Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 162 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
162
Dung lượng
2,08 MB
Nội dung
DNA STRESS INDUCED FILAMENTOUS GROWTH IN CANDIDA ALBICANS SHI QINGMEI NATIONAL UNIVERSITY OF SINGAPORE 2006 DNA STRESS INDUCED FILAMENTOUS GROWTH IN CANDIDA ALBICANS SHI QINGMEI A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY INSTITUTE OF MOLECULAR AND CELL BIOLOGY NATIONAL UNIVERSITY OF SINGAPORE 2006 ACKNOWLEDGEMENTS First of all, I would like to express my sincere gratitude to my supervisor, associate professor Dr Yue Wang, for his continuous guidance, constant encouragement, stimulating discussion, and patience through the entire course of my Ph.D study I am also thankful to the members of my Ph.D supervisory committee, associate professor Mingjie Cai and associate professor Uttam Surana, for their advises and invaluable discussions I would also like to thank Dr Xinde Zheng, for his sharing ideas and scientific discussions, Yanming Wang for her high standard technical support and kindness, and all the other members of WY labs for the help, support, and friendship Finally, I would like to express my thanks to my husband, for his love, encouragement, and support Shi qingmei June 2006 i TABLE OF CONTENTS ACKONWLEDGEMENTS i TABLE OF CONTENTS ii LIST OF FIGURES vi LIST OF TABLES viii ABBREVIATION ix SUMMARY xi CHAPTER INTRODUCTION 1.1 Polymorphism and virulence of C albicans 1.1.1 Different morphogenic states of C albicans 1.1.2 Morphogenesis and virulence of C albicans 1.2 Transcription pathways that regulate hyphal formation in C albicans 1.2.1 The MAP kinase pathway 1.2.2 The cAMP-dependent protein kinase A pathway 1.2.3 Tup1-mediated repressive pathway 1.2.4 Other pathways 11 1.2.5 Hyphal specific genes (HSGs) 12 1.3 Relationship between filamentous growth and cell cycle progression 13 1.3.1 Relationship between cell cycle progression and filamentous growth of S cerevisiae 13 1.3.2 Relationship between cell cycle progression and hyphal growth of C Albicans 15 1.4 Pseudohyphal growth of C albicans 17 1.5 Relationship between pseudohyphal growth and checkpoint function 18 1.5.1 DNA damage and DNA replication checkpoints 19 1.5.1.1 Sensor proteins of DNA damage and replication checkpoints 20 1.5.1.2 Adaptor proteins of DNA damage and replication checkpoints 24 1.5.1.3 Effector proteins of DNA damage and replication checkpoints 30 ii 1.6 Present study 41 CHAPTER MATERIALS AND METHODS 2.1 Reagents 42 2.2 Strains and Culture conditions 42 2.3 Oligonucleotide primers 42 2.3.1 Primers for gene deletion 44 2.3.2 Primers for cloning work 44 2.3.3 Probes for Northern Blot 47 2.3.4 Primers for site-directed mutagenesis 47 2.4 Recombinant DNA methods 49 2.4.1 Preparation of electro-competent E coli cells 49 2.4.2 Plasmid preparation and analysis 50 2.4.3 Agarose gel electrophoresis 52 2.4.4 DNA probes labeling 52 2.4.5 Southern blot 53 2.4.6 Northern blot 54 2.5 C albicans manipulations 54 2.5.1 Preparation of C albicans competent cells and electroporation 54 2.5.2 Preparation of C albicans genomic DNA 55 2.5.3 Preparation of C albicans RNA 56 2.5.4 Cell synchronization (Centrifugal elutriation) 57 2.6 Gene disruption and integration 58 2.6.1 CaRAD53, CaRAD9, CaMRC1 genes deletion 58 2.6.2 CaMET3 promoter controlled CaRNR2 construct 58 2.6.3 Carad53∆, Carad9∆, Camrc1∆ rescue constructs 59 2.6.4 Site-directed mutagenesis of CaRad53 FHA domain and BRCT2 domain of CaRad9 60 2.6.5 GFP-tagging of CaTUB2 60 2.6.6 Myc-tagging of cyclins 61 iii 2.7 HU and MMS Sensitivity Tests 61 2.8 Flow cytometry analysis 62 2.9 Microscopy and fluorescence studies 62 2.10 Cell viability test (Methylene blue staining) 63 2.11 Protein work 63 2.11.1 C albicans protein purification 63 2.11.2 Western blot 64 2.11.3 Protein dephosphorylation 65 CHAPTER RESULTS 3.1 Low concentrations of HU induce constitutive filamentous growth of C albicans 66 3.2 Inhibition of DNA polymerase α or deletion of CaRNR2 also induces filamentous growth 69 3.3 HU-induced filamentous growth is independent of a number of genes known to be important for hyphal