-863. 320. Lehrer RI, Szklarek D, Barton A, Ganz T, Hamann KJ, Gleich GJ. Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein. J Immunol 1989; 142(12):4428-4434. 321. Rohrbach MS, Wheatley CL, Slifman NR, Gleich GJ. Activation of platelets by eosinophil granule proteins. J Exp Med 1990; 172(4):1271-1274. 322. O'Donnell MC, Ackerman SJ, Gleich GJ, Thomas LL. Activation of basophil and mast cell histamine release by eosinophil granule major basic protein. J Exp Med 1983; 157(6):1981-1991. 323. MacGlashan DW, Jr., Gleich GJ, Thomas LL. Increases in cytosolic Ca2+ accompany basophil activation by eosinophil granule major basic protein. Immunol Lett 1997; 58(1):37-42. 324. Shenoy NG, Gleich GJ, Thomas LL. Eosinophil major basic protein stimulates neutrophil superoxide production by a class IA phosphoinositide 3-kinase and protein kinase C-zeta-dependent pathway. J Immunol 2003; 171(7):3734-3741. 325. Kong H, Dong Z, Guo Y, Yang Z, Bu G. Intercellular adhesion molecule-1 and accumulation of eosinophils in nasal polyp tissue. Chin Med J (Engl ) 1999; 112(4):366-368. 326. Symon FA, Walsh GM, Watson SR, Wardlaw AJ. Eosinophil adhesion to nasal polyp endothelium is P-selectin-dependent. J Exp Med 1994; 180(1):371-376. 327. Jahnsen FL, Brandtzaeg P, Haye R, Haraldsen G. Expression of functional VCAM-1 by cultured nasal polyp-derived microvascular endothelium. Am J Pathol 1997; 150(6):2113-2123. 328. Imaizumi T, Kumagai M, Sasaki N, Kurotaki H, Mori F, Seki M et al. Interferon-gamma stimulates the expression of galectin-9 in cultured human endothelial cells. J Leukoc Biol 2002; 72(3):486-491. 329. Ohtoshi T, Tsuda T, Vancheri C, Abrams JS, Gauldie J, Dolovich J et al. Human upper airway epithelial cell-derived granulocyte-macrophage colony-stimulating factor induces histamine-containing cell differentiation of human progenitor cells. Int Arch Allergy Appl Immunol 1991; 95(4):376-384. 330. Marcella R, Croce A, Moretti A, Barbacane RC, Di Giocchino M, Conti P. Transcription and translation of the chemokines RANTES and MCP-1 in nasal polyps and mucosa in allergic and non-allergic rhinopathies. Immunol Lett 2003; 90(2-3):71-75. 331. Allen JS, Eisma R, Leonard G, Kreutzer D. Interleukin-3 interleukin-5, and 122 332. 333. 334. 335. 336. 337. 338. 339. 340. 341. 342. 343. 344. granulocyte-macrophage colony-stimulating factor expression in nasal polyps. Am J Otolaryngol 1997; 18(4):239-246. Shin SH, Lee SH, Jeong HS, Kita H. The effect of nasal polyp epithelial cells on eosinophil activation. Laryngoscope 2003; 113(8):1374-1377. Suh KS, Park HS, Nahm DH, Kim YK, Lee YM, Park K. Role of IgG, IgA, and IgE antibodies in nasal polyp tissue: their relationships with eosinophilic infiltration and degranulation. J Korean Med Sci 2002; 17(3):375-380. Li M, Dong Z, Yang Z, Bai Y. Protein kinase C in proliferation and infiltration of eosinophils in nasal polyp. Chin Med J (Engl ) 2003; 116(10):1553-1556. Dibbert B, Daigle I, Braun D, Schranz C, Weber M, Blaser K et al. Role for Bcl-xL in delayed eosinophil apoptosis mediated by granulocyte-macrophage colony-stimulating factor and interleukin-5. Blood 1998; 92(3):778-783. McNulty CA, Symon FA, Wardlaw AJ. Characterization of the integrin and activation steps mediating human eosinophil and neutrophil adhesion to chronically inflamed airway endothelium. Am J Respir Cell Mol Biol 1999; 20(6):1251-1259. Klein AM, Anderson K, Lafreniere D, Leonard G, Kreutzer D. Growth-related oncogene-alpha expression in human nasal polyps. Otolaryngol Head Neck Surg 2000; 123(1 Pt 1):85-90. Smith DM, Gerrard JM, White JG. Comparison of arachidonic acid metabolism in nasal polyps and eosinophils. Int Arch Allergy Appl Immunol 1987; 82(1):83-88. Furukawa M, Ogura M, Tsutsumi T, Tsuji H, Yamashita T. Presence of platelet-activating factor in nasal polyps and eosinophils. Acta Otolaryngol 2002; 122(8):872-876. Morinaka S, Nakamura H. Inflammatory cells in nasal mucosa and nasal polyps. Auris Nasus Larynx 2000; 27(1):59-64. Lesprit E, Escudier E, Roger G, Pruliere V, Lenoir G, Reinert P et al. Characterization of inflammatory reaction in upper airways of cystic fibrosis patients. Histol Histopathol 2000; 15(2):395-402. Fokkens WJ, Holm AF, Rijntjes E, Mulder PG, Vroom TM. Characterization and quantification of cellular infiltrates in nasal mucosa of patients with grass pollen allergy, non-allergic patients with nasal polyps and controls. Int Arch Allergy Appl Immunol 1990; 93(1):66-72. Liu CM, Shun CT, Hsu MM. Lymphocyte subsets and antigen-specific IgE antibody in nasal polyps. Ann Allergy 1994; 72(1):19-24. Stoop AE, Hameleers DM, Run PE, Biewenga J, van der BS. Lymphocytes and nonlymphoid cells in the nasal mucosa of patients with nasal polyps and of healthy subjects. J Allergy Clin Immunol 1989; 84(5 Pt 1):734-741. 