Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 284 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
284
Dung lượng
16,94 MB
Nội dung
3D PHOTONIC BANDGAP MATERIALS FABRICATED WITH SELF-ASSEMBLED COLLOIDAL MICROSPHERES AS THE TEMPLATE ZHOU ZUOCHENG (PhD, NUS) A THESIS SUBMITTED FOR THE DEGREE OF PhD OF ENGINEERING DEPARTMENT OF CHEMICAL AND BIOMOLECULAR ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2005 Acknowledgement Acknowledgement I would like to thank those who kindly offered me help during the course of the thesis work. First and most, I would like to greatly thank my supervisor, Dr. Zhao X. S. George, for his constant encouragement, invaluable guidance, patience and understanding throughout the whole length of my PhD candidature. This project had been a tough but enriching experience for me in research. I would like to express my heartfelt thanks to Dr. Zhao for his guidance on writing scientific papers including PhD thesis. I am grateful to my co-supervisor, Prof. Chua Soo Jin, for his support throughout the PhD project. I would also like to take this opportunity to acknowledge Prof. Srinivasan M. P. and Prof. Zeng Huachun, the members of my thesis committee, for offering suggestions and comments. In addition, I want to express my sincerest appreciation to the Department of Chemical and Biomolecular Engineering for offering me the chance of studying at NUS with a scholarship. It’s fortunate for me to work with a group of brilliant, warmhearted and lovely people, Mr. Chia Phai Ann, Mr. Gu Chuanwang, Mr. Bao Xiao Ying, Ms. Chong Ai Xin Maria, Mr. Su Fabing, Mr. Lv Lu, Dr. Yan Qingfeng, Dr. Guo Wangping, Mr. Yu Yaoshan, Mr. She Xilin, Mr. Wang Likui, Ms. Lee Fang Yin, Ms. Ong Wee Chat, Mr. He Guangwen, Ms. Ji Min, and Mr. Sia Geok Leong. They not only gave me lots of help but also shared their joy with me. I appreciate their friendship forever. Particular acknowledgement goes to Mr. Chia Phai Ann, Mr. Shang Zhenhua, Dr Shen Shoucang, Mr. Ng Kim Poi, Dr. Yuan Zeliang, Mr. Mao Ning, Dr. Rajarathnam D., Madam Chow Pek Jaslyn, Mdm Fam Hwee Koong Samantha, Mdm i Acknowledgement Khoh Leng Khim Sandy, Ms Lee Chai Keng, Ms Ng Sook Poh, Ms Tay Choon Yen, Mr. Toh Keng Chee, Mdm Teo Ai Peng, Mdm Li Xiang, Miss Chew Su Mei Novel for their kind supports in experiments. Special thanks must go to Ms Siew Woon Chee. Her professional service warranted this PhD thesis project to complete on time. I thank my family and my girlfriend, Jiang Feng, for their boundless love, encouragement and support. Without them, it would be impossible for me to come to Singapore to pursue my PhD degree. Especially, I would like to use this thesis to commemorate my dear grandmother, who brought me up and passed away three years ago. I beg for pardon if I have left out anyone who had, in one way or another, helped me during the thesis work. My memory is running short, but one thing you can be sure of—you are deeply appreciated and I thank you. ii Table of Contents Table of Contents Summary …… .………………………………………….…………………….…vii Nomenclature ………………………………………………………………… .ix Glossary …….……………………………………………………………………. xii List of Tables …….……………………………………………………………….xiii List of Figures .……………………………………………………………… .xiv CHAPTER 1. INTRODUCTION ……………………………….……….…1 1.1 Photonics and all-optical devices ………………………………… ….…2 1.2 Photonic bandgap (PBG) and PBG materials…………………….…….…4 1.3 Fabrication methods of 3D PBG materials……………………… …….…6 1.3.1. The “top-down” methods ………………………………………… …6 1.3.2. The “bottom-up” methods……………………………………….….…7 1.4 The self-assembly method for fabrication of 3D PBG materials……….…8 1.4.1. Colloidal crystal template ……………………………………….….…9 1.4.2. Morphology control …………………………………………….… …9 1.4.3. Fabrication of heterogeneous structure ………………………………10 1.5 Objectives of the project………………………………………………… 11 1.6 Structure of thesis…………………………………………………………. 12 CHAPTER 2. LITERATURE REVIEW …………………….………….13 2.1 Theory of photonic bandgap (PBG) materials………………………… 13 2.2 Modeling and simulation………………………………………………… .18 2.3 Fabrication of PBG materials…………………………………….……… 20 2.3.1. The “top-down” approaches to 3D photonic crystals ……………… 21 2.3.2. The “bottom-up” approaches to 3D photonic crystals……………… 27 iii Table of Contents 2.4 Defect engineering in photonic crystals………………………………… 53 2.4.1. The importance of defects ………………………………………… 53 2.4.2. Defecting engineering using lithography method………………… .54 2.4.3. Defecting engineering using self-assembly method ……………… .55 2.5 Applications of 3D photonic crystals…………………………………… 57 2.6 Motivation of this thesis project………………………………………… 60 CHAPTER 3. EXPERIMENTAL SECTION……………………………61 3.1 Chemicals ………………………………………………………………….61 3.2 synthesis of colloidal microspheres……………………………………….62 3.2.1. Synthesis of polystyrene microspheres …………………………… 62 3.2.2. Synthesis of silica microspheres ………………………………… 65 3.3 Fabrication of colloidal crystals ………………………………………….67 3.3.1. Vertical deposition (VD) method……………………………………67 3.3.2. Follow-controlled vertical deposition (FCVD) method…………… 67 3.3.3. Centrifugation method………………………………………………68 3.3.4. Annealing……………………………………………………………68 3.4 Fabrication of 3D PBG materials……………………………………… .68 3.4.1. Fabrication of silica inverse opal……………………………………68 3.4.2. Fabrication of organosilica inverse opal…………………………….69 3.4.3. Fabrication of carbon inverse opal………………………………….69 3.4.4. Fabrication of TiO2 inverse opal……………………………………69 3.5 Fabrication of 3D heterostructural PBG materials ……………………70 3.5.1. Multilayer colloidal crystal heterostructures……………………… 70 3.5.2. Fabrication of defects in photonic crystals……………………….