growth 73 3.4 Expression of representative hypha-specific genes is not increased during HUinduced filamentous growth 75 3.5 Constitutive polarization of actin structures and polarisome proteins at the filament tips and formation of cytoplasmic microtubules 77 3.6 DNA damaging agents also induce filamentous growth of C albicans 81 3.7 Identification of CaMRC1, CaRAD53 and CaRAD9 genes of C albicans DNA replication and damage checkpoint pathways 83 3.8 Functional characterization of CaRAD53 in cellular response to DNA replication inhibition and DNA damage 87 3.9 Functional characterization of CaMRC1 in cellular response to DNA replication inhibition and DNA damage 97 3.10 Functional characterization of CaRAD9 in cellular response to DNA replication inhibition and DNA damage 3.11 Role of the FHA Domains in CaRad53-mediated Cellular Functions 100 104 iv 3.12 Swe1 is not required for the genotoxic-stress-induced filamentous growth 111 3.13 Cellular levels of G1 and B-type cyclins during HU-induced filamentous growth 113 CHAPTER DISCUSSION 4.1 Difference between genotoxic-stress-induced filamentous growth and serum induced true hyphal growth in C albicans 115 4.2 The key components of DNA replication and damage checkpoint pathways are conserved 116 4.3 DNA checkpoints are required for the genotoxic-stress-induced filamentous growth 117 4.4 Role of CaRad53 in true hyphal growth 119 4.5 Genetic separation of CaRad53-mediated cell responses to genotoxic stress 120 4.6 Function of G1 and B-type cyclins in HU-induced filamentous growth of C albicans 121 4.7 Growth and checkpoint functions of CaMrc1 123 4.8 Relationship between filamentous growth and virulence 124 REFERENCE 127 PUBLICATIONS 149 v LIST OF FIGURES FIGURE 1.1 Signal transduction pathways regulating hyphal growth in C albicans FIGURE 3.1 HU and aphidicolin induce constitutive filamentous growth of C albicans 71 FIGURE 3.2 Switching off CaRNR2 expression leads to cell elongation 72 FIGURE 3.3 HU-induced filamentous growths of Cacph1∆, Caefg1∆, Cacph1∆/Caefg1∆, Cahgc1∆, and Cacdc35∆ 74 FIGURE 3.4 Northern blot analyses of hypha-specific gene 76 FIGURE 3.5 Actin, CaSpa2-GFP, and microtubule localization in HU-induced filamentous growth of C albicans 80 FIGURE 3.6 DNA damage by MMS or UV causes filamentous growth 82 FIGURE 3.7 Domain organization of C albicans CaRad53, Mrc1 and Rad9 in comparison with S cerevisiae orthologues 85 FIGURE 3.8 Chromosome deletion of RAD53, MRC1, or RAD9 in C albicans strain BWP17 86 FIGURE 3.9 Carad53 morphology and sensitivity to different DNA replication block and DNA damaging agents 90 FIGURE 3.10 characterization of HU- and MMS-induced cell cycle arrest of the Carad53 mutant 91 FIGURE 3.11 Phosphorylation of CaRad53 in response to different treatment 93 FIGURE 3.12 Filamentous growth defects of rad53∆ cells 95 FIGURE 3.13 Characterization of the Camrc1 cells 99 FIGURE 3.14 HU and MMS sensitivity of Carad9∆ 102 FIGURE 3.15 HU, MMS, and UV induced cell cycle arrest and filamentous growth of Carad9∆ 103 FIGURE 3.16 Alignment of FHA domains 104 FIGURE 3.17 Phenotypes of FHA domain mutations 110 vi FIGURE 3.18 HU- and MMS-induced filamentous growth of Caswe1∆ 112 FIGURE 3.19 Cellular levels of G1 and B-type cyclins during HU-induced filamentous growth 114 vii LIST OF TABLES TABLE 2.1 C albicans stains used in this study 43 TABLE 3.1 Effect of the FHA domain mutations 109 viii Herrero A.B., Lopez M.C., Fernandez-Lago L., Dominguez A (1999) Candida albicans and Yarrowia lipolytica as alternative models for analysing budding patterns and germ tube formation in dimorphic fungi Microbiology 145 :2727-37 Hornby J.M., Dumitru R., Kickerson K.W (2003) High phosphate (up to 600 mM) induces pseudohyphal development in five wild type Candida albicans J Microbiol Methods 56:119-24 Hoyer L.L., Payne T.L., Bell M., Myers A.M., Scherer S (1998) Candida albicans ALS3 and insights into the nature of the ALS gene family Curr Genet 33:451-9 Hoyer LL (2001) The ALS gene family of Candida albicans Trends Microbiol 9:17680 Hu F., Wang Y., Liu D., Li Y., Qin J., Elledge S.J (2001) Regulation