123 345. Stoop AE, van der Heijden HA, Biewenga J, van der BS. Lymphocytes and nonlymphoid cells in human nasal polyps. J Allergy Clin Immunol 1991; 87(2):470-475. 346. Larocca LM, Maggiano N, Capelli A, Bevilacqua P, Ruscito P, Maurizi M et al. Immunopathology of nasal polyps: an immunohistochemical approach. Ann Allergy 1989; 63(6 Pt 1):508-512. 347. Berger G, Kattan A, Bernheim J, Ophir D. Polypoid mucosa with eosinophilia and glandular hyperplasia in chronic sinusitis: a histopathological and immunohistochemical study. Laryngoscope 2002; 112(4):738-745. 348. Stoop AE, van der Heijden HA, Biewenga J, van der BS. Clinical aspects and distribution of immunologically active cells in the nasal mucosa of patients with nasal polyps after endoscopic sinus surgery and treatment with topical corticosteroids. Eur Arch Otorhinolaryngol 1992; 249(6):313-317. 349. Hamilos DL, Thawley SE, Kramper MA, Kamil A, Hamid QA. Effect of intranasal fluticasone on cellular infiltration, endothelial adhesion molecule expression, and proinflammatory cytokine mRNA in nasal polyp disease. J Allergy Clin Immunol 1999; 103(1 Pt 1):79-87. 350. Mastruzzo C, Greco LR, Nakano K, Nakano A, Palermo F, Pistorio MP et al. Impact of intranasal budesonide on immune inflammatory responses and epithelial remodeling in chronic upper airway inflammation. J Allergy Clin Immunol 2003; 112(1):37-44. 351. Symon FA, McNulty CA, Wardlaw AJ. P- and L-selectin mediate binding of T cells to chronically inflamed human airway endothelium. Eur J Immunol 1999; 29(4):1324-1333. 352. Denburg JA, Dolovich J, Harnish D. Basophil mast cell and eosinophil growth and differentiation factors in human allergic disease. Clin Exp Allergy 1989; 19(3):249-254. 353. Hamilos DL, Leung DY, Muro S, Kahn AM, Hamilos SS, Thawley SE et al. GRbeta expression in nasal polyp inflammatory cells and its relationship to the anti-inflammatory effects of intranasal fluticasone. J Allergy Clin Immunol 2001; 108(1):59-68. 354. Heinisch IV, Bizer C, Volgger W, Simon HU. Functional CD137 receptors are expressed by eosinophils from patients with IgE-mediated allergic responses but not by eosinophils from patients with non-IgE-mediated eosinophilic disorders. J Allergy Clin Immunol 2001; 108(1):21-28. 355. Miller CH, Pudiak DR, Hatem F, Looney RJ. Accumulation of interferon gamma-producing TH1 helper T cells in nasal polyps. Otolaryngol Head Neck Surg 1994; 111(1):51-58. 356. Bachert C, van Zele T, Gevaert P, De Schrijver L, Van Cauwenberge P. Superantigens and nasal polyps. Curr Allergy Asthma Rep 2003; 3(6):523-531. 124 357. Wang D, Levasseur-Acker GM, Jankowski R, Kanny G, Moneret-Vautrin DA, Charron D et al. HLA class II antigens and T lymphocytes in human nasal epithelial cells. Modulation of the HLA class II gene transcripts by gamma interferon. Clin Exp Allergy 1997; 27(3):306-314. 358. Ryan J.J., Huff T.F. Biology of mast cell. In: Adkinson NF, Yunginger JW, Busse WW, Bochner BS, Holgate ST, Simons FR, editors. Middleton's allergy principles & practice. St. Louis : Mosby., 2003: 333-346. 359. Malaviya R, Ikeda T, Ross E, Abraham SN. Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-alpha. Nature 1996; 381(6577):77-80. 360. Drake-Lee AB, Price JM, Milford CM, Bickerton RC. Nasal mast cells: a preliminary report on their ultrastructure. J Laryngol Otol Suppl 1987; 13:1-17. 361. Bumsted RM, El Ackad T, Smith JM, Brody MJ. Histamine, norepinephrine and serotonin content of nasal polyps. Laryngoscope 1979; 89(5 Pt 1):832-843. 362. Drake-Lee AB. Histamine and its release from nasal polyps: preliminary communication. J R Soc Med 1984; 77(2):120-124. 363. Ohashi Y, Nakai Y, Nakata J, Kihara S, Ikeoka H. Nasal allergy and nasal polyp with special reference to the mucosal IgE antibodies. ORL J Otorhinolaryngol Relat Spec 1986; 48(4):233-237. 364. Otsuka H, Ohkubo K, Seki H, Ohnishi M, Fujikura T. Mast cell quantitation in nasal polyps, sinus mucosa and nasal turbinate mucosa. J Laryngol Otol 1993; 107(5):418-422. 365. Melen I, Pipkorn S, Pipkorn U. Mast cells on the surface of the mucous membrane--a general feature of inflammatory reactions in the nose? Rhinology 1985; 23(3):187-190. 