…71 3.5.3. Fabrication of surface coated heterostructures………………………74 iv Table of Contents 3.6 Fabrication of surface pattern……………………………………………76 3.6.1. Fabrication carbon pattern on glass substrate……………………….77 3.6.2. Fabrication silica pattern on glass and silicon substrate…………….77 3.6.3. Fabrication nanopits on silicon substrate………………………… 77 3.7 Characterization………………………………………………………… .77 CHAPTER 4. SYNTHESIS OF MONODISPERSE COLLOIDAL MICROSPHERES…………………………………………………………… 84 4.1 Synthesis of polystyrene (PS) microspheres …………………………….85 4.1.1 Emulsion polymerization…………………………………………….85 4.1.2 Seed polymerization………………………………………………….92 4.2 Synthesis of SiO2 microspheres………………………………………… .94 4.3 Summary………………………………………………………………… 100 CHAPTER 5. FABRICATION OF 3D PHOTONIC BANDGAP MATERIALS………………………………………………………………… 101 5.1 Fabrication of colloidal crystals with a FCVD method …………………102 5.2 Fabrication of inverse opals …………………………………………… .119 5.2.1 Silica inverse opals………………………………………………… .119 5.2.2 Organosilica inverse opals………………………………………… .131 5.2.3 Carbon inverse opals……………………………………………… 140 5.2.4 TiO2 inverse opals………………………………………………… 145 5.3 Summary………………………………………………………………… .146 CHAPTER 6. FABRICATION OF PHOTONIC CRYSTAL HETEROSTRUCTURES…………………………………………………….148 6.1 Multilayer colloidal crystal heterostructures……………………………149 v Table of Contents 6.1.1 Size heterostructures ……………………………………………… .149 6.1.2 Composition heterostructures……………………………………… .152 6.2 Defect engineering…………………………………………………………171 6.2.1 Plane defects embedded in 3D photonic crystals ……………………171 6.2.2 Line defects embedded in photonic crystals………………………….173 6.3 Surface coating…………………………………………………………… 179 6.3.1 Carbon-coated silica heterostructures……………………………… .180 6.3.2 Carbon macroporous structures………………………………………188 6.3.3 Fabrication of magnetic carbon capsules…………………………….198 6.4 Summary………………………………………………………………… .203 CHAPTER 7. NANOSPHERE LITHOGRAPHY FOR SURFACE PATTERNING……………………………………………………………….….205 7.1 Carbon pattern on glass substrate……………………………………… 206 7.2 Silica pattern on glass substrate………………………………………… 210 7.3 Silica pattern on silicon substrate…………………………………… ….221 7.4 Summary……………………………………………………………… ….229 CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS… .230 8.1 Conclusions……………………………………………………………… .230 8.2 Recommendations…………………………………………………………233 REFERENCES…………………………………………………………………… 234 APPENDIX……………………………………………………………………… 259 vi Summary Summary We have witnessed that research on semiconductors has led to a revolution in the electronic industry over the later half of the 20th century. However, the semiconductors have reached their limitations in terms of bandwidth and speed of information processing. It has been widely believed that photonics, an analogy of electronics, will push the electronics out of the marketplace. The word of “photonics" comes from "photon" which is the smallest unit of light, just as the electron is the smallest unit of electronics. Central to photonics technology are photonic bandgap (PBG) materials, also know as photonic crystals (PCs), which are the analogy of semiconductors. Thus, similar to the bandgap in a semiconductor, which is able to control electrons, the presence of a PBG in a PC allows one to control the flow of light. Over the past decade, breakthroughs have been made in the fabrication of 1D and 2D PBG materials because they are relatively easy to fabricate using the conventional “top-down” lithography techniques. However, when it comes to 3D PCs, conventional lithography approaches have trouble. Thus, it has been a great challenge to fabricate 3D periodic PC structures in a controllable way, in copious quantities, and at an acceptable cost. The self-assembly method, on the other hand, has been recently extensively explored and demonstrated as a simple and inexpensive route to fabricating 3D PCs. Briefly speaking, colloidal microspheres can be spontaneously assembled into colloidal crystal. Then the voids among the spheres of colloidal crystal are infiltrated with a material of high refractive index. Removal of the spheres produces a porous structure with air holes, of which the size is determined by the diameter of the microspheres. vii Summary Although the self-assembly method has been demonstrated to afford 3D PCs with a full PBG, it is still far away from practical applications because of the main two issues associated with self-assembled 3D PBG materials. One is the domain size of a self-assembled colloidal crystal (template) is not large and uniform enough to realize photonic devices. The other one is that it lacks a generalized method for fabrication of artificial defects embedded into a self-assembled PC (the presence of defects in 3D PCs is as important as that in semiconductors). Thus, these two issues became the research focus of this thesis project. To solve the first problem, a flow-controlled vertical deposition (FCVD) method for self-assembly of colloidal spheres was introduced in this thesis work. Colloidal crystals fabricated using the FCVD method are uniform in thickness and have a domain size of several hundred micrometers. Colloidal spheres as large as 1.5 μm can be assembled into colloidal crystals using the FCVD method, which is important to fabricate PCs using in telecommunications. In addition, the FCVD method was also observed to work well for infiltration of the colloidal crystals to create different surface morphologies. To solve the second problem, a totally novel fabrication strategy was developed — by combining self-assembly with photolithography, various defects including planar and point defects have been precisely inserted into a 3D PC to create PC heterostructures. Along with the main stream of the thesis work, various surface patterning was attempted to generate on silicon and glass substrates, which were further used to create ordered nanoarrays, nanorings, and nanopits. In addition, by using a layer-by-layer growth mechanism, size and composite colloidal-crystal heterostructures were also fabricated. viii Nomenclature Nomenclature 1D One-dimensional 2D Two-dimensional 3D Three-dimensional Å Angstrom o Degree Celsius C δ Chemical shift d Diameter f Volume fraction in colloidal crystal φ Particle volume fraction in colloidal suspension je Evaporation rate of the solvent Jevap Integral of water evaporation flux L Evaporation length n Refractive index λ Wavelength Q Flow rate S Cross area of the container Tg Transition temperature VC Growth rate of the k-layer array VP Liquid surface dropping velocity induced by pump Vs Liquid surface dropping velocity VW Withdrawal velocity of the substrate AFM Atomic force microscope BCC Body-centered cubic BET Brunauer-Emmett-Teller BJH Barrett-Joyner-Halenda BTEE 1,2-bis(triethoxysilyl)ethane BTEM 1,2-bis(triethoxysilyl)methylene BTEEY 1,2-bis(triethoxysilyl)ethenylene CMC Critical micelle concentration ix References Lin, S.Y., J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho., M.M. Sigalas, W. Zubrzycki, S.R. Kurtz and J. Bur. A three-dimensional Photonic Crystal Operating at Infrared Wavelengths, Nature, 394, pp.251-253. 1998a. Lin, S.-Y., E. Chow, V. Hietala, P.R. Villeneuve and J.D. Joannopoulos. Experimental Demonstration of Guiding and Bending of Electromagnetic Waves in a Photonic Crystal, Science, 282, pp.274-276. 1998b. Lin, S.-Y. and J.G.J. Fleming. A Three-dimensional Optical Photonic Crystal, Lightwave tech., 17, pp.1944-1947. 1999. López, C. Materials Aspects of Photonic Crystals, Adv. Mater., 15, pp.1679-1074. 