of the Bub2/Bfa1 GAP complex by Cdc5 and cell cycle checkpoints Cell 107:655-65 Huang M., Zhou Z., Elledge S.J (1998) The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crt1 repressor Cell 94:595-605 Hube B (2004) From commensal to pathogen: stage- and tissue-specific gene expression of Candida albicans Curr Opin Microbiol 7: 336-41 Hube B., Monod M., Schofield D.A., Brown A.J., Gow N.A (1994) Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans Mol Microbiol 14:87-99 Huyen Y., Zgheib O., Ditullio R.A Jr, Gorgoulis V.G., Zacharatos P., Petty T.J., Sheston E.A., Mellert H.S., Stavridi E.S., Halazonetis T.D (2004) Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks Nature 432:406-11 Huyton T., Bates P.A., Zhang X., Sternberg M.J., Freemont P.S (2000) The BRCA1 Cterminal domain: structure and function Mutat Res 460:319-32 Jang Y.K., Wang L., Sancar G.B (1999) RPH1 and GIS1 are damage-responsive repressors of PHR1 Mol Cell Biol 19:7630-8 Jensen S., Johnston L.H (2002) Complexity of mitotic exit Cell Cycle 1:300-3 Jia X., Weinert T., Lydall D (2004) ScMec1 and ScRad53 inhibit formation of singlestranded DNA at telomeres of Saccharomyces cerevisiae cdc13-1 mutants Genetics 166:753-64 Jiang Y.W., and Kang C.M (2003) Induction of S cerevisiae filamentous differentiation by slowed DNA synthesis involves ScMec1, ScRad53 and Swe1 checkpoint proteins Mol Biol Cell 14: 5116-5124 133 Kadosh D., Johnson A.D (2001) Rfg1, a protein related to the Saccharomyces cerevisiae hypoxic regulator Rox1, controls filamentous growth and virulence in Candida albicans Mol Cell Biol 21:2496-505 Kadosh D., Johnson A.D (2005) Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis Mol Biol Cell 16:2903-12 Kastaniotis A.J., Zitomer R.S (2000) Rox1 mediated repression Oxygen dependent repression in yeast Adv Exp Med Biol 475:185-95 Kato R., Ogawa H (1994) An essential gene, ESR1, is required for mitotic cell growth, DNA repair and meiotic recombination in Saccharomyces cerevisiae Nucleic Acids Res 22:3104-12 Katou Y., Kanoh Y., Bando M., Noguchi H., Tanaka H., Ashikari T., Sugimoto K., Shirahige K (2003) S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex Nature 424:1078-83 Keleher C.A., Redd M.J., Schultz J., Carlson M., Johnson A.D (1992) Ssn6-Tup1 is a general repressor of transcription in yeast Cell 68:709-19 Khalaf R.A., Zitomer R.S (2001) The DNA binding protein Rfg1 is a repressor of filamentation in Candida albicans 157:1503-12 Kihara M., Nakai W., Asano S., Suzuki A., Kitada K., Kawasaki Y., Johnston L.H, Sugino A (2000) Characterization of the yeast Cdc7p/Dbf4p complex purified from insect cells Its protein kinase activity is regulated by Rad53p J Biol Chem 275:3505162 Kim E.M., Jang Y.K., Park S.D (2002) Phosphorylation of Rph1, a damage-responsive repressor of PHR1 in Saccharomyces cerevisiae, is dependent upon Rad53 kinase Nucleic Acids Res 30:643-8 Kim H.S., Brill S.J (2001) Rfc4 interacts with Rpa1 and is required for both DNA replication and DNA damage checkpoints in Saccharomyces cerevisiae Mol Cell Biol 21:3725-37 Kohler J.R., Fink G.R (1996) Candida albicans strains heterozygous and homozygous for mutations in mitogen-activated protein kinase signaling components have defects in hyphal development Proc Natl Acad Sci 93:13223-8 Kostrub C.F., Knudsen K., Subramani S., Enoch T (1998) Hus1p, a conserved fission yeast checkpoint protein, interacts with Rad1p and is phosphorylated in response to DNA damage EMBO J 17:2055-66 134 Kim H.S., Brill S.J (2003) SCMEC1-dependent phosphorylation of yeast RPA1 in vitro DNA Repair (Amst) 2:1321-35 Kumagai A., Dunphy W.G (2000) Claspin, a novel protein required for the activation of Chk1 during a DNA replication checkpoint response in Xenopus egg extracts Mol Cell 6:839-49 La Valle R., and Wittenberg, C (2001) A role for the Swe1 checkpoint kinase during filamentous growth of Saccharomyces cerevisiae Genetics 158:549-62 Lane S., Birse C., Zhou S., Matson R., Liu H (2001) DNA array studies demonstrate convergent regulation of virulence factors by Cph1, Cph2, and Efg1 in Candida albicans J Biol Chem 276:48988-96 