366. Pawliczak R, Kowalski ML, Danilewicz M, Wagrowska-Danilewicz M, Lewandowski A. Distribution of mast cells and eosinophils in nasal polyps from atopic and nonatopic subjects: a morphometric study. Am J Rhinol 1997; 11(4):257-262. 367. Loesel LS. Immunopathologic study of chronic sinusitis: a proposal for atopic and non-atopic IgE-activated mast cell allergic inflammation. Ann Otol Rhinol Laryngol 2001; 110(5 Pt 1):447-452. 368. Drake-Lee AB, McLoughlan P. The release of histamine from nasal polyp tissue and peripheral blood when challenged with antihuman IgE, house dust mite extract and mixed grass pollen extract and compared with positive skin tests. J Laryngol Otol 1988; 102(10):886-889. 369. Drake-Lee AB, Chevreton E, Lowe D. The effects of different fixations on the distribution and numbers of mast cells in patients with nasal polyps. J Laryngol Otol 1988; 102(12):1099-1101. 370. Khan DA, Cody DT, George TJ, Gleich GJ, Leiferman KM. Allergic fungal 125 371. 372. 373. 374. 375. 376. 377. 378. 379. 380. 381. sinusitis: an immunohistologic analysis. J Allergy Clin Immunol 2000; 106(6):1096-1101. Jankowski R, Bene MC, Moneret-Vautrin AD, Haas F, Faure G, Simon C et al. Immunohistological characteristics of nasal polyps. A comparison with healthy mucosa and chronic sinusitis. Rhinol Suppl 1989; 8:51-58. Lee YM, Kim SS, Kim HA, Suh YJ, Lee SK, Nahm DH et al. Eosinophil inflammation of nasal polyp tissue: relationships with matrix metalloproteinases, tissue inhibitor of metalloproteinase-1, and transforming growth factor-beta1. J Korean Med Sci 2003; 18(1):97-102. Powers MR, Qu Z, LaGesse PC, Liebler JM, Wall MA, Rosenbaum JT. Expression of basic fibroblast growth factor in nasal polyps. Ann Otol Rhinol Laryngol 1998; 107(10 Pt 1):891-897. Zhao XJ, McKerr G, Dong Z, Higgins CA, Carson J, Yang ZQ et al. Expression of oestrogen and progesterone receptors by mast cells alone, but not lymphocytes, macrophages or other immune cells in human upper airways. Thorax 2001; 56(3):205-211. Park HS, Nahm DH, Park K, Suh KS, Yim HE. Immunohistochemical characterization of cellular infiltrate in nasal polyp from aspirin-sensitive asthmatic patients. Ann Allergy Asthma Immunol 1998; 81(3):219-224. Rowe-Jones JM, Trendell-Smith N, Shembekar M, Mackay IS. Polypoid rhinosinusitis in patients with host defence deficiencies: cellular infiltration and disease severity. Rhinology 1997; 35(3):113-117. Bernstein JM, Gorfien J, Noble B, Yankaskas JR. Nasal polyposis: immunohistochemistry and bioelectrical findings (a hypothesis for the development of nasal polyps). J Allergy Clin Immunol 1997; 99(2):165-175. Rowe-Jones JM, Shembekar M, Trendell-Smith N, Mackay IS. Polypoidal rhinosinusitis in cystic fibrosis: a clinical and histopathological study. Clin Otolaryngol 1997; 22(2):167-171. Liu CM, Hong CY, Shun CT, Hsiao TY, Wang CC, Wang JS et al. Inducible cyclooxygenase and interleukin gene expressions in nasal polyp fibroblasts: possible implication in the pathogenesis of nasal polyposis. Arch Otolaryngol Head Neck Surg 2002; 128(8):945-951. Ito A, Hirota S, Mizuno H, Kawasaki Y, Takemura T, Nishiura T et al. Expression of vascular permeability factor (VPF/VEGF) messenger RNA by plasma cells: possible involvement in the development of edema in chronic inflammation. Pathol Int 1995; 45(10):715-720. Vignola A.M., Bousquet J. Biology of neutrophils. In: Adkinson NF, Yunginger JW, Busse WW, Bochner BS, Holgate ST, Simons FR, editors. Middleton's allergy principles & practice. St. Louis : Mosby.: 2003: 291-303. 126 382. Takasaka T, Kaku Y, Hozawa K. Mast cell degranulation in nasal polyps. Acta Otolaryngol Suppl 1986; 430:39-48. 383. Jahnsen FL, Haraldsen G, Aanesen JP, Haye R, Brandtzaeg P. Eosinophil infiltration is related to increased expression of vascular cell adhesion molecule-1 in nasal polyps. Am J Respir Cell Mol Biol 1995; 12(6):624-632. 384. Dunnette SL, Hall MM, Washington JA, Kern EB, McDonald TJ, Facer GW et al. Microbiologic analyses of nasal polyp tissue. J Allergy Clin Immunol 1986; 78(1 Pt 1):102-108. 385. Takeuchi K, Yuta A, Sakakura Y. Interleukin-8 gene expression in chronic sinusitis. Am J Otolaryngol 1995; 16(2):98-102. 386. Vancheri C, Ohtoshi T, Cox G, Xaubet A, Abrams JS, Gauldie J et al. Neutrophilic differentiation induced by human upper airway fibroblast-derived granulocyte/macrophage colony-stimulating factor (GM-CSF). Am J Respir Cell Mol Biol 1991; 4(1):11-17. 