Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 281 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
281
Dung lượng
3,5 MB
Nội dung
SYNTHETIC, STRUCTURAL AND REACTIVITY STUDIES OF INDENYL RUTHENIUM COMPLEXES NG SIN YEE (B.Sc.(Hons.), NUS) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSIPHY DEPARTMENT OF CHEMISTRY NATIONAL UNIVERSITY OF SINGAPORE 2006 Acknowledgments Acknowledgments I would like to express my gratitude to all those who have helped me in one way or another to complete this thesis. I am deeply indebted to my supervisors, Dr. Goh Lai Yoong and A/P Leong Weng Kee, for their invaluable encouragement and guidance. I wish to thank also my cosupervisors, A/P Marc Garland (Dept. of Chemical and Biomolecular Engineering, NUS) and Dr. Zhu Yinghuai (Institute of Chemical and Engineering Sciences (ICES), A*STAR) for their support. Thanks are also due to A/P W. K. Leong, Dr. L. L. Koh and Ms G. K. Tan from NUS for X-ray structures determination, Dr. R. D. Webster from the Research School of Chemistry, Australian National University for the electrochemical and EPR measurements; and Dr. W. Y. Fan for computational calculations. I am grateful to my past and present group members for helpful discussion and moral and social support: Dr. Z. Weng, Dr. X. Lu, Dr. R. K. S. Shin, Elaine Tay, Victor Ng, Kuan Seah Ling, Marlin Halim, Sim Hui Shan and Lau Hiu Fong, some of whom have turned my best friends. I also had the pleasure to work jointly with Tan Jialin, Fang Guihua and Chua Zhijie on related parts of my project. Especially, I would like to give my special thanks to my husband, Foo Chin Yuen, for believing in me and giving me the inspiration and moral support when it was most required. Without his patient love and understanding, I would not have completed my present work. I am also grateful to my parents, for their unconditional love, encouragement and motivation. Most importantly, I thank ICES for awarding me a research scholarship to pursue my doctorate degree. Table of Contents Table of Contents Summary……………………………………………………………………………… x Chart 1: Compounds encountered in this thesis……………………………………… .xv List of Tables………………………………………………………………………… xviii List of Figures……………………………………………………………………… .….xx List of Abbreviations…………………………………………………………… ……xxiii Chapter 1. General introduction 1.1 Coordination properties of the indenyl (Ind) ligand………………………………1 1.2 The effect of haptotropic shift in indenyl complexes…………………………… 1.3 Indenyl ruthenium [(Ind)Ru] complexes…………………………….………… 10 1.4 1.3.1 Reactivity studies of [(Ind)Ru] complexes………………………………11 1.3.2 [(Ind)Ru] complexes as catalysts……………………………………… .18 Objectives……………………………………………………………………… 21 Chapter 2. Reactivity studies of [IndRu] complexes towards P-, N- and S-containing ligands 2.1 Introduction………………………………………………………………………22 2.1.1 General properties and metal chemistry of 1,1’-bis(diphenylphosphino)ferrocene (dppf)………………………… 23 2.1.1.1 Spectroscopic properties……………………………………….24 2.1.1.2 Coordination modes……………………………………………25 2.1.1.3 Electrochemistry……………………………………… …… .27 i Table of Contents 2.1.1.4 2.1.2 Catalysis………………………………………………………28 General properties and catalytic applications of [(R)-1-[(S)-2(diphenylphosphino)ferrocenyl]ethyldicyclohexylphosphine] [(R)-(S)-Josiphos]…………………………………………………… …30 2.1.3 General properties of thiolates, heterocyclic thiolates and 1,1dithiolates 2.1.3.1 Ruthenium thiolato complexes……………………………… .31 2.1.3.2 Ruthenium complexes containing heterocyclic thione donors………………………………………………………… 34 2.1.3.3 2.2 Ruthenium complexes containing 1,1-dithiolate ligands………36 Results and Discussion 2.2.1 Reactions of [(L)Ru(PPh3)2Cl] (L = Cp 1a, Ind 1) with phosphine ligands 2.2.1.1 Reactions of with IndH(CH2)2PPh2, dppf and tripod……… .43 2.2.1.2 Reactions of 1a and with (R)-(S)- Josiphos and epimerization kinetics……………………………………….…50 2.2.1.3. Conclusion…………………………………………… ………55 2.2.2 Reactions of [(Ind)Ru(dppf)Cl] with N-containing ligands 2.2.2.1 Reaction of with CH3CN…………………………………….56 2.2.2.2 Reaction of with azide and cycloaddition reaction of the azido derivative with MeO2CC≡CCO2Me…………………… 57 2.2.2.3 Crystallographic studies……………………………………… 59 2.2.2.4 Conclusion………………………………………………….….61 ii Table of Contents 2.2.3 2.2.4 Reactions of [(Ind)Ru(dppf)Cl] with thiolates 2.2.3.1 Reactions of with thiolates and solvent dependence…………62 2.2.3.2 Reactions of and with HS(CH2)2PPh2…………………… .65 2.2.3.3 Crystallographic studies……………………………………… 67 2.2.3.4 Cyclic voltammetric and EPR measurements………………….70 2.2.3.5 Conclusion………………………………………………… …76 Reactions of [(Ind)Ru] complexes with heterocyclic thiols 2.2.4.1 Reactions of [(Ind)Ru(dppf)L] (3: L = dppf; [7]+: L = CH3CN)…………………………… …77 2.2.5 2.2.4.2 Crystallographic studies…………………………………….….82 2.2.4.3 Electrochemical studies……………………………………… 87 2.2.4.4 Reactions of [(Ind)Ru(CO)2]2 22 and [(Ind)Ru(CO)2I] 27…….91 2.2.4.5 Conclusion…………………………………………………… 94 Reactions of [(Ind)Ru] complexes with 1,1-dithiolates 2.2.5.1 Reactions of [(Ind)Ru(diphos)Cl] (3: diphos = dppf; 29: diphos = dppm) with dithiocarbamates………………… .95 2.2.5.2 Reactions of and 29 with alkyl xanthantes……………… 99 2.2.5.3 Reactions of and 29 with dithiophosphinates…………… 100 2.2.5.4 Reactions of 27 with NaS2CNEt2 and KS2COiPr………… .101 2.2.5.5 Crystallographic studies………………………………………103 2.2.5.6 Theoretical study of the lability of Ind ligand………….…….114 2.2.5.7 Electrochemical studies…………………………… ……… 116 2.2.5.8 Conclusion…………………………………………… …… 118 iii Table of Contents 2.3 Experimental 2.3.1 Reactions of [(L)Ru(PPh3)2Cl] (L = Cp 1a, Ind 1) with phosphine ligands 2.3.1.1 Reaction of with IndH(CH2)2PPh2……………………… 122 2.3.1.2 Reaction of with dppf…………………………………… 123 2.3.1.3 Reaction of with tripod…………………………………… 123 2.3.1.4 Reaction of with (R)-(S)-Josiphos……………………….