Lane S., Zhou S., Pan T., Dai Q., Liu H (2001) The basic helix-loop-helix transcription factor Cph2 regulates hyphal development in Candida albicans partly via TEC1 Mol Cell Biol 21:6418-28 Lavin M.F., Shiloh Y (1997) The genetic defect in ataxia-telangiectasia Annu Rev Immunol 15:177-202 Leberer E., Harcus D., Broadbent I.D., Clark K.L., Dignard D., Ziegelbauer K., Schmidt A., Gow N.A., Brown A.J., Thomas D.Y (1996) Signal transduction through homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans Proc Natl Acad Sci U S A 93:13217-22 Leberer E., Ziegelbauer K., Schmidt A., Harcus D., Dignard D., Ash J., Johnson L., Thomas D.Y (1997) Virulence and hyphal formation of Candida albicans require the Ste20p-like protein kinase CaCla4p Curr Biol 7:539-46 Leberer E., Harcus D., Dignard D., Johnson L., Ushinsky S., Thomas D.Y., Schroppel K (2001) Ras links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signalling pathways in the pathogenic fungus Candida albicans Mol Microbiol 42:673-87 Lee KL, Buckley HR, Campbell CC (1975) An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida Albicans Sabouraudia.13:14853 Lee S.J., Schwartz M.F., Duong J.K., Stern D.F (2003) Rad53 phosphorylation site clusters are important for Rad53 regulation and signaling Mol Cell Biol 23:6300-14 Lee S.J., Duong J.K., Stern D.F (2004) A Ddc2-ScRad53 fusion protein can bypass the requirements for SCSCRAD9 and SCMRC1 in ScRad53 activation Mol Biol Cell 15:5443-55 135 Leroy C., Lee S.E., Vaze M.B., Ochsenbien F., Guerois R., Haber J.E., MarsolierKergoat M.C (2003) PP2C phosphatases Ptc2 and Ptc3 are required for DNA checkpoint inactivation after a double-strand break Mol Cell 11:827-35 Erratum in: Mol Cell 11:1119 Lew D.J., Reed S.I (1993) Morphogenesis in the yeast cell cycle: regulation by Cdc28 and cyclins J Cell Biol 120:1305-20 Lew D.J., Reed S.I (1995) Cell cycle control of morphogenesis in budding yeast Curr Opin Genet Dev 5:17-23 Liu H (2001) Transcriptional control of dimorphism in Candida albicans Curr Opin Microbiol 4:728-35 Liu H., Kohler J., Fink G.R (1994) Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog Science 266:1723-6 Liu Y., Vidanes G., Lin Y.C., Mori S., Siede W (2000) Characterization of a Saccharomyces cerevisiae homologue of Schizosaccharomyces pombe Chk1 involved in DNA-damage-induced M-phase arrest Mol Gen Genet 262:1132-46 Lo H.J., Kohler J.R., DiDomenico B., Loebenberg D., Cacciapuoti A., Fink G.R (1997) Nonfilamentous C albicans mutants are avirulent Cell 90:939-49 Loeb J.D., Sepulveda-Becerra M., Hazan I., Liu H (1999) A G1 cyclin is necessary for maintenance of filamentous growth in Candida albicans Mol Cell Biol 19:4019-27 Lopes M., Cotta-Ramusino C., Pellicioli A., Liberi G., Plevani P., Muzi-Falconi M., Newlon C.S., Foiani M (2001) The DNA replication checkpoint response stabilizes stalled replication forks Nature 412:557-61 Lorenz, M.C., Cutler, N.S., and Heitman, J (2000) Characterization of alcohol-induced filamentous growth in Saccharomyces cerevisiae Mol Bio Cell 11:183-99 Lowe S.W., Schmitt E.M., Smith S.W., Osborne B.A., Jacks T (1993) p53 is required for radiation-induced apoptosis in mouse thymocytes Nature 362:847-9 Lustig A.J., Petes T.D (1986) Identification of yeast mutants with altered telomere structure Proc Natl Acad Sci U S A 83:1398-402 Lydall D., Weinert T (1995) Yeast checkpoint genes in DNA damage processing: implications for repair and arrest Science 270:1488-91 Maertens J., Vrebos M., Boogaerts M (2001) Assessing risk factors for systemic fungal infections Eur J Cancer Care (Engl) 10: 56-62 136 Mallory J.C., Petes T.D (2000) Protein kinase activity of ScTel1p and ScMec1p, two Saccharomyces cerevisiae proteins related to the human ATM protein kinase Proc Natl Acad Sci U S A 97:13749-54 Marini F., Pellicioli A., Paciotti V., Lucchini G., Plevani P., Stern D.F., Foiani M (1997) A role for DNA primase in coupling DNA replication to DNA damage response EMBO J 16:639-50 McMillan J.N., Sia R.A.L., Bardes E.S.G., and Lew D.J (1999) Phosphorylationindependent inhibition of Cdc28 by the tyrosine kinase Swe1p in