387. Demoly P, Sahla M, Campbell AM, Bousquet J, Crampette L. ICAM-1 expression in upper respiratory mucosa is differentially related to eosinophil and neutrophil inflammation according to the allergic status. Clin Exp Allergy 1998; 28(6):731-738. 388. Symon FA, Lawrence MB, Williamson ML, Walsh GM, Watson SR, Wardlaw AJ. Functional and structural characterization of the eosinophil P-selectin ligand. J Immunol 1996; 157(4):1711-1719. 389. Beck LA, Stellato C, Beall LD, Schall TJ, Leopold D, Bickel CA et al. Detection of the chemokine RANTES and endothelial adhesion molecules in nasal polyps. J Allergy Clin Immunol 1996; 98(4):766-780. 390. Nagakura T, Onda T, Akimoto K, Nagakura H, Tanaka K, Ohno K et al. Release of high molecular weight-neutrophil chemotactic activity from human tissues, cells and secretion. Int Arch Allergy Appl Immunol 1989; 88(1-2):187-190. 391. Park HS, Kim HY, Nahm DH, Park K, Suh KS, Yim H. The presence of atopy does not determine the type of cellular infiltrate in nasal polyps. Allergy Asthma Proc 1998; 19(6):373-377. 392. Marchand V, Tournier JM, Polette M, Nawrocki B, Fuchey C, Pierrot D et al. The elastase-induced expression of secretory leukocyte protease inhibitor is decreased in remodelled airway epithelium. Eur J Pharmacol 1997; 336(2-3):187-196. 393. Albegger KW. Cluster formation in human nasal polyps. A light- and electron-microscopic investigation. ORL J Otorhinolaryngol Relat Spec 1977; 39(2):107-112. 394. Coste A, Wang QP, Roudot-Thoraval F, Chapelin C, Bedbeder P, Poron F et al. Epithelial cell proliferation in nasal polyps could be up-regulated by platelet-derived growth factor. Laryngoscope 1996; 106(5 Pt 1):578-583. 127 395. Davidsson A, Anderson T, Hellquist HB. Apoptosis and phagocytosis of tissue-dwelling eosinophils in sinonasal polyps. Laryngoscope 2000; 110(1):111-116. 396. Linder A, Karlsson-Parra A, Hirvela C, Jonsson L, Koling A, Sjoberg O. Immunocompetent cells in human nasal polyps and normal mucosa. Rhinology 1993; 31(3):125-129. 397. Ohtoshi T, Vancheri C, Cox G, Gauldie J, Dolovich J, Denburg JA et al. Monocyte-macrophage differentiation induced by human upper airway epithelial cells. Am J Respir Cell Mol Biol 1991; 4(3):255-263. 398. Soilleux EJ, Morris LS, Leslie G, Chehimi J, Luo Q, Levroney E et al. Constitutive and induced expression of DC-SIGN on dendritic cell and macrophage subpopulations in situ and in vitro. J Leukoc Biol 2002; 71(3):445-457. 399. Hsu MC, Shun CT, Liu CM. Increased epithelial cell proliferation in nasal polyps. J Formos Med Assoc 2002; 101(3):227-229. 400. Mullol J, Xaubet A, Gaya A, Roca-Ferrer J, Lopez E, Fernandez JC et al. Cytokine gene expression and release from epithelial cells. A comparison study between healthy nasal mucosa and nasal polyps. Clin Exp Allergy 1995; 25(7):607-615. 401. Levasseur-Acker GM, Molimard M, Regnard J, Naline E, Freche C, Lockhart A. Effect of furosemide on prostaglandin synthesis by human nasal and bronchial epithelial cells in culture. Am J Respir Cell Mol Biol 1994; 10(4):378-383. 402. Kim CH, Song KS, Kim SS, Kim HU, Seong JK, Yoon JH. Expression of MUC5AC mRNA in the goblet cells of human nasal mucosa. Laryngoscope 2000; 110(12):2110-2113. 403. Pujols L, Mullol J, Benitez P, Torrego A, Xaubet A, de Haro J et al. Expression of the glucocorticoid receptor alpha and beta isoforms in human nasal mucosa and polyp epithelial cells. Respir Med 2003; 97(1):90-96. 404. Eisma RJ, Allen JS, Lafreniere D, Leonard G, Kreutzer DL. Eosinophil expression of transforming growth factor-beta and its receptors in nasal polyposis: role of the cytokines in this disease process. Am J Otolaryngol 1997; 18(6):405-411. 405. Silvestri M, Sabatini F, Scarso L, Cordone A, Dasic G, Rossi GA. Fluticasone propionate downregulates nasal fibroblast functions involved in airway inflammation and remodeling. Int Arch Allergy Immunol 2002; 128(1):51-58. 406. Steinke JW, Crouse CD, Bradley D, Hise K, Lynch K, Kountakis SE et al. Characterization of interleukin-4-stimulated nasal polyp fibroblasts. Am J Respir Cell Mol Biol 2004; 30(2):212-219. 407. Olsson S, Cagnoni F, Dignetti P, Melioli G, Canonica GW. Low concentrations of cytokines produced by allergen-stimulated 128 408. 409. 410. 411. 412. 413. 414. 415. 416. 417. 418. 419. 420. 