…124 2.3.1.5 Reaction of 1a with (R)-(S)-Josiphos and epimerization kinetics……………………………………… .125 2.3.2 Reactions of with N-containing ligands 2.3.2.1 Reaction of with CH3CN………………………………… .127 2.3.2.2 Reaction of with NaN3 and cycloaddition of the azido derivative…………………………128 2.3.3 Reactions of with thiolates and solvent dependence 2.3.3.1 Reactions of with NaSR (R = Me, Et, Ph)………………….129 2.3.3.2 Small-scale reactions of with NaSMe in MeOH and THF – effect of solvent………………………………….……131 2.3.4 2.3.3.3 Reaction of with NaOMe (in THF-MeOH)……………… .131 2.3.3.4 Reaction of with HS(CH2)2PPh2………………………… 132 2.3.3.5 Reaction of with HS(CH2)2PPh2……………………… … 133 Reactions of with heterocyclic thiols 2.3.4.1 With 2-mercaptopyrimidine (HSPym)……………………… 134 2.3.4.2 With 2-mercaptobenzothiazole (HSbztz)…………………… 135 iv Table of Contents 2.3.4.3 2.3.5 2.3.6 With 2-mercapto-5-methyl-1,3,4-thiadiazole (HSmtdz)…… .135 Reactions of [7]PF6 with heterocyclic thiols 2.3.5.1 With HSPym……………………………………… .……… 136 2.3.5.2 With HSbztz………………………………………………… 137 2.3.5.3 With HSmtdz………………… .…………………………….138 Reactions of 22 with heterocyclic thiols 2.3.6.1 With 2,2-bis(dithio(benzothiazole))………………………… 138 2.3.6.2 With N,N-dithiobisphthalimide………………………………139 2.3.6.3 With dipyridyl disulfide………………………………………140 2.3.6.4 With 6,6’-dithiodinicotinic acid………………………………140 2.3.7 Reactions of 27 with HSbztz………………………………………… 141 2.3.8 Reactions of and 29 with dithiocarbamates 2.3.8.1 Reactions of with NaS2CNR2 (R = Me, Et, C5H10)……… .141 2.3.8.2 Reaction of 29 with NaS2CNEt2…………………………… .144 2.3.9 Reactions of and 29 with alkyl xanthates 2.3.9.1 Reactions of with KS2COR (R = Et, iPr)……………… .…144 2.3.9.2 Reaction of 29 with KS2COiPr……………………….……….145 2.3.10 Reactions of and 29 with dithiophosphinates 2.3.10.1 Reactions of with NaS2PR2 (R = Et, Ph)……………… .…146 2.3.10.2 Reactions of 29 with NaS2PR2 (R = Et, Ph)………………….146 2.3.11 Reaction of 27 with KS2COiPr…………………………………….……149 2.3.12 Reaction of 27 with TMNO.2H2O………………………………… .…149 v Table of Contents 2.3.13 Reactions of 27 with KS2COiPr and NaS2CNEt2 in the presence of TMNO.2H2O 2.3.13.1 Reaction of 27 with KS2COiPr in the presence of TMNO.2H2O………………………… ….150 2.3.13.2 Reaction of 27 with NaS2CNEt2 in the presence of TMNO.2H2O………………………… .151 Chapter 3. Catalytic investigation on [(Ind)Ru] complexes 3.1 3.2 Introduction…………………………………………………………… ………152 3.1.1 Homo-coupling of terminal alkynes………………………………… 152 3.1.2 Addition of carboxylic acids to terminal alkynes………………… .….154 Results and Discussion 3.2.1 Catalytic activity of [(Ind)Ru] complexes in homo-coupling of phenylacetylene, HC≡CPh 3.2.1.1 Catalytic activity of [(Ind)Ru(L)(L’)X] (LL’ = dppm, dppf, X = S-containing ligands) in homo-coupling of phenylacetylene, HC≡CPh………… … 157 3.2.1.2 Catalytic activity of 22 and 27 in homo-coupling of phenylacetylene, HC≡CPh…………… 160 3.2.2 Catalytic activity of 22 in cross-coupling of terminal alkyne and carboxylic acids…………………………… …….166 3.3 Conclusion…………………………………………………………………… .171 vi Table of Contents 3.4 Experimental 3.4.1 Catalytic activity of [(Ind)Ru(L)(L’)(X)] (LL’ = dppm, dppf; X = S-containing ligands) in homo-coupling of phenylacetylene, HC≡CPh………………………….172 3.4.2 Catalytic activity of 22 and 27 in homo-coupling of phenylacetylene, HC≡CPh…… …………….… 173 3.4.3 Catalytic activity of 22 towards cross-coupling of terminal alkyne and carboxylic acids………………………………… .173 Chapter 4. Reactivity studies of [(Ind)Ru] complexes towards Co(CO)44.1 Introduction 4.1.1 Heterobimetallic complexes containing half-sandwich ruthenium moiety…………………………… .……………………… 175 4.2 Results and Discussion 4.2.1 Reactions of [(Ind)Ru(L)(L’)Cl] (29: LL’ = dppm; 49: L = L’ = CO) with NaCo(CO)4……………………………………………………… .177 4.2.2 Reaction of with NaCo(CO)4…………………………………… … 180 4.2.3 Reaction of with NaCo(CO)4……………………………………… 184 4.3 Conclusion ………………………………………………………………….….187 4.4 Experimental 4.4.1 Reaction of 29 with NaCo(CO)4…………………………………….….188 4.4.2 Reaction of 49 with NaCo(CO)4…………………………………….….188 4.4.3 Reaction of with NaCo(CO)4…………………………………….… .189 vii Table of Contents 4.4.4 Reaction of with NaCo(CO)4…………………………………… .….190 4.4.5 Synthesis of [59]PF6……………… ……………………………… …191 Chapter 5. Synthesis of tethered [IndRu(II)] complexes 5.1 Introduction…………………………………………………………………… 192 5.2 Results and Discussion 5.2.1 Synthesis of [(η3,η3-C10H16)RuCl2(κ1P-LH)] (LH = IndH(CH2)2PPh2) 62 and its reaction with acid……………… 196 5.2.2 One-pot synthesis of tethered [IndRu(II)] complexes………………….200 5.3 Conclusion…………………………………………………………………… .210 5.4 Experimental 5.4.1. Synthesis of [(η3,η3-C10H16)RuCl2(κ1P-LH)] 62……….…….211 5.4.2. Synthesis of [(η3,η3-C10H16)RuCl(CH3CN)(κ1P-LH)] (CF3SO3) [62a]CF3SO3……………………………….………212 5.4.3. Synthesis of [(η5,κ1P-L)Ru(COD)]PF6 [63]PF6……… …….213 5.4.4. Synthesis of [(η5,κ1P-L)Ru(PPh3)Cl] 64….………………….214 5.4.5. Synthesis of [(η5,κ1P-L)Ru(PPh3)H] 65 ….………………….215 5.4.6. Sythesis of [(η5,κ1P-L)Ru(2,2’-bipyridyl)]PF6 [66]PF6 and [(κ1P-LH)Ru(2,2’-bipyridyl)Cl]PF6 [67]PF6….…………216 5.4.7. Synthesis of [(η2,κ1P-LH)Ru(acac)2] 68….………………… 217 Conclusion…………………………………………………………………… …….219 Publication and manuscripts in preparation……………………………… 222 viii References G.; Uemura, S. Organometallics 2005, 24, 4106. (e) Cadierno, V.; Gamasa, M. P.; Gimeno, J.; Pérez-Carreño, E.; García-Granda, S. Organometallics 1999, 18, 2821. 46 Rao, K. M.; Rymmai, E. K. Polyhedron 2003, 22, 307. 47 (a) Keisham, S. S.; Mozharivskyj, Y. A.; Carroll, P. J.; Kollipara, M. R. J. Organomet. Chem. 2004, 689, 1249. (b) Singh, K. S.; Yap, G. P. A.; Kreisel, K. A.; Kollipara, M. R. J. Coord. Chem. 2005, 58, 1607. 48 Govindaswamy, P.; Sinha, C.; Kollipara, M. R. J. Organomet. Chem. 2005, 690, 3465. 49 Singh, K. S.; Mozahrivskyj, Y. A.; Thöne, C.; Kollipara, M. R. J. Organomet. Chem. 2005, 690, 3720. 50 Singh, K. S.; Thöne, C.; Kollipara, M. R. J. Organomet. Chem. 2005, 690, 4222. 51 Singh, K. S.; Thöne, C.; Kollipara, M. R. J. Coord. Chem. 2006, 59, 333. 52 Trost, B. M.; Frederiksen, M. U.; Rudd, M. T. Angew. Chem. Int. Ed. 2005, 44, 6630. 53 Bassetti, M.; Marini, S.; Tortorella, F.; Cadierno, V.; Díez, J.; Gamasa, M. P.; Gimeno, J. J. Organomet. Chem. 2000, 593-594, 292. 