2003. Loy, D.A. and Shea, K.J. Bridged Polysilsequioxanes. Highly Porous Hybrid OrganicInorganic Materials, Chem. Rev., 95, pp.1431-1442. 1995. Lu, Y., H. Fan, N. Doke, D. A. Loy, R. A. Assink, D. A. LaVan and C. J. Brinker, Evaporatin-induced Self-assembly of Hybrid Bridged Silsesquioxane Film and Particulate Mesophases with Integral Organic Functionality, J. Am. Chem. Soc., 122, pp.5258-5261. 2000. Lu, Y., J. McLellan and Y. Xia. Synthesis and Crystallization of Hybrid Spherical Colloids Composed of Polystyrene Cores and Silica Shells, Langmuir, 20, pp. 34643470. 2004. Luo, Q., Z. Li, L. Li, S. Xie, J. Kong and D. Zhao. Creating Highly Ordered Metal, Alloy, and Semiconductor Macrostructures by Electrodeposition, Ion Spraying, and Laser Spraying, Adv. Mater., 13, pp.286-289. 2001. Maldovan M. and E.L. Thomas. Diamond-structured Photonic Crystals, Nature. Mater., 3, pp.593-600. 2004. Manoharan, V.N., A. Imhof, J.D. Thorne and x D.J. Thorne. Photonic Crystals From Emulsion Templates, Adv. Mater., 13, pp.447-450. 2001. Marquez, M. and B.P. Grady. The Use of Surface Tension to Predict the Formation of 2D Arrays of Latex Spheres Formed via the Langmuir-Blodgett-Like Technique, Langmuir, 20, pp.10998-11004. 2004. Mayoral, R., J. Requena, J.S. Moya, C. López, A. Cintas, H. Míguez, F. Meseguer, L. Vázquez, M. Holgado and Á. Blanco. 3D Long-Range Ordering in a SiO2 Submicrometer-Sphere Sintered Superstructure, Adv. Mater., 9, pp.257-260. 1997. Meade, R. D., A.M. Rappe, K.D. Brommer, J.D. Joannopoulos and O. L. Alerhand. Accurate Theoretical Analysis of Photonic Band-gap Materials, Phys. Rev. B, 48, pp.8434-8437. 1993. 245 References Mekis, A., J.C. Chen, I. Kurland, S. Fan, P.R. Villeneuve and J.D. Joannopoulos. High Transmission Through Sharp Bends in Photonic crystal Waveguides, Phys. Rev. Lett., 77, pp.3787-3790. 1996. Melde, B.J., B.T. Holland, C.F. Blandford and A. Stein, Mesoporous Sieves with Unified Hybrid Inorganic/organic Frameworks, Chem. Mater., 11, pp.3302-3308. 1999. Meng, Q.-B., Z.-Z. Gu and O. Sato. Fabrication of Highly Ordered Porous Structures, Appl. Phys. Lett., 77, pp.4313-4315. 2000. Meng, D.B., C.H. Fu, Y. Einaga, Z.Z. Gu, A. Fujishima and O. Sato. Assembly of Highly Ordered Three-dimensional Porous Structure with Nanocrystalline TiO2 Semiconductors, Chem. Mater., 14, pp.83-88. 2002. Meseguer, F., A. Blanco, H. Míguez, F. García-Santamaría, M. Ibísate and C. López. Synthesis of Inverse Opals, Colloids and Surf. A, 202, pp.281-290. 2002. Micheletto, R., H. Fukuda and M. Ohtsu. A Simple Method for the Production of a Two-Dimensional, Ordered Array of Small Latex Particles, Langmuir, 11, pp.33333336. 1995. Míguez, H., F. Meseguer, C. López, A. Mifsud, J.S. Moya and L. Vázquez, Evidence of FCC Crystallization of SiO2 Nanospheres, Langmuir, 13, pp.6009-6011. 1997. Míguez, H., F. Meseguer, C. López, Á. Blanco, J.S. Moya, J. Requena, A. Mifsud and V. Fornes. Control of the Photonic Crystal Properties of fcc-packed Submicrometer SiO2 Spheres by Sintering, Adv. Mater., 10, pp.480-483. 1998. Míguez, H., F. Meseguer, C. López, M. Holgado, G. Andreasen, A. Misfsud and V. Fornés. Germanium FCC Structure from a Colloidal Crystal Template. Langmuir, 16, pp.4405-4408. 2000. Míguez H., E. Chomski, F. García-Santamaría, M. Ibisate, S. John, C. López, F. Meseguer, J.P. Mondia, G.A. Ozin, O. Toader and H.M. van Driel, Photonic Bandgap Engineeringin Germanium Inverse Opals by Chemical Vapor Deposition, Adv. Mater., 13, pp.1634-1637. 2001a. Míguez, H., F. Meseguer, C. López, F. López-Tejeira and J. Sánchez-Dehesa. Synthesis and Photonic Bandgap Characterization of Polymer Inverse Opals, Adv. Mater., 13, pp.393-396. 2001b. Míguez, H., N. Tétreault, B. Hatton, S.M. Yang D. Perovic and G. A. Ozin. Mechanical Stability Enhancement by Pore Size and Connectivity Control in Colloidal Crystals by Layer-by Layer Growth of Oxide, Chem. Commun., pp.2736-2737. 2002a. Míguez, H., S.M. Yang, N. Tétreault and G.A. Ozin. Oriented Free-Standing Threedimensional Silicon Inverted Colloidal Photonic Crystal Microfibers, Adv. Mater., 14, pp.1805-1808. 2002b. 246 References Míguez, H., N. Tétreault, S.M. Yang, V. Kitaev and G.A. Ozin. A New Synthetic Approach to Silicon Colloidal Photonic Crystals with a Novel Topology and an OmniDirectional Photonic Bandgap: Micromolding in Inverse Silica Opal (MISO), Adv. Mater., 15, pp.597-600. 2003. Miller, S.E. Integrated Optics: An Introduction, Bell Syst. Tech. J., 48, pp.2059-2069. 1969. Moon, J.H., S. Kim, G-R. Yi, Y.-H. Lee and S.M. Yang. Fabrication of Ordered Macroporous Cylinders by Colloidal Templating in Microcapillaries, Langmuir, 20, pp.2033-2035. 2004. Moore, G.E. Cramming more Components onto Integrated Circuits, Electronics, 19, pp.114-117. 1965. Moriguchi, I., F. Nakahara, H. Furukawa, H. Yamada and T. Kudo. Colloidal CrystalTemplated Porous Carbon as a High Performance Electrical Double-layer Capacitor Material, Electrochem. Solid-state Lett., 7, ppA221-A223. 2004. Müller, F., A. Birner, U. Gösele, V. Lehmann, S. Ottow and H. Föll. Structuring of Macroporous Silicon for Applications as Photonic Crystals, J. Porous Mater., 7, pp.201-204, 2000. Murray, C.B., D.J. Norris and M.G. Bawendi. Synthesis and Characterization of Nearly Monodisperse CdE (E=S, Se, Te) Semiconductor Nanocrystallites, J. Am. Chem. Soc., 115, pp.8706-8715. 1993. Nagayama, K., Two-dimensional Self-assembly of Colloids in Thin Liquid Film, Colloid. Surf. A, 109, pp.363-374. 1996. Nakamura, N., K. Hashimoto and T. Matsunaga. Immunoassay Method for the Determination of Immunoglobulin G Using bacterial Magnetic Particle, Anal. Chem. pp.268-272. 1991. Ng, W.L., M.A. Lourenco, R.M. Gwilliam, S. Ledain, G. Shao and K.P. Homewood. An Efficient Room-temperature Silicon-based Light-emitting Diode, Nature, 410, pp.192-194. 2001. Ni, P., P. Dong, B. Cheng, X. Li and D. Zhang. Synthetic SiO2 Opals, Adv. Mater., 13, pp.437-441. 2001. Noda, S., N. Yamamoto and A. Sasaki. New Realization Method for ThreeDimensional Photonic Crystal in Optical Wavelength Region, Jpn. J. Appl. Phys., 35, pp.l909-912. 1996. Noda, S., N. Yamamoto, M. Imada, H. Kobayashi and M. Okano. Alignment and Stacking of Semiconductor Photonic Bandgaps by Wafer-fusion, J. Lighwave Tech., 17, pp.1948-1955. 1999. 247 References Noda, S., K. Tomoda, N. Yamamoto and A. Chutinan. Full Three-Dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths, Science, 289, pp.604-606. 2000a. Noda, S., A. Chutinan and M. Imada. Trapping and Emission of Photons by a Single Defect in a Photonic Bandgap Structure, Nature, 407, pp.608-610. 