the morphogenesis checkpoint Mo Cell Biol 19:5981-90 Melo J.A., Cohen J., Toczyski D.P (2001) Two checkpoint complexes are independently recruited to sites of DNA damage in vivo Genes Dev 15:2809-21 Merson-Davies, L.A., and Odds F.C (1989) A morphology index for cell shape in Candida albicans J Gen Microbiol 135: 3143-52 Miwa T., Takagi Y., Shinozaki M., Yun C.W., Schell W.A., Perfect J.R., Kumagai H., Tamaki H (2004) Gpr1, a putative G-protein-coupled receptor, regulates morphogenesis and hypha formation in the pathogenic fungus Candida albicans Eukaryot Cell 3:919-31 Morrow D.M., Tagle D.A., Shiloh Y., Collins F.S., Hieter P (1995) SCTEL1, an S cerevisiae homolog of the human gene mutated in ataxia telangiectasia, is functionally related to the yeast checkpoint gene SCMEC1 Cell 82831-40 Murad A.M., Leng P., Straffon M., Wishart J., Macaskill S., MacCallum D., Schnell N., Talibi D., Marechal D., Tekaia F., d'Enfert C., Gaillardin C., Odds F.C., Brown A.J (2001)a NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans EMBO J 20:4742-52 Murad A.M., d'Enfert C., Gaillardin C., Tournu H., Tekaia F., Talibi D., Marechal D., Marchais V., Cottin J., Brown A.J (2001)b Transcript profiling in Candida albicans reveals new cellular functions for the transcriptional repressors CaTup1, CaMig1 and CaNrg1 Mol Microbiol 42:981-93 Murad A.M., Lee P.R., Broadbent I.D., Barelle C.J., Brown A.J (2001)c CIp10, an efficient and convenient integrating vector for Candida albicans Yeast 16:325-7 Naiki T., Shimomura T., Kondo T., Matsumoto K., Sugimoto K (2000) Rfc5, in cooperation with rad24, controls DNA damage checkpoints throughout the cell cycle in Saccharomyces cerevisiae Mol Cell Biol 20:5888-96 Naiki T., Wakayama T., Nakada D., Matsumoto K., Sugimoto K (2004) Association of ScScRad9 with double-strand breaks through a ScMec1-dependent mechanism Mol Cell Biol 24:3277-85 137 Nasmyth K., Dirick L (1991) The role of SWI4 and SWI6 in the activity of G1 cyclins in yeast Cell 66:995-1013 Navas T.A., Sanchez Y., Elledge S.J (1996) SCSCRAD9 and DNA polymerase epsilon form parallel sensory branches for transducing the DNA damage checkpoint signal in Saccharomyces cerevisiae Genes Dev 10:2632-43 Nelson D.M., Ye X., Hall C., Santos H., Ma T., Kao G.D., Yen T.J., Harper J.W., Adams P.D (2002) Coupling of DNA synthesis and histone synthesis in S phase independent of cyclin/cdk2 activity Mol Cell Biol 22:7459-72 Niimi M., Niimi K., Tokunaga J., Nakayama H (1980) Changes in cyclic nucleotide levels and dimorphic transition in Candida albicans J Bacteriol 142:1010-4 Niimi M (1996) Dibutyryl cyclic AMP-enhanced germ tube formation in exponentially growing Candida albicans cells Fungal Genet Biol 20:79-83 Noskov V.N., Araki H., Sugino A (1998) The RFC2 gene, encoding the third-largest subunit of the replication factor C complex, is required for an S-phase checkpoint in Saccharomyces cerevisiae Mol Cell Biol 18:4914-23 Odds F.C (1988) Candida and Candidosis BailliereTindall, London Odds F.C (1993) Resistance of yeasts to azole-derivative antifungals J Antimicrob Chemother 31:463-71 Osborn A.J., Elledge S.J (2003) ScMrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates ScRad53 Genes Dev 17:1755-67 Paciotti V., Lucchini G., Plevani P., Longhese M.P (1998) ScMec1p is essential for phosphorylation of the yeast DNA damage checkpoint protein Ddc1p, which physically interacts with Mec3p EMBO J 17:4199-209 Paciotti V., Clerici M., Lucchini G., Longhese M.P (2000) The checkpoint protein Ddc2, functionally related to S pombe Rad26, interacts with ScMec1 and is regulated by ScMec1-dependent phosphorylation in budding yeast Genes Dev 14:2046-59 Paciotti V., Clerici M., Scotti M., Lucchini G., Longhese M.P (2001) Characterization of ScMec1 kinase-deficient mutants and of new hypomorphic ScMec1 alleles impairing subsets of the DNA damage response pathway Mol Cell Biol 21:3913-25 Pan X., Heitman J (1999) Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae Mol Cell Biol 19:4874-87 138 Pan X., Ye P., Yuan D.S., Wang X., Bader J.S., Boeke J.D (2006) A dna integrity network in the yeast