54 Alvarez, P.; Bassetti, M.; Gimeno, J.; Mancini, G. Tetrahedron Lett. 2001, 42, 8467. 55 Fung, W. K.; Huang, X.; Man, M. L.; Ng, S. M.; Hung, M. Y.; Lin, Z.; Lau, C. P. J. Am. Chem. Soc. 2003, 125, 11539. 56 Yamamoto, Y.; Kitahara, H.; Hattori, R.; Itoh, K. Organometallics 1998, 17, 1910. 57 Kündig, E. P.; Saudan, C. M.; Alezra, V.; Viton, F.; Bernardinelli, G. Angew. Chem. Int. Ed. 2001, 40, 4481. 58 (a) Koh, J. H.; Jeong, H. M.; Park, J. Tetrahedron Lett. 1998, 39, 5545. (b) Koh, J. H.; Jung, H. M.; Kim, M. J.; Park, J. Tetrahderon Lett. 1999, 40, 6281. 59 (a) Trost, B. M.; Kulawiec, R. J. J. Am. Chem. Soc. 1993, 115, 2027. (b) Trost, B. M.; Livingston, R. C. J. Am. Chem. Soc. 1995, 117, 9586. 60 (a) Takahashi, H.; Ando, T.; Kamigito, M.; Sawamoto, M. Macromolecules 1999, 32, 3820. (b) Ando, T.; Kamigito, M.; Sawamoto, M. Macromolecules 2000, 33, 5825. 61 Kamigaito, M.; Watanabe, Y.; Ando, T.; Sawamoto, M. J. Am. Chem. Soc. 2002, 124, 9994. 62 Lu, X. L. Ph.D thesis, Department of Chemistry, National University of Singapore, 2002. 241 References 63 See for instance the following: (a) Tolman, C. A. Chem. Rev. 1977, 77, 313. (b) Darensbourg, D. J.; Graves, A. H. Inorg. Chem. 1979, 18, 1257. (c) Atwood, J. D.; Wovkulich, M. J.; Sonnenberger, D. C. Acc. Chem. Res. 1983, 16, 350. (d) Harlow, R. L.; McKinney, R. J.; Whitney, J. F. Organometallics 1983, 2, 1839. (e) Orpen, A. G.; Connelly, N. G. J. Chem. Soc., Chem. Commun. 1985, 1310. 64 See examples (a) Dahlenburg, L. Coord. Chem. Rev. 2005, 249, 2962. (b) Mézailles, N.; Ricard, L.; Gagosz, F. Org. Lett. 2005, 7, 4133. (c) Phillips, A. D.; Gonsalvi, L.; Romerosa, A.; Vizza, F.; Peruzzini, M. Coord. Chem. Rev. 2004, 248, 955. (d) Klei, S. R.; Tilley, T. D.; Bergman, R. G. Organometallics 2002, 21, 4905. (e) Ferraris, D.; Young, B.; Dudding, T.; Lectka, T. J. Am. Chem. Soc. 1988, 120, 4548. (f) Wolfe, J. P.; Wagaw, S.; Buchwald, S. L. J. Am. Chem. Soc. 1996, 118, 7215. 65 (a) Gan, K. -S.; Hor, T. S. A. In: Ferrocenes: Homogeneous Catalysis, Organic Synthesis and Materials Science; Togni, A., Hayashi, T., Eds,; Wiley-VCH: Weinheim, Germany, 1995; p 3. (b) Blaser, H. -U.; Brieden, W.; Pugin, B.; Spindler, F.; Studer, M.; Togni, A. Topics in Catalysis 2002, 19, 3. (c) Yeh, W. -Y.; Cheng, Y. -J.; Chiang, M. Y. Organometallics 1997, 16, 918. 66 Bandoli, G.; Dolmella, A. Coord. Chem. Rev. 2000, 209, 161 and references therein. 67 (a) Viotte, M.; Gautheron, B.; Nifant’ev, I.; Kuz’mina, L.G. Inorg. Chim. Acta 1996, 253, 71. (b) Puxty, G.; Bjelosevic, H.; Persson, T.; Elmroth, S. K. C. J. Chem. Soc., Dalton Trans. 2005, 3023. 68 (a) Colacot, T. J. Chem. Rev. 2003, 103, 3101. (b) Atkinson, R. C. J.; Gibson, V. C.; Long, N. J. Chem. Soc. Rev. 2004, 33, 313. 69 Cullen, W. R.; Woollins, J. D. Coord. Chem. Rev. 1981, 39, 1. 70 Togni, A.; Breutel, C.; Schnyder, A.; Spindler, F.; Landert, H.; Tijani, A. J. Am. Chem. Soc. 1994, 116, 4062. 71 (a) Sollot, G. P.; Snead, J. L.; Portnoy, S.; Peterson, Jr., W. R.; Mertwoy, H. E. Chem. Abstr. 1965, 63, 18147b. (b) Bishop, J. J.; Davison, A.; Katcher, M. L.; Lichtenberg, D. W.; Merrill, R. E.; Smart, J. C. J. Organomet. Chem. 1971, 27, 241. (c) Marr, G.; Hunt, T. J. Chem. Soc. C 1969, 1070. 242 References 72 (a) Hor, T. S. A.; Phang, L. -T. J. Organomet. Chem. 1989, 373, 319. (b) Andrews, G. T.; Colquhoun, I. J.; McFarlane, W. Polyhedron 1983, 2, 783. 73 Naota, T.; Tannna, A.; Murahashi, S. J. Am. Chem. Soc. 2000, 122, 2960 and references therein. 74 (a) Therrien, B.; Süss-Fink, G. Inorg. Chim. Acta 2004, 357, 219. (b) Cadierno, V.; García-Garrido, S. E.; Gimeno, J. J. Organomet. Chem. 2001, 637-639, 767. 75 McAdam, C. J.; Duffy, N. W.; Robinson, B. H.; Simpson, J. J. Organomet. Chem. 1997, 527, 179. 76 (a) Chan, H. S. O.; Hor, T. S. A.; Phang, L. -T.; Tan, K. L. J. Organomet. Chem. 1991, 407, 353. (b) Phang, L. -T.; Au-Yeung, S. C. F.; Hor, T. S. A.; Khoo, S. B.; Zhou, Z. -Y.; Mak, T. C. W. J. Chem. Soc., Dalton Trans. 1993, 165. 77 Kim, T. -J.; Kwon, K. -H.; Baeg, J. -O.; Shim, S. -C. J. Organomet. Chem. 1990, 389, 205. 78 Lu, X. L.; Vittal, J. J.; Tiekink, E. R. T.; Goh, L.Y.; Hor, T. S. A. J. Organomet. Chem. 2004, 689, 1444. 79 Lu, X. L.; Vittal, J. J.; Tiekink, E. R. T.; Tan, G. K.; Kuan, S. L.; Goh, L. Y.; Hor, T. S. A. J. Organomet. Chem. 2004, 689, 1978. 80 Onaka, S.; Katukawa, Y. J. Coord. Chem. 1996, 39, 135. 81 Canales, F.; Gimeno, M. C.; Laguna, A.; Jones, P.G. J. Am. Chem. Soc. 1996, 118, 4839. 82 Hor, T. S. A.; Neo, S. P.; Tan, C. S.; Mak, T. C. W.; Leung, K. W. P.; Wang, R. -J. Inorg. Chem. 1992, 31, 4510. 83 Hembre, R. T.; McQueen, J. S.; Day, V. W. J. Am. Chem. Soc. 1996, 118, 798. 84 Sixt, T.; Fiedler, J.; Kaim, W. Inorg. Chem. Comm. 2000, 3, 80. 85 Kaim, W.; Sixt, T.; Weber, M.; Fiedler. J. J. Organomet. Chem. 2001, 637-639, 167. 86 Gao, L. -B.; Zhang, L. -Y.; Shi, L. -X.; Chen, Z. -N. Organometallics 2005, 24, 1678. 87 Hartmann, S.; Winter, R. F.; Brunner, B. M.; Sarkar, B.; Knödler, A.; Hartenbach, I. Eur. J. Inorg. Chem. 2003, 876. 88 (a) Hayashi, T.; Konishi, M.; Kumada, M. Tetrahedron Lett. 1979, 20, 1871. (b) Hayashi, T.; Konishi, M.; Kumada, M. J. Organomet. Chem. 1980, 186, C1. 243 References 89 Hayashi, T.; Konishi, M.; Kobori, Y.; Kumada, M.; Higushi, T.; Hirotsu, K. J. Am. Chem. Soc. 1984, 106, 158. 90 Cadierno, V.; Crochet, P.; Díez, J.; García-Garrido, S. E.; Gimeno, J. J. Chem. Soc., Chem. Comm. 2004, 2716. 91 Cadierno, V.; Crochet, P.; Díez, J.; García-Garrido, S.E.; Gimeno, J. Organometallics 2003, 22, 5226. 92 Cadierno, V.; Crochet, P.; Díez, J.; García-Garrido, S. E.; Gimeno, J. Organometallics 2004, 23, 4836. 93 (a) Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97. (b) Noyori, R.; Yamakawa, M; Hashiguichi, S. J. Org. Chem. 2001, 66, 7931. (c) Carmona, D.; Lamata, M. P.; Oro, L. A. Eur. J. Inorg. Chem. 2002, 2239. (d) Everaere, K.; Mortreux, A.; Carpentier, J. F. Adv. Synt. Catal. 