2000b. Norris, D.J. and Y.A. Vlasov. Chemical Approaches to Three-dimensional Semiconductor Photonic Crystals, Adv. Mater., 13, pp.371-376. 2001. Norris, D.J., E.G. Arlinghaus, L. Meng, R. Heiny and L.E. Scriven. Opaline Photonic Crystals: How Does Self-assembly Work? Adv. Mater., 16, pp.1393-1399. 2004. Notomi, M., K. Yamada, A. Shinya, J. Takahashi, C. Takahashi and I. Yokohama. Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs, Phys. Rev. Lett., 87, pp.253902-1-4. 2001. Nozawa, K., H. Gaihanou, L. Raison, P. Panizza, H. Ushiki, E. Sellier, J.P. Delville and M.H. Delville. Smart Control of Monodisperse Stöber Silica Particles Effect of Reactant Addition Rate on Growth Process, Langmuir, 21, pp.1516-1523. 2005. Okubo, T., T. Miyamoto, K. Umemura and K. Kobayashi, Seed Polymerization of Tetraethyl Orthosilicate in the Presence of Colloidal Silica Spheres, Colloid Polym. Sci., 279, pp.1236-1240. 2001. Özbay, E., E. Michel, G. Tuttle, R. Biswas, M.M. Sigalas and K.-M. Ho. Inhibited Spontaneous Emission in Solid-state Physics and Electronics, Appl. Phys. Lett., 64, pp.2059-2062. 1994a. Özbay, E., A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C.T. Chan, C. M. Soukoulis and K.-M. Ho Measurement of a Three-dimensional Photonic Band Gap in a Crystal Structure Made of Dielectric Rods, Phys. Rev. B, 50, pp.1945-1949. 1994b. Özbay, E., G. Tuttle, M.M. Sigalas, C.M. Soukoulis and K.-M. Ho. Defect Structures in a Layer-by-layer Photonic Band-gap Crystal, Phys. Rev. B, 51, pp.13961-13965. 1995. Ozin, G.A. and S.M. Yang. The Race for the Photonic Chip: Colloidal Crystal Assembly in Silicon Wafers, Adv. Funct. Mater. 11, pp.95-103. 2001. Painter, O., R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, P.D. Dapkus and I. Kim. Two-dimensional Photonic Band-gap Defect Mode Laser, Science, 284, pp.1819-1821. 1999. Palacios-Lidón, E., J. F. Galisteo-lópez, B. H. Juárez and C. López. Engineered Planar Defects Embedded in Opals, Adv. Mater. 16, pp.341-345. 2004, Pan, G., R. Kesavamoorthy and S.A. Asher. Optically Nonlinear Bragg Diffracting Nanosecond Optical Switches, Phys. Rev. Lett., 78, pp.3860-3863. 1997. 248 References Park, S.H. and Y. Xia. Fabrication of Three-dimensional Macroporous Membranes with Assemblies of Microspheres as Templates, Chem. Mater., 10, pp.1745-1747. 1998. Park, S.H. and Y. Xia, Assembly of Mesoscale Particles Over Large Areas and Its Application in Fabricating Tunable Optical Filters, Langmuir, 15, pp.266-273. 1999. Park, J.H. and T.S. Sudarshan. (ed). Chemical vapor deposition. OHIO: Materials Park press. 2001. Paunov, V.N., P.A. Kralchevsky, N.D. Denkov and K. Nagayama. Lateral Capillary Forces Between Floating Submillimeter Particles, J. Colloid Interface Sci., 157, pp.100-112. 1993. Pendry J.B. and A. MacKinnon, Calculation of Photon Dispersion Relations, Phys. Rev. Lett., 69, pp.2772–2775. 1992. Perpall, M.W., K.P.U. Perera, J. DiMaio, J. Ballato, S.H. Foulger and D.W. Smith. Novel Network Polymer for Templated Carbon Photonic Crystal Structures, Langmuir, 19, pp.7153-7156. 2003. Philipse, A.P. and A. Vrij. Preparation and Properties of Nonaqueous Model Dispersions of Chemically Modified, Charged Silica Spheres, J. Colloid Interface Sci., 128, pp.121-136. 1989. Piirma, I. (ed). Emulsion Polymerization. New York: Academic press. 1982. Poborchii, V. V., T. Tada and T. Kanayama. A Visible-Near Infrared Range Photonic Crystal Made Up of Si Nanopillars, Appl. Phys. Lett. 75, pp.3276-3278. 1999. Povinelli, M.L., S.G. Johnson, S. Fan and J.D. Joannopoulos. Emulation of TwoDimensional Photonic Crystal Defect Modes in a Photonic Crystal with a Threedimensional Photonic Band Gap, Phys. Rev. B, 64, pp.075313. 2001. Pradhan, R.D., I.I. Tarhan and G.H. Watson. Impurity Modes in the Optical Stop Bands of Doped Colloidal Crystals, Phys. Rev. B, 54, pp.13721-13726. 1996. Pradhan, R.D., J.A. Bloodgood and G.H. Watson. Photonic Band Structure of bcc Colloidal Crystals, Phys. Rev. B, 55, pp.9503-9507. 1997. Pronk, S. and D. Frenkel. Can Stacking Faults in Hard-sphere Crystals Anneal out Spontaneously? J. Chem. Phys., 110, pp.4589-4592. 1999. Qi, M. and H.I. Smith. Achieving Nanometer-scale, Controllable Pattern Shifts in Xray Lithography Using an Assembly-tilting Technique, J. Vac. Sci. Technol. B, 20, pp.2991-2994. 2002. Qi, M., E. Lidorikis, P.T. Rakich, S.G. Johnson, J.D. Joannopoulos, E.P. Ippen, and H. I. Smith. A Three-dimensional Optical Photonic Crystal with Designed Point Defects, Nature, 429, pp.538-542. 2004. 249 References Qiu, M. and S. He. A Nonorthogonal Finite-Difference Time-domain Method for Computing the Band Structure of a Two-dimensional Photonic Crystal with Dielectric and Metallic Inclusions, J. Appl. Phys., 87, pp.8268-8275. 2000. Rau, C. and W. Kulisch. Mechanisms of Plasma Polymerization of Various Silicoorganic Monomers, Thin Solid Films, 249, pp.28-37. 1994. Reculusa, S., C. Poncet-Legrand, S. Ravaine, C. Mingotaud, E. Duguet and E. Bourgeat-Lami. Syntheses of Raspberry Like Silica/polystyrene Materials, Chem. Mater., 14, pp.2354-2359. 2002. Rengarajan, R., P. Jiang, D.C. Larrabee, V.L. Colvin and D.M. Mittleman. Colloidal Photonic Superlattices, Phys Rev. B, 64, pp.205103-1-3. 2002. Rhodes K.H., S.A. Davis, F. Caruso, B. Zhang and S. Mann. Hierarchical Assembly of Zeolite Nanoparticles into Ordered Macroporous Monoliths using Core-shell Building Blocks, Chem. Mater., 12, pp.2832-2834. 2000. Richetti, P., J. Prost and P. Barois. Two-dimensional Aggregation and Crystallization of a Colloidal Suspension of Latex Spheres, J. Phys. Lett., 45, pp.L1137-L1143. 1984. Rogach, A.L., N.A. Kotov, D.S. Koktysh, J.W. Ostrander and G.A. Ragoisha. Electrophoretic Deposition of Latex-Based 3D Colloidal Photonic Crystals: A Technique for Rapid Production of High-Quality Opals, 12, pp.2721 – 2726. 2000. Romanov S.G., P. Ferrand, M. Egen, R Zentel., J. Ahopelto, N. Gaponik, A. Eychmüller, A.L. Rogach and C.M.S. Torres. Exploring Integration Prospects of OpalBased Photonic Crystals, Syn. Met., 139, pp.701–704. 2003. Russell P. Photonic Crystal Fibers, Science, 299, pp.358-362. 2003. Ryoo, R., S. H. Joo and S. Jun, Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation, J. Phys. Chem. B, 103, pp.77437746. 1999. Sanchez, C., G.J.DeA.A. Soler-Illia, F. Ribot, T. Lalot, C.R. Mayer and V. Cabuil. Designed Hybrid Organic-Inorganic Nanocomposites from Functional Nanobuilding Blocks, Chem. Mater., 13, pp.3061-3083. 2001, Sanders, J. V., Color of Precious Opal, Nature, 204, pp.1151-1153. 1964. Satpathy, S., Z. Zhang and M.R. Salehpour. Theory of Photon Bands in ThreeDimensional Periodic Dielectric Structures, Phys. Rev. Lett., 64, pp.1239-1242. 