421. peripheral blood mononuclear cells have potent effects on nasal polyp-derived fibroblasts. Clin Exp Immunol 2003; 132(2):254-260. Tingsgaard PK, Larsen PL, Bock T, Lange VG, Tos M. Expression of intercellular adhesion molecule-1 on the vascular endothelium in nasal polyps before, during and after topical glucocorticoid treatment. Acta Otolaryngol 1998; 118(3):404-408. Baekkevold ES, Roussigne M, Yamanaka T, Johansen FE, Jahnsen FL, Amalric F et al. Molecular characterization of NF-HEV, a nuclear factor preferentially expressed in human high endothelial venules. Am J Pathol 2003; 163(1):69-79. Holopainen E, Makinen J, Paavolainen M, Palva T, Salo OP. Nasal polyposis. Relationships to allergy and acetylsalicyclic acid intolerance. Acta Otolaryngol 1979; 87(3-4):330-334. Baumgarten C, Kunkel G, Rudolph R, Staud RD, Sperner I, Gelderblom H. Histopathological examinations of nasal polyps of different etiology. Arch Otorhinolaryngol 1980; 226(3):187-197. John AC, Merrett TG. The radioallergosorbent test (RAST) in nasal polyposis. J Laryngol Otol 1979; 93(9):889-898. Mygind N, Weeke B, Ullman S. Quantitative determination of immunoglobulins in nasal secretion. Int Arch Allergy Appl Immunol 1975; 49(1-2):99-107. Lacroix JS, Zheng CG, Goytom SH, Landis B, Szalay-Quinodoz I, Malis DD. Histological comparison of nasal polyposis in black African, Chinese and Caucasian patients. Rhinology 2002; 40(3):118-121. Berger G, Kattan A, Bernheim J, Ophir D, Finkelstein Y. Acute sinusitis: a histopathological and immunohistochemical study. Laryngoscope 2000; 110(12):2089-2094. Demoly P, Crampette L, Mondain M, Campbell AM, Lequeux N, Enander I et al. Assessment of inflammation in noninfectious chronic maxillary sinusitis. J Allergy Clin Immunol 1994; 94(1):95-108. Bhattacharyya N, Vyas DK, Fechner FP, Gliklich RE, Metson R. Tissue eosinophilia in chronic sinusitis: quantification techniques. Arch Otolaryngol Head Neck Surg 2001; 127(9):1102-1105. Jankowski R, Bouchoua F, Coffinet L, Vignaud JM. Clinical factors influencing the eosinophil infiltration of nasal polyps. Rhinology 2002; 40(4):173-178. Kamil A, Ghaffar O, Lavigne F, Taha R, Renzi PM, Hamid Q. Comparison of inflammatory cell profile and Th2 cytokine expression in the ethmoid sinuses, maxillary sinuses, and turbinates of atopic subjects with chronic sinusitis. Otolaryngol Head Neck Surg 1998; 118(6):804-809. Bhattacharyya N, Fried MP. Peripheral eosinophilia in the diagnosis of chronic rhinosinusitis. Am J Otolaryngol 2001; 22(2):116-120. Zadeh MH, Banthia V, Anand VK, Huang C. Significance of eosinophilia in 129 chronic rhinosinusitis. Am J Rhinol 2002; 16(6):313-317. 422. Lin YL, Huang JL, Chen LC, Wang CR. Correlation of total and specific serum immunoglobulin E levels with the severity of chronic sinusitis in children. Asian Pac J Allergy Immunol 2001; 19(1):1-6. 423. Grevers G, Klemens A, Menauer F, Sturm C. Involvement of inferior turbinate mucosa in chronic sinusitis--localization of T-cell subset. Allergy 2000; 55(12):1155-1162. 424. Driscoll PV, Naclerio RM, Baroody FM. CD4+ lymphocytes are increased in the sinus mucosa of children with chronic sinusitis. Arch Otolaryngol Head Neck Surg 1996; 122(10):1071-1076. 425. Olszewski J, Chudzik W, Wisniewski K, Milonski J, Matyja R. An assessment of concentrations of soluble CD4 and CD8 receptors in serum before and after surgical treatment in patients with chronic maxillary sinusitis. Am J Rhinol 2003; 17(3):123-126. 426. Nishimoto K, Ukai K, Harada T, Jin CS, Sakakura Y. Lymphocyte subsets of maxillary mucosa in chronic inflammation. Acta Otolaryngol 1988; 106(3-4):291-298. 427. Moss RB, Scott TA, Goldrich M, Pitale M, Daniel A, Lebovics R et al. Nasal mucosal cells in human immunodeficiency virus type 1-seropositive patients with sinusitis. J Clin Lab Anal 1996; 10(6):418-422. 428. Koutsonikolis A, Nelson RP, Jr., Fernandez-Caldas E, Brigino EN, Seleznick M, Good RA et al. Serum total and specific IgE levels in children infected with human immunodeficiency virus. J Allergy Clin Immunol 1996; 97(2):692-697. 429. Ramadan HH, Meek RB, Dawson GS, Spirou GA, Cuff CF, Berrebi AS. Histologic and immunologic observations of viral-induced rhinosinusitis in the mouse. Am J Rhinol 2002; 16(1):61-67. 430. Gabr U, Won YS, Boonlayangoor S, Thompson K, Baroody FM, Naclerio RM. C57Bl/6 and BALB/c mice have similar neutrophil response to acute Streptococcus pneumoniae sinus infections. Arch Otolaryngol Head Neck Surg 2001; 127(8):985-990. 