2003, 345, 67. (e) Noyori, R.; Ohkuma, T. Angew. Chem. Int. Ed. 2001, 40, 40. 94 Nieczypor, P.; van Leeuwen, P. W. N. M.; Mol, J. C.; Lutz, M.; Spek, A. L. J. Organomet. Chem. 2001, 625, 58. 95 Junge, H.; Beller, M. Tetrahedron Lett. 2005, 46, 1031. 96 See for instance: (a) Leong, C. G.; Akotsi, O. M.; Ferguson, M. J.; Bergens, S. H. J. Chem. Soc., Chem. Commun. 2003, 750. (b) Gambs, C.; Consiglio, G.; Togni, A. Hel. Chim. Acta 2001, 84, 3105. 97 Power, P. P.; Shouer, S. C. Angew. Chem. Int. Ed. Engl. 1991, 30, 330. 98 Angelici, R. J. Acc. Chem. Res. 1988, 21, 387. 99 (a) Leigh, G. J. Acc. Chem. Res. 1992, 25, 177. (b) Shilov, A. E. New. J. Chem. 1992, 16, 213. 100 Müller, A.; Diemann, E. In Comprehensive Coordination Chemistry II; Wilkinson, G.; Gillard, R. D.; McCleverty, J. A. 1988, 526. 101 (a) Shaver, A.; Plouffe, P. -Y.; Bird, P.; Livingstone, E. Inorg. Chem. 1990, 29, 1826. (b) Sato, T.; Nishio, M.; Ishii, Y.; Yamazaki, H.; Hidai, M. J. Organomet. Chem. 1998, 569, 99. 102 Treichel, P. M.; Schmidt, M. S.; Crane, R. A. Inorg. Chem. 1991, 30, 379. 244 References 103 (a) Treichel, P. M.; Crane, R. A.; Haller, K. N. J. Organomet. Chem. 1991, 401, 173. (b) Coto, A.; Ríos, I. D. L.; Tenorio, M. J.; Puerta, M. C.; Valerga, P. J. Chem. Soc., Dalton Trans. 1999, 4309. 104 Killop, S. D.; Knox, S. A. R. J. Chem. Soc., Dalton Trans. 1978, 1260. 105 Shaver, A.; Plouffe, P. -Y.; Liles, D. C.; Singleton, E. Inorg. Chem. 1992, 31, 997. 106 Kataoka, T.; Ol-Hashi, F. Cancer Res. 1985, 45, 2962. 107 Street, J. P.; Skorey, K. I.; Brown, R. S.; Ball, R. G. J. Am. Chem. Soc. 1985, 107, 7669. 108 Kornis, G. In 1,3,4-Thiadiazoles. Comprehensive Heterocyclic Chemistry; Katrizky, A. R.; Rees, C. W. (Eds.) Pergamon Press, Oxford, 1984, 6, 545. 109 Raper, E. S. Coord. Chem. Rev. 1985, 61, 115. 110 (a) Hipler, F.; Fischer, R. A.; Müller, J. J. Chem. Soc., Perkin Trans. 2002, 2, 1620. (b) Stoyanev, S.; Petkov, I.; Antonov, I.; Stoyanova, T.; Karagiannidis, P.; Aslanidis, P. Can. J. Chem. 1990, 68, 1482. 111 El-khateeb, M. Trans. Met. Chem. 2001, 26, 267. 112 (a) Hogarth, G. Prog. Inorg. Chem. 2005, 53, 71. (b) Coucouvanis, D. Prog. Inorg. Chem. 1979, 26, 302. (c) Eisenberg, R. Prog. Inorg. Chem. 1970, 12, 295. (d) Coucouvanis, D. Prog. Inorg. Chem. 1970, 11, 234. (e) Tiekink, E. R. T.; Winter, G. Rev. Inorg. Chem. 1992, 12, 185. (f) Winter, G. Rev. Inorg. Chem. 1980, 2, 254. 113 Haiduc, I.; Goh, L. Y. Coord. Chem. Rev. 2002, 1-2, 151. 114 Haiduc, I.; Sowerby, D. B.; Lu, S. –F. Polyhedron 1995, 14, 3389. 115 Pauling, L. In The Nature of the Chemical Bond; 3rd ed., Cornell University Press, Ithaca, New York, 1960, Table 7.2. 116 Truter, M. R. Acta Cryst. 22 1967, 556. 117 Root, M. J.; Sullivan, B. P.; Meyer, T. J.; Deutsch, E. Inorg. Chem. 1985, 24, 2731. 118 McGrouther, K.; Weston, D. K.; Fenby, D.; Robinson, B. H.; Simpson, J. J. Chem. Soc., Dalton Trans. 1999, 1957. 119 Calabro, D. C.; Burmeister, J. L. Inorg. Chim. Acta 1981, 53, L47 120 Cameron, B. R.; Drakes, M. C.; Baird, I. R.; Skerlj, R. T.; Santucci, L.; Fricker, S. P. Inorg. Chem. 2003, 42, 4102. 245 References 121 Pinillos, M. T.; Jarauta, M. P.; Carmona, D.; Oro, L. A.; Apreda, M. C.; Foces-Foces, C.; Cano, F. H. J. Organomet. Chem. 1977, 135, C50. 122 Lu, X. L.; Ng, S. Y.; Vittal, J. J.; Tan, G. K.; Goh, L. Y.; Hor, T. S. A. J. Organomet. Chem. 2003, 688, 100. 123 Gutierrez-Alonso, A.; Ballester-Reventos, L. Polyhedron 1991, 10, 1091. 124 Blake, A. J.; McQueen, A. E. D.; Schröder, M.; Stephenson, T. A.; Yellowless, L. J. Acta. Cryst. 1993, B42, 1373. 125 Leung, W. -H.; Wu, M. -C.; Chim, J. L. C.; Wong, W. -T. Inorg. Chem. 1996, 35, 4801. 126 Bhargva, S. K.; Mohr, F.; Bennett, M. A.; Welling, L. L.; Willis, A. C. Inorg. Chem. 2001, 40, 4271. 127 Ricard, L.; Karagiannidis, P.; Weiss, R. Inorg. Chem. 1973, 12, 2179. 128 Hilts, R. W.; Cowie, M. Inorg. Chem. 1990, 29, 3349. 129 Coto, A.; Tenorio, M. J.; Puerta, M. C.; Valerga, P. Organometallics 1998, 17, 4392. 130 (a) Wilczewski, T.; Bocheńska, M.; Biernat, J. F. J. Organomet. Chem. 1981, 215, 87. (b) Wilczewski, T. J. Organomet. Chem. 1982, 224, C1. (c) Wilczewski, T. J. Organomet. Chem. 1986, 306, 125. 131 Reventos, L. B.; Alonso, A. G. J. Organomet. Chem. 1986, 309, 179. 132 Alonso, A. G.; Reventós, L. B. J. Organomet. Chem. 1988, 338, 249. 133 Catheline, D.; Román, E. E.; Astruc, D. Inorg. Chem. 1984, 23, 4508. 134 Kovács, I.; Lebuis, A. -M.; Shaver, A. Organometallics 2001, 20, 35. 135 Haiduc, I.; Sowerby, D. B. Polyhedron 1996, 15, 2469. 136 (a) Nukherjee, R. N.; Shankar, S.; Vijaya, V. S.; Gogoi, P. K. Polyhedron 1985, 4, 1717. (b) Cole-Hamilton, D. J.; Stephenson, T. A. J. Chem. Soc., Dalton Trans. 1974, 739. 137 Kuchen, W.; Judat, A.; Metten, J. Chem. Ber. 1967, 100, 991. 138 Robertson, D. R.; Stephenson, T. A. J. Organomet. Chem. 1976, 107, C46. 139 Jain, V. K. Trans. Met. Chem. 1993, 18, 312. 140 Bishop, J. J.; Davison, A. Inorg. Chem. 1971, 10, 826. 246 References 141 Gareau, D.; Sui-Seng, C.; Groux, L. F.; Brisse, F.; Zargarian, D. Organometallics 2005, 24, 4003. 142 Consiglio, G.; Morandini, F.; Bangerter, F. Inorg. Chem. 1982, 21, 455. 143 Morandini, F.; Consiglio, G.; Straub, B.; Ciani, G.; Sironi, A. J. Chem. Soc., Dalton Trans. 1983, 2293. 144 Leong, C. G.; Akotsi, O. M.; Ferguson, M. J.; Bergens, S. H. J. Chem. Soc., Chem. Commun. 2003, 750. 145 Sortais, J. -B.; Ritleng, V.; Voelklin, A.; Holuigue, A.; Smail, H.; Barloy, L.; Sirlin, C.; Verzijl, G. K. M.; Boogers, J. A. F.; de Vries, A. H. M.; de Vries, J. G.; Pfeffer, M. Org. Lett. 2005, 7, 1247. 146 (a) Beck, W.; Schropp, K. Chem. Ber. 1975, 108, 3317. (b) Fehlhammer, W. P.; Dahl, L. F. J. Am. Chem. Soc. 1972, 94, 3370. 147 Kemmerich, T.; Nelson, J. H.; Takach, N. E.; Boeheme, H.; Jablonski, B.; Beck, W. Inorg. Chem. 1982, 21, 1226. 148 149 Chang, C. W.; Lee, G. H. Organometallics 2003, 22, 3107 and references therein. Govindaswamy, P.; Carroll, P. J.; Mozharivskyj, Y. A.; Kollipara, M. R. J. Organomet. Chem. 2005, 690, 885. 