1990. Sayari, A. and S. Hamoudi, Periodic Mesoporous Silica-Based Organic-Inorganic Nanocomposite Materials, Chem. Mater., 13, pp.3151-3168. 2001. Schroden, R.C., M. Al-Daous, C.F. Blanford and A. Stein. Optical Properties of Inverse Opal Photonic Crystals, Chem. Mater. 14, pp.3305-3315. 2002. 250 References Schüth, F. Endo- and Exotemplating to Create High-surface-area Inorganic Materials, Angew. Chem. Int. Ed., 42, pp.3604-3622. 2003. Service, R.F. Building Better Photonic Crystals, Science, 295, pp.2399. 2002. Sharp D.N., M. Campbell, E.R. Dedman, M.T. Harrison, R.G. Denning and A.J. Turberfield. Photonic Crystals for the Visible Spectrum by Holographic Lithography. Opt. Quantum. Electon. 34, pp. 3-12. 2002. Shelekhina, V.M., O.V. Prokhorov, P.A. Vityaz, A.P. Stupak, S.V. Gaponenko and N.V. Gaponenko. Towards 3D Photonic Crystals, Syn. Met. 124, pp.137-139. 2001. Shen, Y.Z., C.S. Friend, Y. Jiang, D. Jakubczyk, J. Swiatkiewicz and P.N. Prasad. Nanophotonics: Interactions, Materials, and Applications, J. Phys. Chem. B, 104, pp.7577-7587. 2000. Shim, S.-E., Y.-J. Cha, J.-M. Byun and S. Choe. Size Control of Polystyrene Beads by Multistage Seeded Emulsion Polymerization, J. Appl. Polym. Sci., 71, pp.2259-2269. 1999. Sievenpiper, D.F., M.E. Sickmiller and E. Yablonovitch. 3D Wire Mesh Photonic Crystals, Phys. Rev. Lett., 76, pp.2480-2483. 1996. Sigalas, M.M., J.S. McCalmont, K.-M. Ho and G. Tuttle. Theoretical and Experimental Study of Silicon-based Angular Filters, Appl. Phys. Lett., 68, pp.35253527. 1996 Sözüer, H.S. and J.W. Haus. Photonic Bands: Convergence Problems with the PlaneWave Method, Phys. Rev. B, 45, pp.13962-13972. 1992. Stachowiak, A.N., A. Bershteyn, E. Tzatzalos, D.J. Irvine. Bioactive Hydrogels with an Ordered Cellular Structure Combine Interconnected Macroporosity and Robust Mechanical Properties, Adv. Mater., 17, pp.399-403. 2005. Steigerwald, M.L., Selective Syntheses of Iron Monotelluride and Iron Ditelluride from Organometallic Precursors. Synthesis and Pyrolysis of [Cp(Et3P)(CO)Fe]2(Te)n, Chem. Mater., 1, pp.52-57. 1989. Stein, A., B.J., Melde and R.K. Schroden. Hybrid Inorganic-Organic Mesoporous Silicates - Nanoscopic Reactors Coming of Age, Adv. Mater. 12, pp.1403-1419. 2000. Stein, A. Sphere Templating Methods for Periodic Porous Solids, Micropor. Mesopor. Mater., 44-45, pp.227-239. 2001. Stein, A. Advances in Microporous and Mesoporous Solids-highlights of Recent Progress, Adv. Mater., 15, pp.763-775. 2003. Stöber, W., A. Fink and E. Bohn. Controlled Growth of Monodisperse Silica Spheres in the Micron size Range, J. Colloid Interface Sci., 26, pp.62-69. 1968. 251 References Stoffer, R. Hoekstra, H.J.W.M. R.M. De Ridder, E. Van Groesen, F.P.H. and Van Beckum. Numerical Studies of 2D Photonic Crystals: Waveguides, Coupling Between Waveguides and Filters, Qpt. Quantum Electron., 32, pp.947-761. 2000. Subramanian, G., V.N. Manoharan, J.D. Thorne and D.J. Pine. Ordered Macroporous Materials by Colloidal Assembly: a Possible Route to Photonic Bandgap Materials, Adv. Mater., 11, pp.1261-1265. 1999. Subramania, G., K. Constant, R. Biswas, M.M. Sigalas and K.-M. Ho. Inverse FaceCentered Cubic Thin Film Photonic Crystals, Adv. Mater., 13, pp.443-446. 2001. Sugahara, S., K. Usami and M. Matsumura. A Proposed Organic-Silica Film for Intermetal-dielectric Application, Jpn. J. Appl. Phys., 38, pp.1428-1432. 1999. Sumida, T., Y. Wada, T. Kitamura and S. Yanagida. Electrochemical Preparation of Macroporous Polypyrrole Films with Regular Arrays of Interconnected Spherical Voids, Chem. Comm., pp.1613-1614. 2000. Talneau, A., L.L. Gouezigou and N. Bouadma. Quantitative measurement of low propagation losses at 1.55 m m on planar photonic crystal waveguides, Opt. Lett., 26, pp.1259-1261. 2001. Tarhan, İ.İ., M.P. Zinkin and G.H. Watson. Interferometric Technique for the Measurement of Photonic Band Structure in Colloidal Crystals, Opt. Lett., 20, pp.1571-1573. 1995. Tarhan, İ.İ. and G. H. Watson. Photonic Band Structure of fcc Colloidal Crystals, Phys. Rev. Lett., 76, pp.315-318. 1996. Taton, T.A. and D.J. Norris. Defective Promise in Photonics, Nature, 416, pp.685-686. 2002. Tessier, P.M., O.D. Velev, A.T. Kalambur, A.M. Lenhoff, J.F. Rabolt and E.W. Kaler. Structured Metallic Films for Optical and Spectroscopic Applications via Colloidal Crystal Templating, Adv. Mater., 13, pp.396-400. 2001. Tétreault, N., H. Míguez, S.M. Yang, V. Kitaev, and G.A. Ozin. Refractive Index Patterns in Silicon Inverted Colloidal Photonic Crystals, Adv. Mater. 15, pp.1167-1172. 2003. Tétreault, N., A. Mihi, H. Míguez, I. Rodríguez, G.A. Ozin, F. Meseguer and V. Kitaev. Dielectric Planar Defects in Colloidal Photonic Crystal Films, Adv. Mater., 16, pp.346-345. 2004. Thylén, L., M. Qiu and S. Anand. Photonic crystals – A Step towards Intergated Circuits for Photonics, ChemPhysChem, 5, pp.1268-1283. 2004. Tissot, I., C. Novat, F. Lefebvre and E. Bourgeat-Lami. Hybrid Latex Particles Coated with Silica, Macromolecules, 34, pp.5737-5739. 2001. 252 References Tissot, I., J.P. Reymond, F. Lefebvre and E. Bourgeat-Lami. SiOH-functionalized Polystyrene Latexes: a Step Toward the Synthesis of Hollow Silica Nanoparticles, Chem. Mater., 14, pp.1325-1331. 2002. Toader, O. and S. John, Proposed Square Spiral Microfabrication Architecture for Large Three-Dimensional Photonic Band Gap Crystals, Science, 292, pp.1133-1135. 2001. Trau, M., D.A. Saville and I.A. Aksa. Field-induced Layering of Colloidal Crystal, Science, 272, pp.706-709. 1996. Uchida, Y., T. Katoh and M. Oikawa. Characterization of Low-k Porous Silica Films Incorporated with Alkylene Groups, Mater. Sci. Semicond. Process., 5, pp.259-264. 2003. Van Blaaderen, A., R. Ruel and P. Wiltzius. Template-Directed Colloidal Crystallization, Nature, 385, pp.321-324. 1997. Velikov, K.P., C.G. Christova, R.P.A. Dullens and A. van Blaaderen. Layer-by-Layer Growth of Binary Colloidal Crystals, Science, 296, pp.106-109. 2002. Velev, O.D., K. Furusawa and K. Nagayama. Assembly of latex Particles by Using Emulsion Droplets as Templates 1. Microstructured Hollow Spheres, Langumir, 12, pp.2374-2384. 1996a. Velev, O.D., K. Furusawa and K. Nagayama. Assembly of Latex Particles by Using Emulsion Droplets as Templates. 2. Ball-like and Composite Aggregates, Langmuir, 12, pp.2385-2391. 1996b. Velev, O.D. and K. Nagayama. Assembly of Latex Particles by Using Emulsion Droplets. 3. Reverse (water in oil) System, Langmuir, 13, pp.1856-1859. 1997. Velev, O.D., T.A. Jede, R.F. Lobo and A.M. lenhoff. Porous Silica via Colloidal Crystallization, Nature, 389, pp.447-448. 