431. Marks SC. Acute sinusitis in the rabbit model: histologic analysis. Laryngoscope 1998; 108(3):320-325. 432. van de Plassche-Boers EM, Drexhage HA, Kokje-Kleingeld M, Leezenberg HA. Parameters of T cell mediated immunity to commensal micro-organisms in patients with chronic purulent rhinosinusitis: a comparison between delayed type hypersensitivity skin test, lymphocyte transformation test and macrophage migration inhibition factor assay. Clin Exp Immunol 1986; 66(3):516-524. 433. van de Plassche-Boers EM, Tas M, Haan-Meulman M, Kleingeld M, Drexhage HA. Abnormal monocyte chemotaxis in patients with chronic purulent rhinosinusitis: an effect of retroviral p15E-related factors in serum. Clin Exp Immunol 1988; 73(3):348-354. 434. Bernstein JM, Rich GA, Odziemiec C, Ballow M. Are thymus-derived 130 435. 436. 437. 438. 439. 440. 441. 442. 443. 444. 445. 446. 447. 448. lymphocytes (T cells) defective in the nasopharyngeal and palatine tonsils of children? Otolaryngol Head Neck Surg 1993; 109(4):693-700. Demoly P, Crampette L, Mondain M, Enander I, Jones I, Bousquet J. Myeloperoxidase and interleukin-8 levels in chronic sinusitis. Clin Exp Allergy 1997; 27(6):672-675. Min YG, Lee KS. The role of cytokines in rhinosinusitis. J Korean Med Sci 2000; 15(3):255-259. Shimomura A, Ikeda K, Suzuki H, Nakabayashi S, Oshima T, Furukawa M et al. Expression of adhesion molecules in nonallergic chronic sinusitis. Laryngoscope 1997; 107(11 Pt 1):1519-1524. Westergren V, Viale G, Dell'Orto P, Pellegrini C, Hellquist HB. RANTES is more prevalent in bacterial than in nonbacterial maxillary sinusitis: and P-selectin is preferentially up-regulated in diseased mucosae. Arch Otolaryngol Head Neck Surg 1997; 123(10):1103-1110. Hamaguchi Y, Taya M, Suzumura H, Sakakura Y. Lysosomal proteases and protease inhibitors in nasal allergy and non-atopic sinusitis. Am J Otolaryngol 1990; 11(1):37-43. Jyonouchi H, Sun S, Le H, Rimell FL. Evidence of dysregulated cytokine production by sinus lavage and peripheral blood mononuclear cells in patients with treatment-resistant chronic rhinosinusitis. Arch Otolaryngol Head Neck Surg 2001; 127(12):1488-1494. Ogata N, Masuyama K, Yoshida M, Samejima Y, Eura M, Ishikawa T. Preferential infiltration by activated eosinophils in allergic sinusitis. Auris Nasus Larynx 1997; 24(3):279-287. Kowalski ML, Grzegorczyk J, Sliwinska-Kowalska M, Wojciechowska B, Rozniecka M, Rozniecki J. Neutrophil chemotactic activity (NCA) in nasal secretions from atopic and nonatopic subjects. Effect of antigen challenge. Allergy 1993; 48(6):409-414. Lee HS, Majima Y, Sakakura Y, Shinogi J, Kawaguchi S, Kim BW. Quantitative cytology of nasal secretions under various conditions. Laryngoscope 1993; 103(5):533-537. Rasp G, Hochstrasser K. Tryptase in nasal fluid is a useful marker of allergic rhinitis. Allergy 1993; 48(2):72-74. Elwany S, Bassyouni M, Morad F. Some risk factors for refractory chronic sinusitis: an immunohistochemical and electron microscopic study. J Laryngol Otol 2002; 116(2):112-115. Bosso JV, Schwartz LB, Stevenson DD. Tryptase and histamine release during aspirin-induced respiratory reactions. J Allergy Clin Immunol 1991; 88(6):830-837. Loidolt D, Mangge H, Wilders-Truschnig M, Beaufort F, Schauenstein K. In vivo and in vitro suppression of lymphocyte function in Aspergillus sinusitis. Arch Otorhinolaryngol 1989; 246(5):321-323. Al Rawi MM, Edelstein DR, Erlandson RA. Changes in nasal epithelium in 131 449. 450. 451. 452. 453. 454. 455. 456. 457. 458. 459. 460. 461. 462. 463. patients with severe chronic sinusitis: a clinicopathologic and electron microscopic study. Laryngoscope 1998; 108(12):1816-1823. Nonoyama T, Harada T, Shinogi J, Yoshimura E, Sakakura Y. Immunohistochemical localization of cytokines and cell adhesion molecules in maxillary sinus mucosa in chronic sinusitis. Auris Nasus Larynx 2000; 27(1):51-58. Rudack C, Hermann W, Eble J, Schroeder JM. Neutrophil chemokines in cultured nasal fibroblasts. Allergy 2002; 57(12):1159-1164. Chen CF, Wu KG, Hsu MC, Tang RB. Prevalence and relationship between allergic diseases and infectious diseases. J Microbiol Immunol Infect 2001; 34(1):57-62. Bruno E, Mohamed EI, Alessandrini M, Russo S, Schiaroli S, De Lorenzo A et al. Long-term follow-up of cellular proliferation as a predictive index for the relapse of nasal polyposis. Am J Rhinol 2002; 16(5):237-241. Yung MW, Gould J, Upton GJ. Nasal polyposis in children with cystic fibrosis: a long-term follow-up