150 Haines, R. J.; Du Preez, A. L. J. Organomet. Chem. 1975, 84, 357. 151 Ashby, G. S.; Bruce, M. I.; Tomkins, I. B.; Wallis, R. C. Aust. J. Chem. 1979, 32, 1003 152 Gamasa, M. P.; Gimeno, J.; Gonzalez-Bernardo, C; Martin-Vaca, B. M.; Monti, D.; Bassetti, M. Organometallics 1996, 15, 302. 153 (a) Chatt, J.; Shaw, B. L. Chem Ind. (London) 1960, 931. (b) Chatt, J.; Shaw, B. L. J. Chem. Soc. 1962, 5075 and references therein. 154 Bruce, M. I.; Humphrey, M. G.; Swincer, A. G.; Wallis, R. C. Aust. J. Chem. 1984, 37, 1747. 155 Estimated from observed trends of Δ(pKa(MeOH)-pKa(water) ≅ 4.0) for RSH and the known pKa value (10.3) of MeSH in water. (See: E. P. Serjeant and B. Dempsey (Eds.): Inoization Constants of Organic Acids in Solution, IUPAC Chemical Data Series No. 23, Pergamon Press, Oxford, UK, 1979.) 247 References 156 Bunnett, J. F.; Retallick, L. A. J. Am. Chem. Soc. 1967, 89, 423. 157 Clare, B. W.; Cook, D.; Ko, E. C. F.; Mac, Y. C.; Parker, A. J. J. Am. Chem. Soc. 1966, 88, 1911 and references therein. 158 Bruce, M. I.; Butler, I. R.; Cullen, W. R.; Koutsantonis, G. A.; Snow, M. R.; Tiekink, E. R. T. Aust. J. Chem. 1988, 41, 963. 159 Shin, R. Y. C.; Bennett, M. A.; Goh, L. Y.; Chen, W.; Hockless, D. C. R.; Leong, W. K.; Mashima, K.; Willis, A. C. Inorg. Chem. 2003, 42, 96. 160 Faller, J. W.; Crabtree, R. H.; Habib, A. Organometallics 1985, 4, 929. 161 Corain, B.; Longato, B.; Favero, G.; Ajo, D.; Pilloni, G.; Russo, U.; Kreissl, F. R. Inorg. Chim. Acta 1989, 157, 259. 162 Ohs, A. C.; Rheingold, A. L.; Shaw, M. J.; Nataro, C. Organometallics 2004, 23, 4655. 163 Treichel, P. M.; Khomar, D. A.; Vincenti, P. J. Synth. React. Inorg. Met.-Org. Chem. 1984, 14, 383. 164 Gugger, P. A.; Willis, A. C.; Wild, S. B.; Heath, G. A.; Webster, R. D.; Nelson, J. H. J. Organomet. Chem. 2002, 643-644, 136. 165 (a) Lobana, T. S.; Kaur, P.; Castineiras, A. J. Coord. Chem. 2005, 58, 429. (b) Constable, E. C.; Lewis, J. J. Organomet. Chem. 1983, 254, 105. 166 Landgrafe, C.; Sheldrick, W. S.; Sudfeld, M. Eur. J. Inorg. Chem. 1998, 407. 167 Singh, K. S.; Mozharivskjy, Y. A.; Kollipara, M. R. communicated to Polyhedron. 168 (a) Ngugen, L. M.; Dellinger, M. E.; Lee, J. T.; Quinlan, R. A.; Rheingold, A. L.; Pike, R. D. Inorg. Chim. Acta 2005, 358, 1331. (b) Bell, N. A.; Coles, S. J.; Constable, C. P.; Hibbs, D. E.; Hursthouse, M. B.; Mansor, R.; Raper, E. S.; Sammon, C. Inorg. Chim. Acta 2001, 323, 69. 169 Deeming, A. J.; Karim, M. Polyhedron 1991, 10, 837. 170 Wilczewski, T.; Bocheńska, M.; Biernat, J. F. J. Organomet. Chem. 1981, 215, 87. 171 (a) Chaudret, B.; Commernges, G.; Poilblanc, R. J. Chem. Soc., Dalton Trans. 1984, 1635. (b) Orth, S. D.; Terry, N. R.; Abboud, K. A.; Dodson, B.; McElwee-White, L. Inorg. Chem. 1996, 35, 916. 172 Owen, J. D.; Cole-Hamilton, D. J. J. Chem. Soc., Dalton Trans. 1974, 1867 248 References 173 Loonat, M. S.; Carlton, L.; Boeyens, J. C. A.; Covelle, M. J. J. Chem. Soc., Dalton Trans. 1989, 2407. 174 SMART version 5.628, Bruker AXS Inc., Madison, Wisconsin, USA, 2001. 175 SAINT+ version 6.22a, Bruker AXS Inc., Madison, Wisconsin, USA, 2001. 176 Sheldrick, G.M. SADABS, 1996. 177 SHELXTL version 5.1, Bruker AXS Inc., Madison, Wisconsin, USA, 1997. 178 Chatt, J.; Dilworth, J. R.; Schmutz, J. A.; Zubieta, J. A. J. Chem. Soc., Dalton Trans. 1979, 1595. 179 180 Kataoka,Y.; Iwato, Y.; Yamagata, T.; Tani, K. Organometallics 1999, 18, 5423. Fischmeister, C.; Bruneau, C.; Dixneuf, P. H In Ruthenium in Organic Synthesis, Murahashi, S. -I. (Ed), Wiley-VCH, New York, 2004, p. 189. 181 (a) Trost, B. M. Angew. Chem. Int. Ed. Engl. 1995, 34, 259. (b) Trost, B. M. Angew. Chem. Int. Ed. 1995, 107, 285. (d) Trost, B. M. Science 1991, 254, 1471. 182 (a) Saito, S.; Yamamoto, Y. Chem. Rev. 2000, 100, 2901. (b) Bergman, R. G. Acc. Chem. Res. 1973, 6, 25. 183 Zweifel, G.; Polston, N. L. J. Am. Chem. Soc. 1970, 92, 4068. 184 Wipf, P.; Kendall, C.; Stephenson, C. R. J. J. Am. Chem. Soc. 2003, 125, 761. 185 Parshall, G. W.; Ittel, S. D.; Eds.: Homogeneous Catalysis; John Wiley & Sons: New York, 1992. 186 Kang, B.; Kim, D.; Do, Y.; Chang, S. Org. Lett. 2003, 5, 3041. 187 (a) Singer, H.; Wilkinson, G. J. Chem. Soc. A 1968, 849. (b) Carton, L.; Read, G. J. Chem. Soc., Perkin Trans. I 1978, 1631. (c) Giacomelli, G.; Marcacci, F.; Caporusso, A. M.; Lardicci, L. Tetrahedron Lett. 1979, 20, 3217. (d) Akita, M.; Yasuda, H.; Nakamura, A. Bull. Chem. Soc. Jpn. 1984, 57, 480. (e) Trost, B. M.; Chan, C.; Ruther, G. J. Am. Chem. Soc. 1987, 109, 3486. (f) Ishikawa, M.; Ohshita, J.; Ito, Y.; Minato, A. J. Chem. Soc., Chem. Commun. 1988, 804. (g) Trost, B. M.; Matsubara, S.; Caringi, J. J. J. Am. Chem. Soc. 1989, 111, 8745. 188 (a) Ohshita, J.; Furumori, K.; Matsuguchi, A.; Ishikawa, M. J. Org. Chem. 1990. 55, 3277. (b) Ohshita, J.; Naka, A.; Ishikawa, M. Organometallics 1992, 11, 602. 189 Jun, C. -H.; Lu, Z.; Crabtree, R. H. Tetrahedron Lett. 1992, 33, 7119. 249 References 190 Echavarren, A. M.; López, J.; Santos, A.; Montoya, J. J. Organomet. Chem. 1991, 414, 393. 191 (a) Bianchini, C.; Peruzzini, M.; Zanobini, F.; Frediani, P.; Albinati, A. J. Am. Chem. Soc. 1991, 113, 5453. (b) Bianchini, C.; Frediani, P.; Masi, D.; Perruzini, M.; Zanobini, F. Organometallics 1994, 13, 4616. 192 (a) Yi, C. S.; Liu, N. Organometallics 1996, 15, 3968. (b) Yi, C. S.; Liu, N. Organometallics 1997, 16, 3910. (c) Yi, C. S.; Liu, N. Organometallics 1998, 17, 3158. 193 (a) Slugove, C.; Mereiter, K.; Zobetz, E.; Schmid R.; Kirchner, K. Organometallics 1996, 15, 5275. (b) Slugovc, C.; Doberer, D.; Gemel, C.; Schmid, R.; Kirchner, K.; Winkler, B.; Stelzer, F. Monatshefte für Chemie 1998, 129, 221. 194 Melis, K.; Opstal, T.; Verpoort, F. Eur. J. Org. Chem. 2002, 3779. 195 Melis, K.; De Vos, D.; Jacobs, P.; Verpoort, F. J. Organomet. Chem. 2003, 671, 131. 196 Melis, K.; Samulkiewicz, P.; Rynkowski, J.; Verpoort, F. Tetrahedron Lett. 2002, 43, 2713. 197 Borrii, A.; Diversi, P.; Ingrosso, G.; Lucherini, A.; Serra, G. J. Mol. Catal. 1985, 30, 181. 