1997. Velve, O.D., T.A. Jede, R.F. Lobo and A.M. Lenhoff. Microstructured Porous Silica Obtained via Colloidal Crystal Templates, Chem. Mater., 10, pp.3597-3602. 1998. Velev, O.D., P.M. Tessier, A.M. Lenhoff and E.W Kaler. A Class of Porous Metallic Nanostructures, Nature, 401, pp.548. 1999. Velev, O.D., A.M. Lenhoff and E.W. Kaler. A Class of Microstructured Particles Through Colloidal Crystallization, Science, 287, pp.2240-2243. 2000. Velev, O.D. and A.M. Lenhoff. Colloidal Crystals as Templates for Porous Materials, Current Opinion Colloid Int. Sci., 5, pp.56-63. 2000. Velev, O.D. and E.W. Kaler. Structured Porous Materials via Colloidal Crystal Templating: From Inorganic Oxides to Metals, Adv. Mater., 12, pp.531-534. 2000. 253 References Velikov K.P., A. Moroz and A. van Blaaderen. Photonic Crystals of Core-shell Colloidal Particles, Appl. Phys Lett., 80, pp.49-51. 2002. Vlasov, Y.A., N. Yao and D.J. Norris. Synthesis of Photonic Crystals for Optical Wavelengths from Semiconductor Quantum, Adv. Mater., 11, pp.165-169. 1999. Vlasov, Y.A., X.-Z. Bo, J.C. Sturm and D.J. Norris. On-chip Natural Assembly of Silicon Photonic Bandgap crystals, Nature, 414, pp.289-293. 2001. Vogelaar L., W., Nijdam, H.A.G.M., Van Wolferen, R.M.de Ridder, F.B. Segerink, E., Flück, L. Kuipers and N.F., van Hulst. Large Area Photonic Crystal Slabs for Visible Light with Waveguiding Defect Structures: Fabrication with Focused Ion Beam Assisted laser Interference Lithography, Adv. Mater., 12, pp.1551-1554. 2001. Wang D., R.A. Garuso and F. Garuso. Synthesis of Macroporous Titania and Inorganic Composite Materials from Coated Colloidal Spheres—a Novel Route to Tune Pore Morphology, Chem. Mater., 13, pp.364-371. 2001. Wang, W., B. Gu, L. Liang and W. Hamilton. Fabrication of Two- and ThreeDimensional Silica Nanocolloidal Particle Arrays, J. Phys. Chem. B, 107, pp.34003404. 2003. Wang, D. and H. Möhwald. Template-Directed Colloidal Self-assembly—The Route to Top-down Nanochemical Engineering, J. Mater. Chem., 14, pp. 459-468. 2004a. Wang, D. and H. Möhwald. Rapid Fabrication of Binary Colloidal Crystals by Stepwise Spin-coating, Adv. Mater., 16, pp.244-247. 2004b. Wang, H., J.-S. Yu, X.D. Li and D.-P. Kim. Inorganic Polymer-derived Hollow SiC and Filled SiCN Sphere Assemblies from a 3DOM Carbon Template, Chem. Commun., pp.2352-2353. 2004. Wang X.D., E. Graugnard, J.S. King, Z.L. Wang and C.J. Summers. Large-scale Fabrication of Ordered Nanobowl Arrays, Nano Lett., 4, pp.2223-2226. 2004. Ward A.J. and J.B. Pendry. Refraction and Geometry in Maxwell’s Equations, J. Mod. Opt., 43, pp.773-793. 1996. Wight, A.P. and M.E., Davis, Design and Preparation of Oragnic-Inorganic Hybrid Catalysts, Chem. Rev., 102, pp.3589-3614. 2002. Wiersma, D.S., P. Bartolini, A. Lagendijk and R. Righini, Localization of Light in a Disordered Medium, Nature, 390, pp.671-673. 1997. Wijnhoven, J.E.G.J. and W.L. Vos. Preparation of Photonic Crystals Made of Air Spheres in Titania, Science, 281, pp.802-804. 1998. 254 References Wijnhoven J.E.G.I., S.J.M. Zevenhuizen, M.A. Hendriks, D. Vanmaekelbergh, J.J. Kelly and W.L. Vos. Electrochemical Assembly of Ordered Macropores in Gold, Adv. Mater., 12, pp.888-890. 2000. Wijnhoven, J.E.G.J., L. Bechger and W.L. Vos, Fabrication and Characterization of Large Macroporous Photonic Crystals in Titania, Chem. Mater., 13, pp.4486-4499. 2001. Wilcox, D.L., M. Berg, T. Bernat, D. Kelleman and J.K. Cochran. (ed). Hollow and Solid Spheres and Microspheres: Science and Technology Associated with Their Fabrication and Application. In Mater. Res. Soc. Proc., Vol. 372, December 1995, MRS Pittsburgh, PA, USA. Winzer, M., M. Kleiber, N. Dix and R. Wiesendanger. Fabrication of Nano-dot- and Nano-ring-arrays by Nanosphere Lithography, Appl. Phys. A, 63, pp.617-619. 1996. Wong, S., V. Kitaev and G.A. Ozin. Colloidal Crystals Films: Advances in Universality and Perfection, J. Am. Chem. Soc., 125, pp.15589-15598. 2003. Woodcock, L.V., Entropy Difference between the Face-centered Cubic and Hexagonal close-packed Crystal Structures, Nature, 385, pp.141-142. 1997. Woodcock, L.V., Reply: Entropy Difference between Crystal Phases, Nature, 385, pp.235-237.1997. Xia, Y., B. Gates and S.H. Park. Fabrication of Three-dimensional Photonic Crystals for Use in the Spectral Region from Ultraviolet to Near-infrared, J. Lightwave Tech., 17, pp.1956-1962. 1999. Xia, Y., B. Gates, Y. Yin and Y. Lu. Monodispersed Colloidal Spheres: Old Materials with New Applications, Adv. Mater., 12, pp.693-713. 2000. Xia, Y., B. Gates and Z.-Y Li. Self-assembly Approaches to Three-dimensional Photonic Crystals. Adv. Mater., 13, pp.409-413. 2001. Xu, L., W.L. Zhou, C. Frommen, R.H. Baughma, A.A. Zakhidov, L. Malkinski, J.Q. Wang and J.B. Wiley, Electrodeposited Nickel and Gold Nanoscale Metal meshes with Potentially Interesting Photonic Properties, Chem. Comm., pp.997-998. 2000. Xu X., G. Freidman, K.D. Humfeld, S.A. Majetich and S.A. Asher. Superparamagnetic Photonic Crystals, Adv. Mater., 13, pp.1681-1684. 2001. Yablonovitch, E. Inhibited Spontaneous Emission in Solid-state Physics and Electronics, Phys. Rev. Lett., 58, pp.2059-2062. 1987. Yablonovitch, E. and Gmitter T.J. Photonic Band Structure: the Face-centered-cubic Case, Phys. Rev. Lett., 63, pp.1950-1953. 1989. 255 References Yablonovitch, E., T.J. Gmitter, and K.M. Leung Photonic Band Structure: The FaceCenterd-Cubic Case Employing Nonspherical Atoms. Appl. Phys. Lett., 67, pp.22952298. 1991. Yablonovitch, E. Photonic Crystals: Semiconductors of Light. Sci. Am., 67, pp.47-52. 2001. Yamanaka J., M. Murai, Y. Iwayama, M. Yonese, K. Ito and T. Sawada. OneDirectional Crystal Growth in Charged Colloidal Silica Dispersions Driven by Diffusion of Base, J. Am. Chem. Soc., 126, pp.7156-7157. 2004. Yan, F. and W.A., Goedel. A simple and Effective Method for the Preparation of Porous Membranes with Three-dimensionally Arranged Pores, Adv. Mater., 16, pp.911-915. 2004. Yan, F. and W.A., Goedel. The Preparation of Mesoscopic Rings in Colloidal Crystal Templates, Angew. Chem. Int. Ed., 44, pp.2084-2088. 2005. Yan, H., C.F. Blanford, B.T. Holland, M Parent, W.H. Smyrl and A. Stein. A Chemical Synthesis of Periodic Macroporous NiO and Metallic Ni, Adv. Mater., 11, pp.1003-1006.1999. Yan, H., C.F. Blanford, B.T. Holland, W. H. Smyrl and A. Stein. General Synthesis of Oeriodic Macroporous Solids by Templated salt Precipitation and Chemical Conversion, Chem. Mater., 12, pp.1134-1141. 