Saccharomyces Cerevisiae Cell 124: 1069-81 Park S.H., Koh S.S., Chun J.H., Hwang H.J., Kang H.S (1999) Nrg1 is a transcriptional repressor for glucose repression of STA1 gene expression in Saccharomyces cerevisiae Mol Cell Biol 19:2044-50 Pasero P., Duncker B.P., Schwob E., Gasser S.M (1999) A role for the Cdc7 kinase regulatory subunit Dbf4p in the formation of initiation-competent origins of replication Genes Dev 13:2159-76 Paulovich A.G., Hartwell L.H (1995) A checkpoint regulates the rate of progression through S phase in S cerevisiae in response to DNA damage Cell 82:841-7 Paulovich A.G., Margulies R.U., Garvik B.M., Hartwell L.H (1997) SCSCRAD9, RAD17, and RAD24 are required for S phase regulation in Saccharomyces cerevisiae in response to DNA damage Genetics 145:45-62 Pellicioli A., Lucca C., Liberi G., Marini F., Lopes M., Plevani P., Romano A., Di Fiore P.P., Foiani M (1999) Activation of Rad53 kinase in response to DNA damage and its effect in modulating phosphorylation of the lagging strand DNA polymerase EMBO J 18:6561-72 Pike B.L., Hammet A., Heierhorst J (2001) Role of the N-terminal forkhead-associated domain in the cell cycle checkpoint function of the Rad53 kinase J Biol Chem 276:14019-26 Pike, B L., Yongkiettrakul, S., Tsai, M D., Heierhorst, J (2003) Diverse but overlapping functions of the two forkhead-associated (FHA) domains in Rad53 checkpoint kinase activation J Biol Chem 278:30421-30424 Pike B.L., Yongkiettrakul S., Tsai M.D., Heierhorst J (2004) Mdt1, a novel Rad53 FHA1 domain-interacting protein, modulates DNA damage tolerance and G(2)/M cell cycle progression in Saccharomyces cerevisiae Mol Cell Biol 24:2779-88 Porta A., Ramon A.M., Fonzi W.A (1999) PRR1, a homolog of Aspergillus nidulans palF, controls pH-dependent gene expression and filamentation in Candida albicans J Bacteriol 181:7516-23 Ramon A.M., Porta A., Fonzi W.A (1999) Effect of environmental pH on morphological development of Candida albicans is mediated via the PacC-related transcription factor encoded by PRR2 J Bacteriol 181:7524-30 139 Ritchie K.B., Mallory J.C., Petes T.D (1999) Interactions of TLC1 (which encodes the RNA subunit of telomerase), SCTEL1, and SCMEC1 in regulating telomere length in the yeast Saccharomyces cerevisiae Mol Cell Biol 19:6065-75 Rocha C.R., Schroppel K., Harcus D., Marcil A., Dignard D., Taylor B.N., Thomas D.Y., Whiteway M., Leberer E (2001) Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans Mol Biol Cell 12:3631-43 Rooney P.J and Klein B.S (2002) Linking fungal morphogenesis with virulence Cell Microbiol 4:127-37 Rouse J., Jackson S.P (2002) Lcd1p recruits ScMec1p to DNA lesions in vitro and in vivo Mol Cell 9:857-69 Saka Y., Esashi F., Matsusaka T., Mochida S., Yanagida M (1997) Damage and replication checkpoint control in fission yeast is ensured by interactions of Crb2, a protein with BRCT motif, with Cut5 and Chk1 Genes Dev 11:3387-400 Sambrook J., Fritsch E R., Maniatis T (1989) Molecular cloning: A laboratory manual Second Edition Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York Sancar G.B (2000) Enzymatic photoreactivation: 50 years and counting Mutat Res 2000 451:25-37 Sanchez Y., Desany B.A., Jones W.J., Liu Q., Wang B., Elledge S.J (1996) Regulation of SCRAD53 by the ATM-like kinases SCMEC1 and SCTEL1 in yeast cell cycle checkpoint pathways Science 271:357-60 Sanchez Y., Zhou Z., Huang M., Kemp B.E., Elledge S.J (1997) Analysis of budding yeast kinases controlled by DNA damage Methods Enzymol 283:398-410 Sanchez Y., Bachant J., Wang H., Hu F., Liu D., Tetzlaff M., Elledge S.J (1999) Control of the DNA damage checkpoint by chk1 and ScRad53 protein kinases through distinct mechanisms Science 286:1166-71 Sanchez-Martinez C and Perez-Martin J (2002) Gpa2, a G-protein alpha subunit required for hyphal development in Candida albicans Eukaryot Cell 1:865-74 Sanglard D, Kuchler K, Ischer F, Pagani JL, Monod M, Bille J (1995) Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters Antimicrob Agents Chemother 39:2378-86 Sanglard D., Odds F.C (2002) Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences Lancet