198 Basolo, F. Polyhedron 1990, 9, 1503. 199 Passler, P.; Hefner, W.; Wernicke, H. -J.; Ebersberg, G.; Müller, R.; Bässler, J.; Mayer, D.; 5th Eds.: Ullmann’s Encycl. Ind. Chem. 1985, A1, 97. 200 Monthéard, J. P.; Camps, M.; Seytre, G.; Guillet, J.; Dubois, J. C. Makromol. Chem. 1978, 72, 45. 201 (a) Rothman, E. S.; Moore, G. G. Tetrahedron Lett. 1969, 2553. (b) Rothman, E. S.; Moore, G. G.; Speca, A. N. Tetrahedron Lett. 1969, 5205. 202 (a) Doucet, H.; Bruneau, C.; Dixneuf, P. H. Synlett. 1997, 807. (b) Bruneau, C.; Dixneuf, P. H. J. Chem. Soc., Chem. Commun. 1997, 507 and references therein. 203 (a) Rothman, E. S.; Hecht, S. S.; Pfeffer, P. E.; Silbert, L. S. J. Org. Chem. 1972, 37, 3551. (b) Hudrlik, P. F.; Hudrlik, A. M. J. Org. Chem. 1973, 38, 4252. 204 Bianchini, C.; Meli, A.; Peruzzini, M.; Zanobini, F. Organometallics 1990, 9, 1155. 205 Nakagawa, H.; Okimoto, Y.; Sakaguchi, S.; Ishii, Y. Tetrahedron Lett. 2003, 44, 103. 206 Lu, X.; Zhu, G.; Ma, S. Tetrahedron Lett. 1992, 33, 7205. 250 References 207 Hua, R.; Tian, X. J. Org. Chem. 2004, 69, 5782. 208 (a) Le Gendre, P.; Comte, V.; Michelot, A.; Moïse, C. Inorg. Chim. Acta 2003, 350, 289. (b) Ye, S.; Leong, W. K. J. Organomet. Chem. 2006, 691, 1216. 209 (a) Rotem, M.; Shvo, Y. Organometallics 1983, 2, 1689. (b) Rotem, M.; Shvo, Y. J. Organomet. Chem. 1993, 448, 189. 210 (a) Mitsudo, T.; Hori, Y.; Watanabe, Y. J. Org. Chem. 1985, 50, 1566. (b) Mitsudo, T.; Hori, Y.; Yamakawa, Y.; Watanabe, Y. Tetrahedron Lett. 1986, 27, 2125. (c) Mitsudo, T.; Hori, Y.; Yamakawa, Y.; Watanabe, Y. J. Org. Chem. 1987, 52, 2230. (d) Hori, Y.; Mitsudo, T.; Watanabe, Y. J. Organomet. Chem. 1987, 321, 397. 211 (a) Ruppin, C.; Dixneuf, P. H. Tetrahedron Lett. 1986, 27, 6323. (b) Bruneau, C.; Neveux, M.; Kabouche, Z.; Ruppin, C.; Dixneuf, P. H. Synlett. 1991, 755. (c) Neveux, M.; Seiller, B.; Hagedorn, F.; Bruneau, C.; Dixneuf, P. H. J. Organomet. Chem. 1993, 451, 133. (d) Ruppin, C.; Dixneuf, P. H.; Lécolier, S. Tetrahedron Lett. 1988, 29, 5365. (e) Kabouche, Z.; Bruneau, C.; Dixneuf, P. H. Tetrahedron Lett. 1991, 32, 5359. 212 (a) Neveux, M.; Bruneau, C.; Lécolier, S.; Dixneuf, P. H. Tetrahedron 1993, 49, 2629. (b) Neveux, M.; Seiller, B.; Hagedorn, F.; Bruneau, C.; Dixneuf, P. H. J. Organomet. Chem. 1993, 451, 133. 213 (a) Opstal, T.; Verpoort, F. Tetrahedron Lett. 2002, 43, 9259. (b) Opstal, T.; Verpoort, F. Synlett 2002, 935. (c) De Clercq, B.; Verpoort, F. J. Organomet. Chem. 2003, 672, 11. 214 (a) Doucet, H.; Höfer, J.; Bruneau, C.; Dixneuf, P. H. J. Chem. Soc., Chem. Commun. 1993, 850. (b) Doucet, H.; Marin-Vaca, B.; Bruneau, C.; Dixneuf, P. H. J. Org. Chem. 1995, 60, 7247. (c) Doucet, H.; Derrien, N.; Kabouche, Z.; Bruneau, C.; Dixneuf, P. H. J. Organomet. Chem. 1997, 551, 151. 215 Gemel, C.; Trimmel, G.; Slugovc, C.; Kremel, S.; Mereiter, K.; Schmid, R.; Kirchner, K. Organometallics 1996, 15, 3998. 216 Ye, S.; Leong, W. K. J. Organomet. Chem. 2006, 691, 1117. 217 Goossen, L. J.; Paetzold, J.; Koley, D. Chem. Commun. 2003, 706. 218 Doherty, S.; Knight, J. G.; Rath, R. K.; Clegg, W.; Harrington, R. W.; Newman, C. R.; Campbell, R.; Amin, H. Organometallics 2005, 24, 2633. 219 Melis, K.; Verpoort, F. J. Mol. Catal. A: Chem. 2003, 194, 39. 251 References 220 Kondo, T.; Mitsudo, T. Chem. Rev. 2000, 100, 3205. 221 For instances: (a) Nishibayashi, Y.; Milton, M. D.; Inada, Y.; Yoshikawa, M.; Wakiji, I.; Hidai, M.; Uemura, S. Chem. Eur. J. 2005, 11, 1433. (b) Onodera, G.; Imajima, H.; Yamanashi, M.; Nishibayashi, Y.; Hidai, M.; Uemura, S. Organometallics 2004, 23, 5841. (c) Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Hidai, M.; Uemura, S. J. Org. Chem. 2004, 69, 3408. (d) Nishibayashi, Y.; Imajima, H.; Onodera, G.; Hidai, M.; Uemura, S. Organometallics 2004, 23, 26. (e) Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Milton, M. D.; Hidai, M.; Uemura, S. Angew. Chem., Intl Ed. 2003, 42, 2681. (f) Nishibayashi, Y.; Inada, Y.; Yoshikawa, M.; Hidai, M.; Uemura, S. Angew. Chem., Intl. Ed. 2003, 42, 1495. (g) Nishibayashi, Y.; Onodera, G.; Inada, Y.; Hidai, M.; Uemura, S. Organometallics 2003, 22, 873. (h) Matsuzaka, H.; Takagi, Y.; Ishii, Y.; Nishio, M.; Hidai, M. Organometallics 1995, 14, 2153. 222 Brunea, C.; Dixneuf, P. H. Acc. Chem. Res. 1999, 32, 311. 223 Wang, L.; Yan, J.; Li, P.; Wang, M.; Su, C. J. Chem. Res. 2005, 112. 224 (a) Rerek, M. E.; Basolo, F. Organometallics 1983, 2, 372. (b) Cheong, M.; Basolo, F. Organometallics 1988, 7, 2041. 225 (a) Braude, E. A.; Nachod F. C.; Eds.: Brown, H. C. Determination of Organic Structures by Physical Methods, Academic Press, New York, 1955.(b) Dippy, J. F. J.; Hughes, S. R. C.; Rozanski, A. J. Chem. Soc. 1959, 2492.(c) Bjerrum, J.; Eds.: Stability Constants, Chemical Society, London, 1958. 226 Kawano, H.; Masaki, Y.; Matsunaga, T.; Hiraki, K.; Onishi, M.; Tsubomura, T. J. Organomet. Chem. 2000, 601, 69. 227 (a) Braunstein, P.; Rose, E. W. In Comprehensive Organometallic Chemistry II; Abel, J.; Stone, F. G. A.; Wilkinson, G. (Eds.) Elsevier, Oxford, 1995, 10, 351 (b) Adams, R. D.; Cotton, F. A. (Eds.) In Catalysis by Di and Polynuclear Metal Cluster Complexes Wiley-VCH, Weinheim, 1998. (c) Bernal, I.; Eds.: Braunstein, P.; Rose, I. In Chemical Bonds: Better Ways to Make Them and Break Them Elsevier, Amsterdam, 1989, p. 89 (d) Süss-Fink, G.; Meister, G. Adv. Organomet. Chem. 1993, 35, 41. 228 (a) Pretzer, W. R.; Kobylinski, T. P.; Bozik, J. E. (Gulf Research and Development Company), U. S. Patents 4133966, 1979 and 4239924, 1980. (b) Fiato, R. (Union 252 References Carbide Corporation), U. S. Patent 4253987, 1980. (c) British Petroleum, Ltd, British Patent 2036739, 1980. (d) Doyle, G. (Exxon Research & Engineering Company), U. S. Patent 4348541, 1982. (e) Doyle, G. J. Mol. Catal. 1983, 18, 251.(f) Hidai, M.; Orisaku, M.; Ue, M.; Koyasu, Y.; Kodoma, T.; Uchida, Y. Organometallics 1983, 2, 292. (g) Watanabe, K.; Kudo, K.; Sugita, N. Bull. Chem. Soc. Jpn. 1985, 58, 2029. (h) Santacesaria, E.; Di Serio, M. J. Mol. Catal. 