2000. Yan, H., C.F. Blanford, J.C. Lytle, C.B. Carter, W.H. Smyri and A. Stein. Influence of Processing Conditions on Structures of 3D Ordered Macroporous Metals Prepared by Colloidal Crystal Templating, Chem. Mater., 13, pp.4314-4321. 2001. Yan Q., Z. Zhou and X. S. Zhao. Inward-Growing Self-Assembly of Colloidal Crystal Films on Horizontal Substrates, Langmuir, 21, pp.3158 – 3164. 2005. Yang, P., T. Deng, D. Zhao, P. Feng, D. Pine, B.F. Chmelka, G.M. Whitesides and G.D. Stucky. Hierarchically Ordered Oxides, Science, 282, pp.2244-2246.1998. Yang, S.M. and G.A. Ozin. Opal Chips: Vertical Growth of Colloidal Crystal Patterns Inside Silicon Wafers, Chem. Comm., 24, pp.2507-2508. 2000. Yang, S.M., H. Míguez and G.A. Ozin. Opal Circuits of Light-Planarized Microphotonic Crystal Chips, Adv. Funct. Mater., 12, pp.425-431. 2002. Yates H.N., M.E. Pemble, H. Míguez, A. Blanco, C. López, F. Meseguer and L. Vázquez. Atmospheric Pressure MOCVD Growth of Crystalline InP in Opals, J. Crystal Growth, 193, pp.9-15. 1998. Ye, Y.-H., T.S. Mayer, I.-C. Khoo, I.B. Divliansky, N. Abrams and T.E. Mallouk. Self-assembly of Three-dimensional Photonic-crystals with Air-core Line defects, J. Mater. Chem., 12, pp.3637-3639. 2002. 256 References Yi G.-R., J.H. Moon and S.-M. Yang, Ordered Macroporous Particles by Colloidal Templating, Chem. Mater., 13, pp.2613-2618. 2001. Yi G.-R., J.H. Moon, V.N. Manoharan, D.J. Pine and S.M. Yang. Packings of Uniform Microspheres with Ordered Macropores Ffabricated by Double Templating, J. Am. Chem. Soc., 124, pp.13354-13355. 2002. Yin, Y., Y. Lu, B. Gates and Y. Xia. Template-assisted Self-Assembly: a Practical Route to Complex Aggregates of Monodisperse Colloids with Well-defined Sizes, Shapes, and Structures, J. Am. Chem. Soc., 123, pp. 8718-8729.2001. Yin, Y. and Y. Xia. Self-Assembly of Monodispersed Spherical Colloids into Complex Aggregates with Well-Defined Sizes, Shapes and Structures, Adv. Mater., 13, 267-271. 2001. Yin, Y. and Y. Xia. Growth of Large Colloidal Crystals with Their (100) Planes Orientated Parallel to the Surfaces of Supporting Substrates. Adv. Mater.,14, pp.605608. 2002. Yoon, S.B., K. Sohn, J.Y. Kim, C.-H. Shin, J.-S. Yu and T. Hyeon, Fabrication of Carbon Capsules with Hollow Macroporous Core/mesoporous Shell Structures, Adv. Mater., 14, pp.19-21. 2002. Yu, J.S., S.B. Yoon and G.S. Chai. Ordered Uniform Porous Carbon by Carbonization of Sugars, Carbon, 39, pp.1442-1446. 2001. Yu, J.S., S. Kang, S.B. Yoon and G. Chai. Fabrication of Ordered Uniform Porous Carbon Networks and Their Application to a Catalyst Supporter, J. Am. Chem. Soc., 124, pp.9382-9383. 2002. Zakhidov, A.A., R.H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S.O. Dantas, J. Marti and V.G. Ralchenko. Carbon Structures with Three-dimensional Periodicity at Optical Wavelengths, Science, 282, pp.897-901. 1998. Zeng, F., Z. Sun, C. Wang, B. Ren, X. Liu and Z. Tong. Fabrication of Inverse Opal via Ordered Highly Charged Colloidal Spheres, Langmuir, 18, pp.9116-9120. 2002. Zhang, Z. and S. Satpathy. Electromagnetic Wave Propagation in Periodic Structures: Bloch Wave Solution of Maxwell’s Equations, Phys. Rev. Lett., 65, pp.2650-2653. 1990. Zhang, J.H., P. Zhang, Z.L. Wang, W.Y. Zhang and N.B. Ming, Preparation of Monodisperse Silica Particles with Controllable Size and Shape, J. Mater. Res. 18, pp.649-653. 2003. Zhou, Z. and X.S. Zhao. Flow-Controlled Vertical Deposition Method for Fabrication of Photonic Crystals, Langmuir, 20, pp.1524-1526. 2004. Zhou, Z., X.S. Zhao and X.T. Zeng. Surface Patterning with Colloidal Microspheres. Surf. Coat. Technol., 198, pp.178-183. 2005. 257 References Zhou, Z. and X.S. Zhao. Opal and Inverse Opal Fabricated with a Flow-Controlled Vertical Deposition Method, Langmuir, 21, pp.4717-4723. 2005. Zhu, G., S. Qiu, F. Gao, D. Li, Y. Li, R. Wang, B. Gao, B. Li, Y. Guo, R. Xu, Z. Liu and O. Terasaki. Template-assisted Self-assembly of Macro-micro Bifunctional Porous Materials, Mater. Chem., 11, pp.1687-1697. 2001. Zou, D., S. Ma, R. Guan, M. Park, L. Sun, J.J. Aklonis and R. Salovey, Model Filled Polymers. V. Synthesis of Crosslinked Monodisperse Polymethacrylate Beads, J. Polym. Sci. Part A: Polym. Chem., 30, pp.137-144. 1992. 258 Appendix Appendix List of publications coming from this thesis work Papers published (or in press) in international refereed journal (1) Zhou Z. and X.S. Zhao. Flow-controlled Vertical Deposition Method for Fabrication of Photonic Crystals, Langmuir, 20, pp.1524-1526. 2004. (2) Zhou Z., X. Bao and X.S. Zhao. Synthesis, Characterization and Optical Properties of Ordered Macroporous Organosilicas, Chem. Commun., pp.1376-1377. 2004. (3) Zhou Z. and X.S. Zhao. Opal and Inverse Opal Fabricated with a Flow-Controlled Vertical Deposition Method, Langmuir, 21, pp.4717-4723. 2005. (4) Zhou Z., Q. Yan, F. Su and X.S. Zhao. Replicating Novel Carbon Nanostructures with 3D Macroporous Silica Template, J. Mater. Chem., 26, pp. 2569-2574. 2005. (5) Zhou Z., X.S. Zhao and X.T. Zeng. Surface Patterning with Thin Carbon Films by Nanosphere Lithography. Surface Coatings Tech., 198, pp.178-183. 2005. (6) Yan Q., Z. Zhou and X.S. Zhao. Inward Self Assembly of Colloidal Crystal Films on Horizontal Substrate, Langmuir, 21, pp.3185-3164. 2005. (7) Su F., L. Lv, Z. Zhou and X.S. Zhao. Synthesis and Characterization of Microporous carbons Templated by NH4-Y Zeolite, Carbon, 42, pp.2821-1831. 2004. (8) Yan Q., Z. Zhou, S.J. Chua and X.S. Zhao. Line Defects Embedded in ThreeDimensional Photonic Crystals, Adv. Mater., 17, pp.1917-1920. 2005. (9) Yan Q., Z. Zhou and X.S. Zhao. Introduction of Three-Dimensional Extrinsic Defects into Colloidal Photonic Crystals, Chem. Mater., 17, pp.3069-3071. 2005. (10) Zhao X.S., Z. Zhou, M. A. Chong, X. Bao, F. Su, W. Guo, Q. Yan and L. Lu. Template Approaches to Fabrication of Novel Porous Materials for Emerging Applications, J. Mater. Sci. Technol., 21, pp.20-24. 2005. (11) Su F., X.S. Zhao, Y. Wang, J. Zeng, Z. Zhou and J.Y. Lee. Synthesis of Graphitic Ordered Macroporous Carbon with a 3D Interconnected Pore Structure for Electrochemical Applications, J. Phys. Chem. B, 109, pp.20200-20206. 2005. (12) Yan Q., Z. Zhou and X.S. Zhao. Fabrication of Colloidal Crystal Heterostructures using a Horizontal Deposition Method, J Crystal Growth, 288, 205-208. 2006. (13) Su F., L. Lv, Z. Zhou and X. S. Zhao. Synthesis and Characterization of Microporous Carbons Templated by NH4-Y Zeolite, Carbon, 42, pp.2821-1831. 2004. 