study. Ann Otol Rhinol Laryngol 2002; 111(12 Pt 1):1081-1086. Vento SI, Ertama LO, Hytonen ML, Wolff CH, Malmberg CH. Nasal polyposis: clinical course during 20 years. Ann Allergy Asthma Immunol 2000; 85(3):209-214. Mygind N. Advances in the medical treatment of nasal polyps. Allergy 1999; 54 Suppl 53:12-16. Tuncer U, Soylu L, Aydogan B, Karakus F, Akcali C. The effectiveness of steroid treatment in nasal polyposis. Auris Nasus Larynx 2003; 30(3):263-268. van Camp C, Clement PA. Results of oral steroid treatment in nasal polyposis. Rhinology 1994; 32(1):5-9. Badia L, Lund V. Topical corticosteroids in nasal polyposis. Drugs 2001; 61(5):573-578. Saunders MW, Wheatley AH, George SJ, Lai T, Birchall MA. Do corticosteroids induce apoptosis in nasal polyp inflammatory cells? In vivo and in vitro studies. Laryngoscope 1999; 109(5):785-790. Marx D, Tassabehji M, Heer S, Huttenbrink KB, Szelenyi I. Modulation of TNF and GM-CSF release from dispersed human nasal polyp cells and human whole blood by inhibitors of different PDE isoenzymes and glucocorticoids. Pulm Pharmacol Ther 2002; 15(1):7-15. Rudack C, Bachert C, Stoll W. Effect of prednisolone on cytokine synthesis in nasal polyps. J Interferon Cytokine Res 1999; 19(9):1031-1035. Xaubet A, Mullol J, Roca-Ferrer J, Pujols L, Fuentes M, Perez M et al. Effect of budesonide and nedocromil sodium on IL-6 and IL-8 release from human nasal mucosa and polyp epithelial cells. Respir Med 2001; 95(5):408-414. Yamada T, Fujieda S, Mori S, Yamamoto H, Saito H. Macrolide treatment 132 464. 465. 466. 467. 468. 469. 470. 471. 472. 473. 474. 475. 476. 477. 478. decreased the size of nasal polyps and IL-8 levels in nasal lavage. Am J Rhinol 2000; 14(3):143-148. Passali D, Mezzedimi C, Passali GC, Bellussi L. Efficacy of inhalation form of furosemide to prevent postsurgical relapses of rhinosinusal polyposis. ORL J Otorhinolaryngol Relat Spec 2000; 62(6):307-310. Passali D, Bernstein JM, Passali FM, Damiani V, Passali GC, Bellussi L. Treatment of recurrent chronic hyperplastic sinusitis with nasal polyposis. Arch Otolaryngol Head Neck Surg 2003; 129(6):656-659. Baudoin T, Kalogjera L, Hat J. Capsaicin significantly reduces sinonasal polyps. Acta Otolaryngol 2000; 120(2):307-311. Carayol N, Crampette L, Mainprice B, Ben Soussen P, Verrecchia M, Bousquet J et al. Inhibition of mediator and cytokine release from dispersed nasal polyp cells by mizolastine. Allergy 2002; 57(11):1067-1070. Jornot L, Rochat T, Lacroix JS. Nasal polyps and middle turbinates epithelial cells sensitivity to amphotericin B. Rhinology 2003; 41(4):201-205. Kusters S, Schuligoi R, Huttenbrink KB, Rudert J, Wachs A, Szelenyi I et al. Effects of antihistamines on leukotriene and cytokine release from dispersed nasal polyp cells. Arzneimittelforschung 2002; 52(2):97-102. Huber MA, Gall H, Gethoffer K, Muhlmeier G, Maier H, Peter RU. Successful prevention of recurrent nasal polyposis by means of systemic low-dose IFN-alpha2a. J Allergy Clin Immunol 2001; 108(1):141. Uri N, Cohen-Kerem R, Barzilai G, Greenberg E, Doweck I, Weiler-Ravell D. Functional endoscopic sinus surgery in the treatment of massive polyposis in asthmatic patients. J Laryngol Otol 2002; 116(3):185-189. Dalziel K, Stein K, Round A, Garside R, Royle P. Systematic review of endoscopic sinus surgery for nasal polyps. Health Technol Assess 2003; 7(17):iii, 1-iii159. Scadding GK. Comparison of medical and surgical treatment of nasal polyposis. Curr Allergy Asthma Rep 2002; 2(6):494-499. Schubert MS. Allergic fungal sinusitis : pathogenesis and management strategies. Drugs 2004; 64(4):363-374. Slavin RG. Resistant rhinosinusitis: what to when usual measures fail. Allergy Asthma Proc 2003; 24(5):303-306. Tamaoki J. The effects of macrolides on inflammatory cells. Chest 2004; 125(2 Suppl):41S-50S. Gotfried MH. Macrolides for the treatment of chronic sinusitis, asthma, and COPD. Chest 2004; 125(2 Suppl):52S-60S. Benninger MS, Anon J, Mabry RL. The medical management of rhinosinusitis. Otolaryngol Head Neck Surg 1997; 117(3 Pt 2):S41-S49. 133 479. Palmer JN, Kennedy DW. Medical management in functional endoscopic sinus surgery failures. Curr Opin Otolaryngol Head Neck Surg 2003; 11(1):6-12. 134 [...]