1990, 58, 43. (i) Tominaga, K.; Sasaki, Y.; Watanabe, T.; Saito, M. Stud. Surf. Sci. Catal. 1998, 114, 495. 229 (a) Manning, A. R. J. Chem. Soc. (A) 1971, 2321. (b) Regragui, R.; Dixneuf, P. H. J. Organomet. Chem. 1982, 239, C12. (c) Foley, H. C.; Finch, W. C.; Plerpont, C. G.; Geoffroy, G. L. Organometallics 1982, 1, 1379. (d) Regragui, R.; Dixneuf, P. H.; Taylor, N. J.; Carty, A. J. Organometallics 1984, 3, 1020. (e) Doyle, G.; Engen, D. V. J. Organomet. Chem. 1985, 280, 253. (f) Zoet, R.; van Koten, G.; van der Panne, A. L. J.; Versloot, P.; Stam, C. H.; Vrieze, K. Inorg. Chim. Acta 1988, 149, 177. (g) Gagné, M. R.; Takats, J. Organometallics 1988, 7, 561. (h) Matsuzaka, H.; Ichikawa, K;. Ishioka, T.; Sato, H.; Okubo, T.; Ishii, T.; Yamashita, M.; Kondo, S.; Kitagawa, M. J. Organomet. Chem. 2000, 596, 121. 230 (a) Regragui, R.; Dixneuf, P. H.; Taylor, N. J.; Carty, A. J. Organometallics 1984, 3, 814. (b) Regragui, R.; Dixneuf, P. H.; Taylor, N. J.; Carty, A. J. Organometallics 1986, 5, 1. (c) Guesmi, S.; Dixneuf, P. H.; Süss-Fink, G.; Taylor, N. J.; Carty, A. J. Organometallics 1989, 8, 307. (d) Dennett, J. N. L.; Jacke, J.; Nilsson, G.; Rosborough, A. ; Ferguson, M. J.; Wang, M.; McDonald, R.; Takats, J. Organometallics 2004, 23, 4478. 231 (a) Tang, L.; Huang, M.; Jiang, Y. Reactive Polymers 1994, 23, 119. (b) Guan, S.; Huang, M.; Jiang, Y. Chinese J. Polymer Sci. 1993, 11, 103. (c) Zong, H.; Tang, W.; Chen, Z.; Jiang, Y. Chinese J. Polymer Sci. 1991, 9, 171. (d) Tang, Q.; Zong, H.; Chen, Z.; Jiang, Y. Chinese J. Polymer Sci. 1991, 9, 39. (e) Cao, S.; Huang, M.; Jiang, Y. Polym. Bull. 1988, 19, 353. 232 (a) Stephan, D. W. Coord. Chem. Rev. 1989, 95, 41. (b) Wheatley, N.; Kalck, P. Chem. Rev. 1999, 99, 3379. (c) Adams E. W. In Comprehensive Organometallic Chemistry II; Abel, R. D.; Stone, F. G. A.; Wilkinson, G. (Eds.) Elsevier, Oxford, 1995, 10, 1. (d) 253 References Chetcuti, E. W. In Comprehensive Organometallic Chemistry II; Abel, M. J.; Stone, F. G. A.; Wilkinson, G. (Eds.) Elsevier, Oxford, 1995, 10, 24. 233 Matsuzaka, H.; Ichikawa, K.; Ishii, T.; Kondo, M.; Kitagawa, S. Chem. Lett. 1998, 1175. 234 Ng, S. Y.; Goh, L. Y.; Koh, L. L.; Leong, W. K.; Tan, G. K.; Ye, S.; Zhu, Y. Eur. J. Inorg. Chem. 2006, 663. 235 Jones, R. A.; Seeberger, M. H.; Stuart, A. L.; Whittlesey, B. R.; Wright, T. C. Acta Crystallogr.C: Cryst. Struct. Commun. 1986, 42, 399. 236 Shiu, K. -B.; Lee, H. -C.; Lee, G. -H.; Wang, Y. Organometallics 2002, 21, 4013. 237 (a) Dahan, F.; Sabo, S.; Chaudret, B. Acta Crystallogr. C: Cryst. Struct. Commun. 1984, 40, 786. (b) Gordon, E. M.; Eisenberg, R. J. Mol. Catal. 1988, 45, 57. 238 Crabtree, R. H.; Lavin, M. Inorg. Chem. 1986, 25, 805. 239 Dyson, P. J.; McIndoe, J. S. In Transition Metal Carbonyl Cluster Chemistry, Gordon and Breach, Amsterdam, 2000. 240 Antipin, M. Y.; Struchkov, Y. T.; Chernega, A. N.; Meidine, M. F.; Nixon, J. F. J. Organomet. Chem. 1992, 436, 79. 241 Byers, L. R.; Dahl, L. F. Inorg. Chem. 1980, 19, 277. 242 Bleuel, E.; Gevert, O.; Laubender, M.; Werner, H. Organometallics 2000, 19, 3109. 243 Salzer, A.; Täschler, C. J. Organomet. Chem. 1985, 294, 261. 244 Edgell, W. F.; Lyford, J. Inorg. Chem. 1970, 9, 1932 245 Bruce, M. I.; Ellis, B. G.; Low, P. J.; Skelton, B. W.; White, A. H. Organometallics 2003, 22, 3184. 246 (a) Becker, E.; Mereiter, K.; Puchberger, M.; Schmid, R.; Kirchner, K.; Doppiu, A.; Salzer, A. Organometallics 2003, 22, 3164. (b) Trost, B. M.; Vidal, B.; Thommer, M. Chem. Eur. J. 1999, 5, 1055. (c) Foerstner, J.; Kakoschke, A.; Stellffeldt, D.; Butenschön, H.; Wartchow, R. Organometallics 1998, 17, 893. (d) Casey, C. P.; Czerwinske, C. J.; Fusie, K. A.; Hayashi, R. K. J. Am. Chem. Soc. 1997, 119, 3971. (e) Kataoka, Y.; Saito, Y.; Nagata, K.; Shibahara, A.; Tani, K. Chem. Lett. 1997, 621. 247 (a) Wang, S.; Li, H. -W.; Xie, Z. Organometallics 2004, 23, 2469. (b) Wang, S.; Li, H. -W.; Xie, Z. Organometallics 2004, 23, 3780. 254 References 248 (a) Groux, L. F.; Zargarian, D. Organometallics 2003, 22, 3124. (b) Groux, L. F.; Zargarian, D. Organometallics 2001, 20, 3811. 249 (a) Siemeling, U.; Chem. Rev. 2000, 100, 1495. (b) Butenschön, H. Chem. Rev. 2000, 100, 1527. (c) Müller, C.; Vos, D.; Jutzi, P. J. Organomet. Chem. 2000, 600, 127. (d) Jutzi, P.; Redeker, T. Eur. J. Inorg. Chem. 1998, 663. (e) Jutzi, P.; Siemeling, U. J. Organomet. Chem. 1995, 500, 175. (f) Jutzi, P.; Dahlaus, J. Coord. Chem. Rev. 1994, 137, 179. 250 (a) Ciruelos, S.; Doppiu, A.; Englert, U.; Salzer, A. J. Organomet. Chem. 2002, 663, 183. (b) Doppiu, A.; Englert, U.; Peters, V.; Salzer, A. Inorg. Chim. Acta 2004, 357, 1773. 251 Kataoka, Y.; Saito, Y.; Nagata, K.; Shibahara, A.; Tani, K. Chem. Lett. 1995, 833. 252 Baker, R. W.; Luck, I. J.; Turner, P. Inorg. Chem. Comm. 2005, 8, 817. 253 Dodo, N.; Matsushima, Y.; Uno, M.; Onitsuka, K.; Takahashi, S. J. Chem. Soc., Dalton Trans. 2000, 35. 254 (a) Kataoka, Y.; Shibahara, A.; Saito, Y.; Yamagata, T.; Tani, K. Organometallics 1998, 17, 4338. (b) Kataoka, Y.; Iwato, Y.; Shibahara, A.; Yamagata, T.; Tani, K. J. Chem. Soc., Chem. Commun. 2000, 841. 255 Trost, B. M. Acc. Chem. Res. 2002, 35, 695. 256 (a) Duppio, A.; Englert, U.; Salzer, A. Inorg. Chim. Acta 2003, 350, 435. (b) Duppio, A.; Salzer, A. Eur. J. Inorg. Chem. 2004, 2244. 257 See examples: (a) Cadierno, V.; Díez, J.; García-Garrido, S. E.; García-Granda, S.; Gimeno, J. J. Chem. Soc., Dalton Trans. 2002, 1465. (b) Cadierno, V.; García-Garrido, S. E.; Gimeno, J. Inorg. Chim. Acta 2003, 347, 41. 258 David, N. C.; Roulet, R. J. Chem. Soc., Chem. Comm. 1988, 951. 259 Bauer, A.; Englert, U.; Geyser, S.; Podewils, F.; Salzer, A. Organometallics 2000, 19, 5471. 260 Shin, R. Y. C.; Goh, L. Y. Acc. Chem. Res. 2006, 39, 301and references therein. 261 (a) Kataoka, Y.; Shibahara, A.; Yamagata, T.; Tani, K. Organometallics 2001, 20, 2431. (b) Kataoka, Y.; Nakagawa, Y.; Shibahara, A.; Yamagata, T.; Mashima, K.; Tani, K. Organometallics 2004, 23, 2095. (c) Kataoka, Y.; Shimada, K.; Goi, T.; Yamagata, T.; Mashima, K.; Tani, K. Inorg. Chim. Acta 2004, 357, 2965. 