259 Appendix Papers submitted to international refereed journal (14) F. Su, X.S. Zhao, Z. Zhou, J. Zeng and J.Y. Lee. Ordered Graphitic Macroporous Carbon with a Three-Dimensional Interconnected Pore Structure as a Pt Catalyst Support for Room-Temperature Methanol Oxidation, Adv. Mater., 2005. (Submitted). Book chapter: (15) Zhou Z. and X. S. Zhao. 3D Macroporous Photonic Materials Templated by SelfAssembled Colloidal Spheres. In Nanoporous Materials - Science and Engineering, Vol. 4, ed by G.Q. Lu and X.S. Zhao, pp. 206-236. UK: Imperial College Press. 2004. (16) Su F., Z. Zhou, W. Guo and X.S. Zhao. Template Approaches to Synthesis of Porous Carbons. In Chemistry and Physics of Carbon, Vol. 30, ed by L.J. Radovic. New York: Marcel Dekker. 2005. (in press) Presentations and abstracts published in conference proceedings (17) Zhou Z. and X.S. Zhao. Fabrication of Organosilica Photonic Crystal Films with Tunable Refractive Index. In the Ninth Optoelectronics and Communications Conference/Third International Conference on Optical Internet (OECC/COIN2004), July 2004, Yokohama, Japan. (18) Zhao X.S., Z. Zhou, Q.F. Yan and S.J. Chua. Photonic Crystals - Fabrication and Simulation (invited). In NUS-NTU Nanoscience and Nanotechnolgy, February 2004, NUS, Singapore. (19) Zhou Z, X.S. Zhao and X. Zeng. Surafce Patterning with Thin Carbon Films (invited). In Thin films 2004 & Nanotechnology 2004, July 2004, Singapore. (20) Zhao X.S., Z. Zhou and S.J. Chua. Flow-Controlled Evaporation Method for Self Assembly of Colloidal Spheres into 3D Photonic Crystals. In Microelectronics, MEMS, and Nanotechnology 2003, December 2003, Perth, Australia. (21) Zhou Z, X.S. Zhao and S.J. Chua. 3D Photonic Bandgap Materials for Photonic Device Applications. In 2nd International Conference on Materials for Advanced Technologies (ICMAT 2003) International Conference in Asia 2003, December 2003, Singapore. (22) Zhou Z, X.S. Zhao and S.J. Chua. Ordered Macroporous Materials Structurally Templated by Colloidal Microspheres. In 3rd Pacific Basin Conference on Adsorption Science and Technology, May 2003, Kyongju, Korea. 260 [...]... incident wave is in the PBG (Yablonovitch, 2001) Two factors are important to the structure of the bandgaps, the RI contrast and average RI The former governs the gap width, the greater the contrast the wider the gap, while the latter governs the gap positions (López, 2003) Among them, 3D PCs have received considerable attention recently because they can possess a full bandgap, which can stop the propagation... microspheres, the concept of self- assembly can also be used to describe the design of molecules However, to facility the description, in this thesis the self- assembly process is only indicated microspheres In this method, the colloidal crystals are obtained by selfassembly process and used as templates to direct the infiltration of a secondary material of high RI Followed by removal of the colloidal spheres,... obtained (Vlasov et al., 2001; Blanco et al., 2000) Because the arrangement of the air pores in the inverse opal has significant effect on the creation of PBG, the fabrication of the colloidal crystal template is of importance in terms of the photonic properties of the final products Sedimentation, evaporation, electrophoresis, etc are the common methods for self- assembly of colloidal microspheres. .. direct the infiltration of high RI materials And the inverse opal after the removal of the colloidal spheres can have a complete PBG (Sözüer and Haus, 1992) As the PCs are templated from the colloidal crystals and the PBG of the PCs is sensitive to the defects, the fabrication of large domain, defect-free colloidal crystals is extremely important Various methods have been developed to fabricate the colloidal. .. of the colloidal film, which smoothes the surface with capillary force However, there are some problems existed in these methods Because of the evaporation of solvent and the sedimentation of colloidal spheres, there exists concentration gradient in the suspension, which leads to the non-uniform thickness of the colloidal crystals In addition, the sedimentation of the colloidal spheres also limits the. .. when dealing with 3D structures (Campbell et al., 2000; Qin et al., 2004) Recently, the self- assembly method has been demonstrated to be a good technique, which has many advantages over the lithography approaches (Stein, 2003; López, 2003) The self- assembly process mainly indicates the self organization of monodisperse colloidal microspheres into colloidal crystal (also known as synthetic opal) Because... that the periodic ordering is spontaneously adopted by the system through the thermal agitation (Brownian motion) of the particles These conditions limit the sizes of particles which can form colloidal crystals in the range from about 0.01 to about 5 microns Nanosphere lithography Nanosphere lithography using periodic self- assembled colloidal spheres such as polystyrene or silica particles as a mask... inexpensiveness, self- assembly approach can be a breakthrough in the research of PCs 1.1 Photonics and all-optical devices The research on semiconductors has led to a revolution in the electronics industry over the later half of the 20th century The improvement in electronics was mostly revealed as the downsizing of the integrated electron circuits In 1960s, Gordon Moore of Intel predicted that the number... Since these materials, especially the 3D PCs, have the potential to control the behavior of photons, they provide a promising future in photonics (Arsenault et al., 2004) Considering the advantages of photons over electrons, such as neglectable interaction and vector-wave character, PCs will make a revolution in the communication technologies Because of the promising properties of these PCs, the past... patterns Figure 7.2 Schematic illustration of carbon pattern formation (A) The thickness of the carbon layer is the same as the diameter of the spheres (B) The thickness of the carbon layer is less than the diameter of the spheres (C) The thickness of the carbon layer is larger than the diameter of the spheres Figure 7.3 SEM images of the growth of silica spheres on carbon pattern (A) and (B) 280 nm silica . 3D PHOTONIC BANDGAP MATERIALS FABRICATED WITH SELF-ASSEMBLED COLLOIDAL MICROSPHERES AS THE TEMPLATE ZHOU ZUOCHENG (PhD, NUS) A THESIS SUBMITTED FOR THE DEGREE. issues associated with self-assembled 3D PBG materials. One is the domain size of a self-assembled colloidal crystal (template) is not large and uniform enough to realize photonic devices. The other. light, just as the electron is the smallest unit of electronics. Central to photonics technology are photonic bandgap (PBG) materials, also know as photonic crystals (PCs), which are the analogy