... the term sinusitis Lanza et al.27 in 1997 suggested a broader definition of sinusitis, including inflammation of the nasal cavity and paranasal sinuses and of the fluid within these cavities and/ or the underlying bone Sinusitis can be classified into acute, recurrent, subacute and chronic sinusitis which will be briefly introduced in chapter 1.4 Chronic sinusitis is one of the most common chronic diseases... mucosa 1.2 Prevalence of Nasal Polyps and Chronic Sinusitis Chronic sinusitis is one of the most common chronic diseases reported worldwide It is closely related to nasal polyps, as 20% of the patients with chronic sinusitis have nasal polyps while the incidence rate of chronic sinusitis in nasal polyps varies from 65% to 90%.7-9 The multitude of factors underlying these conditions and their high recurrence... diseases such as sinusitis, asthma, aspirin intolerance and cystic fibrosis The epidemiology of nasal polyps will be discussed further in chapter 1.3 1.2.3 Prevalence of Chronic Sinusitis Generally speaking, sinusitis is inflammation of paranasal sinuses Because of the 6 high frequency of coexistence of inflammation of the nasal cavity, it has also been suggested that the term “rhinosinusitis” should... Wang Role of allergy and inflammation in nasal polyposis and sinusitis (Poster) American Academy of otolaryngology, Head & Neck Surgery Annual Meeting, Orlando, USA, 21-14 September 2003 5 Hao J, Pang YT, Wang DY Role of allergy and inflammation in nasal polyps and sinusitis J Allergy Clin Immunol 2003 (Part 2); 111 (N 2) P589 Papers Submitted and in Preparation 1 Hao J, Pang YT, Wang DY A diffuse mucosal. ..allergenic to nasal polyp and chronic sinusitis patients Further studies on the interaction between these antigens and hosts with nasal polyps and chronic sinusitis will provide important information towards a better understand of the underlying pathogenesis Vaccine development based on the recombinant proteins may be promising potential in the treatment of nasal polyps and chronic sinusitis ix List of Tables... the presence of nasal polyps 9 Table 2 Similarities between nasal polyps and aspirin intolerance 12 Table 3 Etiologic factors of chronic sinusitis 27 Table 4 Classification of sinusitis 35 Table 5 Pathogenesis of nasal polyps 43 Table 6 Principle cell sources and main functions of major Th1 and Th2 cytokines 61 Table 7 Medical treatment of sinusitis 99 Table 8 Patient groups in the study of inflammatory... scores in nasal polyp, inflamed sinus mucosa and paired middle turbinate from the same side of the six patients with both nasal polyps and chronic sinusitis 190 xi List of Tables, Continued Table 26 Kendall’s W test exact significance (2-tailed) and coefficient of concordance of nasal polyp tissue, inflamed sinus mucosa and middle turbinate mucosa from the same side in patients with nasal polyps and chronic. .. the treatment of chronic sinusitis and nasal polyps complicated Understanding the pathogenesis of nasal polyps and chronic sinusitis is critical for treatment 1.2.1 Nasal Polyps, a Disease with a Long History Nasal polyps represent one of the most common mass lesions of the nose It is an outgrowth of nasal mucosa whose appearance is smooth, semitranslucent, gelatinous and pale (Figure 2) Polyps with... middle turbinate mucosa of allergic rhinitis patients (n=15) and controls (n=14) 208 Table 39 Median and interquartile range of CD4+/CD8+ T cell ratios in inflamed sinus mucosa and paired middle turbinate (n=20), middle turbinate from allergic rhinitis patients (n=15) and controls (n=14) 210 Table 40 Incidence rate of atopy in nasal polyps and chronic sinusitis patients and its correlation with inflammatory... healthy nasal cavity and nasal polyps 32 Figure 4 Coronal CT scans of a normal ostiomeatal and that of a patient with nasal polyps 33 Figure 5 Endoscopic view of left nasal cavity in a patient with chronic sinusitis 36 Figure 6 Coronal CT image of chronic sinusitis caused by obstruction of the anterior middle meatus 38 Figure 7 Quality controls of anti-CD4 and anti-CD8 antibodies staining in tonsils . ROLE OF ALLERGY AND MUCOSAL INFLAMMATION IN NASAL POLYPS AND CHRONIC SINUSITIS HAO JING NATIONAL UNIVERSITY OF SINGAPORE 2004 ROLE OF ALLERGY AND MUCOSAL INFLAMMATION. Pathogenesis of nasal polyps and chronic sinusitis 43 1.6.2 Inflammatory cell and chemical mediators in nasal 56 polyps and chronic sinusitis 1.7 Treatment of nasal polyps and chronic sinusitis. Histopathology of nasal polyps and chronic sinusitis 39 1.5.1 Histology of nasal polyps 39 1.5.2 Histology of chronic sinusitis 41 1.6 Pathogenesis of nasal polyps and chronic sinusitis 42 1.6.1