255 References 262 See for instance: (a) Werner, H.; Fries, G.; Woberndörfer, B. J. Organomet. Chem. 2000, 607, 182. (b) Dossett, S. J.; Li, S.; Stone, F. G. A. J. Chem. Soc., Dalton Trans. 1993, 1585. 263 Aucott, S. M.; Slawin, A. M. Z.; Woolins, J. D. J. Organomet. Chem. 1999, 582, 83. 264 Slawin, A. M. Z.; Wheatley, J.; Wheatley, M. V.; Woolins, J. D. Polyhedron 2003, 22, 1397. 265 Cox, D. N.; Small, R. W. H.; Roulet, R. J. Chem. Soc., Dalton Trans. 1991, 2013. 266 Lee, I.; Dahan, F.; Maisonnat, A.; Poilblanc, R. Organometallics 1994, 13, 2743. 267 Salzer, A.; Bauer, A.; Geyser, S.; Podewils, F. Inorg. Synth. 2004, 34, 59. 268 Derrah, E. J.; Marlinga, J. C.; Mitra, D.; Friesen, D. M.; Hall, S. A.; McDonald, R.; Rosenberg, L. Organometallics 2005, 24, 5817. 269 Pavia, D. L.; Lampman, G. M.; Kriz, G. S.; Eds.: Introduction to Spectroscopy, Saunders College Publishing, 1996, p. 189. 270 Bennett, M. A.; Byrnes, M. J.; Willis, A. C. Organometallics 2003, 22, 1018. 271 Alvarez, P.; Lastra, E.; Gimeno, J.; Braña, P.; Sordo, J. A.; Gomez, J.; Falvello, L. R.; Bassetti, M. Organometallics 2004, 23, 2956. 256 [...]... presence of NEt3 also resulted in the cleavage of the indenyl ligand, giving [Ru(CO)2(Sbztz)2] 28 The lability of the indenyl ligand was observed to be influenced by the nature of both the co-ligands at the Ru center and the incoming 1,1-dithiolate ligands, as well as the solvent Hence, the reactions of 3 and [(Ind)Ru(dppm)Cl] 29 with dithiocarbamate resulted in dissociation of the indenyl ligand, giving... 1.2 The effect of haptotropic shift in indenyl (Ind) complexes The heightened ability of indenyl transition metal complexes to undergo modification of the ligand-to-metal connectivity (e.g η5 ↔ η3 ↔ η1; η5 ↔ η6), also known as “haptotropic shifts”, is widely investigated at the time, and is therefore characteristic of indenyl metal complexes The flexibility of indenyl transition metal complexes in haptotropic... of the PPh3 ligand by 2-electron donors, as well as the ready displacement of the chloro ligand by both anionic and neutral ligands 26 Its well-defined CpRu(PPh3)2 moiety is an attractive auxiliary wherewith to attach organic groups for studies on the effects of steric and electronic environment on the chemical 26a and catalytic 27 reactivity of the complex Owing to the chemical uniqueness of the indenyl. .. η3Binding (C) in metal complexes of groups 9 and 10 metals of groups 4 and 9 3 2 and η1-Ind complexes (D) for are well documented However, C and D modes are not common for group 8 metal complexes, the only examples being [PPN][Fe(η3-Ind)(CO)3] (C1) 4 and [Fe(η1-Ind)(η5-Cp)(CO)2] (D1) 5 Coordination mode E was observed in triple and tetra-decker Ru complexes, e.g E1 6 while F and G was found in Ru3(CO)12... xvii List of Tables List of Tables Table 1.1 Slip-fold parameters……………………………………………………….4 Table 2.1 Common coordination modes of dppf and their examples…………… 26 Table 2.2 Common coordination modes of 1,1-dithiolates and their examples……39 Table 2.3 Selected bond parameters of complexes 2, 3, [4]+ and [CpRu(dppf)Cl]…………………………………….……………… 47 Table 2.4 Selected bond lengths (Å) and angles (°) of 9 and [(Ind/Cp)Ru(dppe)(N3C2(CO2Me)2)]…………………………... system of the ligand, have weakened the Ind-M bond strength This has been attributed to the electron-accepting nature of the six-membered ring in the indenyl ligand 23 Calhorda and Veiros have carried out detail theoretical calculations on the η5 η3 coordination shift of Cp and Ind ligands in Mo complexes, [(η5-Cp’)(η5Cp)Mo(CO)2]2+ (Cp’ = Cp, Ind) 24 This study supported Kubas’s proposal, that the indenyl. .. chemical uniqueness of the indenyl ligand as discussed in the previous section, there has been a surge in the study of Ind transition metal complexes, including that of Ru complexes 28 The marked effect of the capping ligand on reactivity of the complex came to light with the synthesis of [(Ind)Ru(PPh3)2Cl] 1 (Ind = η5-C9H7) (Scheme 1.4(a)) some 16 years after that of its Cp analogue, 1a 29 [(Ind)Ru(PPh3)2Cl]... degree of distortion in the solid state of indenyl complexes can be discussed in terms of the slip-fold distortion parameters described by Taylor and Marder 11 The parameters are: (a) the slip parameter (Δ), (b) the hinge angle (HA) and (c) the fold angle 3 Chapter 1: General Introduction (FA) The table below shows the values of slip-fold parameters for true η5-, distorted η5-, and true η3- complexes. .. dimerization of phenylacetylene…… 158 Table 3.2 Effect of amines, coordinating solvents and base on yield of II……….162 Table 3.3 [LRu(CO)2]2 (L = Ind, Cp, Cp*) and catalyzed dimerization of PhC≡CH in the presence of piperidine…………………………… ….163 Table 3.4 Cross coupling of carboxylic acids to PhC≡CH catalyzed by 22………168 Table 4.1 Common atomic numbering scheme and selected bond parameters for 56, 4.6 and 4.7... bond lengths (Å) and angles (°) for 62 and [62a]+……………200 xix List of Figures List of Figures Figure 2.1 ORTEP diagram of 2…………………………………………………….46 Figure 2.2 ORTEP diagram of 3…………………………………………………….46 Figure 2.3 ORTEP diagram of 4…………………………………………………….47 Figure 2.4 ORTEP diagram of R-6…………………………………………… … 53 Figure 2.5 ORTEP diagram of 8…………………………………………………….60 Figure 2.6 ORTEP diagram of 9…………………………………………………….61 . SYNTHETIC, STRUCTURAL AND REACTIVITY STUDIES OF INDENYL RUTHENIUM COMPLEXES NG SIN YEE (B.Sc.(Hons.), NUS) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR. ligand………………………………1 1.2 The effect of haptotropic shift in indenyl complexes ………………………… 5 1.3 Indenyl ruthenium [(Ind)Ru] complexes ………………………….………… 10 1.3.1 Reactivity studies of [(Ind)Ru] complexes ……………………………11. dissociation of the indenyl ligand was observed. Likewise the reaction of [(Ind)Ru(CO) 2 I] 27 with HSbztz in the presence of NEt 3 also resulted in the cleavage of the indenyl ligand, giving