Infect Dis 2: 73-85 140 Santocanale C., Neecke H., Longhese M.P., Lucchini G., Plevani P (1995) Mutations in the gene encoding the 34 kDa subunit of yeast replication protein A cause defective S phase progression J Mol Biol 254:595-607 Santocanale C., Diffley J.F (1998) A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication Nature 395:615-8 Schiestl R.H., Reynolds P., Prakash S., Prakash L (1989) Cloning and sequence analysis of the Saccharomyces cerevisiae SCSCRAD9 gene and further evidence that its product is required for cell cycle arrest induced by DNA damage Mol Cell Biol 9:1882-96 Schramke V., Neecke H., Brevet V., Corda Y., Lucchini G., Longhese M.P., Gilson E., Geli V (2001) The set1Delta mutation unveils a novel signaling pathway relayed by the Rad53-dependent hyperphosphorylation of replication protein A that leads to transcriptional activation of repair genes Genes Dev 15:1845-58 Schwartz M.F., Duong J.K., Sun Z., Morrow J.S., Pradhan D., Stern D.F (2002) ScScRad9 phosphorylation sites couple ScRad53 to the Saccharomyces cerevisiae DNA damage checkpoint Mol Cell 9:1055-65 Schwartz M.F., Lee S.J., Duong J.K., Eminaga S., Stern D.F (2003) FHA domainmediated DNA checkpoint regulation of Rad53 Cell Cycle 2:384-96 Schweizer A., Rupp S., Taylor B.N., Rollinghoff M., Schroppel K (2000) The TEA/ATTS transcription factor CaTec1p regulates hyphal development and virulence in Candida albicans Mol Microbiol 38:435-45 Sebastian J., Kraus B., Sancar G.B (1990) Expression of the yeast PHR1 gene is induced by DNA-damaging agents Mol Cell Biol 10:4630-7 Shepherd M.G., Yin C.Y., Ram S.P., Sullivan P.A (1980) Germ tube induction in Candida albicans Can J Microbiol 26:21-6 Shirahige K., Hori Y., Shiraishi K., Yamashita M., Takahashi K., Obuse C., Tsurimoto T., Yoshikawa H (1998) Regulation of DNA-replication origins during cell-cycle progression Nature 395:618-21 Shirayama M., Zachariae W., Ciosk R., Nasmyth K (1998) The Polo-like kinase Cdc5p and the WD-repeat protein Cdc20p/fizzy are regulators and substrates of the anaphase promoting complex in Saccharomyces cerevisiae EMBO J 17:1336-49 Sidorova J.M., Breeden L.L (2003) Rad53 checkpoint kinase phosphorylation site preference identified in the Swi6 protein of Saccharomyces cerevisiae Mol Cell Biol 23:3405-16 141 Siede W., Friedberg A.S., Friedberg E.C (1993) SCSCRAD9-dependent G1 arrest defines a second checkpoint for damaged DNA in the cell cycle of Saccharomyces cerevisiae Proc Natl Acad Sci U S A 90:7985-9 Siede W., Allen J.B., Elledge S.J., Friedberg E.C (1996) The Saccharomyces cerevisiae SCMEC1 gene, which encodes a homolog of the human ATM gene product, is required for G1 arrest following radiation treatment J Bacteriol 178:5841-3 Siede W., Friedberg A.S., Dianova I., Friedberg E.C (1994) Characterization of G1 checkpoint control in the yeast Saccharomyces cerevisiae following exposure to DNAdamaging agents Genetics 138:271-81 Simonetti N., Strippoli V., Cassone A (1974) Yeast-mycelial conversion induced by Nacetyl-D-glucosamine in Candida albicans Nature 250:344-6 Smail E.H., Cronstein B.N., Meshulam T., Esposito A.L., Ruggeri R.W., Diamond R.D (1992) In vitro, Candida albicans releases the immune modulator adenosine and a second, high-molecular weight agent that blocks neutrophil killing J Immunol 148:3588-95 Smith R.L., Johnson A.D (2000) Turning genes off by Ssn6-Tup1: a conserved system of transcriptional repression in eukaryotes Trends Biochem Sci 25:325-30 Sogo J.M., Stahl H., Koller T., Knippers R (1986) Structure of replicating simian virus 40 minichromosomes The replication fork, core histone segregation and terminal structures J Mol Biol 189:189-204 Sonneborn A., Bockmuhl D.P., Gerads M., Kurpanek K., Sanglard D., Ernst J.F (2000) Protein kinase A encoded by TPK2 regulates dimorphism of Candida albicans Mol Microbiol 35:386-96 Soulier J., Lowndes N.F (1999) The BRCT domain of the S cerevisiae checkpoint protein ScScRad9 mediates a ScScRad9-ScScRad9 interaction after DNA damage Curr Biol 9:551-4 Staab J.F., Bradway S.D., Fidel P.L., Sundstrom P (1999) Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1 Science 283:1535-8 Staab J.F., Sundstrom P (1998) Genetic organization and sequence analysis of the hyphaspecific cell wall protein gene HWP1 of Candida albicans Yeast 14:681-6 Stern D.F., Zheng P., Beidler D.R., Zerillo C (1991) Spk1, a new kinase from Saccharomyces cerevisiae, phosphorylates proteins on serine, threonine, and tyrosine Mol Cell Biol 11:987-1001 Steger D.J., Workman J.L (1999) Transcriptional analysis of purified histone acetyltransferase complexes Methods 19:410-6 142 Stewart G.S., Maser R.S., Stankovic T., Bressan D.A., Kaplan M.I., Jaspers N.G., Raams A., Byrd P.J., Petrini J.H., Taylor A.M (1999) The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder Cell 99:577-87 Stewart G.S., Wang B., Bignell C.R., Taylor A.M., Elledge S.J (2003) MDC1 is a mediator of the mammalian DNA damage checkpoint Nature 421:961-6 Stoldt V.R., Sonneborn A., Leuker C.E., Ernst J.F (1997) Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi EMBO J 16:198291 Sudbery P.E (2001) The germ tubes of Candida albicans hyphae and pseudo-hyphae show different patterns of septin ring localization Mol Microbiol 41:19-31 Sudbery P., Gow N., Berman J (2004) The distinct morphogenic states of Candida albicans Trends Microbiol 12: 317-24 Sun Z., Fay D.S., Marini F., Foiani M., Stern D.F (1996) Spk1/ScRad53 is regulated by ScMec1-dependent protein phosphorylation in DNA replication and damage checkpoint pathways Genes Dev 10:395-406 Sun Z., Hsiao J., Fay D.S., Stern D.F (1998) ScRad53 FHA domain associated with phosphorylated ScScRad9 in the DNA damage checkpoint Science 281:272-4 Sweeney F.D., Yang F., Chi A., Shabanowitz J., Hunt D.F., Durocher D (2005) Saccharomyces cerevisiae ScRad9 acts as a ScMec1 adaptor to allow ScRad53 activation Curr Biol 15:1364-75 Szyjka S.J., Viggiani C.J., Aparicio O.M (2005) Mrc1 is required for normal progression of replication forks throughout chromatin in S cerevisiae Mol Cell 19:691-7 Takata H., Kanoh Y., Gunge N., Shirahige K., Matsuura A (2004) Reciprocal association of the budding yeast ATM-related proteins ScTel1 and ScMec1 with telomeres in vivo Mol Cell 14:515-22 Tanaka K., Russell P (2001) ScMrc1 channels the DNA replication arrest signal to checkpoint kinase Cds1 Nat Cell Biol 3:966-72 Tanaka K., Russell P (2004) Cds1 phosphorylation by Rad3-Rad26 kinase is mediated by forkhead-associated domain interaction with Mrc1 J Biol Chem 279:32079-86 Tercero J.A., Diffley J.F (2001) Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint Nature 412:553-7 143 Tercero J.A., Longhese M.P., Diffley J.F (2003) A central role for DNA replication forks in checkpoint activation and response Mol Cell 11:1323-36 Tourriere H., Versini G., Cordon-Preciado V., Alabert C., Pasero P (2005) Mrc1 and Tof1 promote replication fork progression and recovery independently of Rad53 Mol Cell 19:699-706 Tsai, M D (2002) FHA: a signal transduction domain with diverse specificity and function Structure 10:887-888 Tsurimoto T., Stillman B (1991) Replication factors required for SV40 DNA replication in vitro II Switching of DNA polymerase alpha and delta during initiation of leading and lagging strand synthesis J Biol Chem 266:1961-8 Tzamarias D., Struhl K (1994) Functional dissection of the yeast Cyc8-Tup1 transcriptional co-repressor complex Nature 369:758-61 Uchiki T., Dice L.T., Hettich R.L., Dealwis C (2004) Identification of phosphorylation sites on the yeast ribonucleotide reductase inhibitor Sml1 J Biol Chem 279:11293-303 Uetz P., Giot L., Cagney G., Mansfield T.A., Judson R.S., Knight J.R., Lockshon D., Narayan V., Srinivasan M., Pochart P., Qureshi-Emili A., Li Y., Godwin B., Conover D., Kalbfleisch T., Vijayadamodar G., Yang M., Johnston M., Fields S., Rothberg J.M (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae Nature 403:623-7 Umeyama, T., Kaneko, A., Nagai, Y., Hanaoka, H., Tanabe, K., Takano, Y., Niimi, M., and Uehara, Y (2005) Candida albicans protein kinase CaHsl1p regulates elongation and virulence Mol Microbiol 55: 381-395 Vialard J.E., Gilbert C.S., Green C.M., Lowndes N.F (1998) The budding yeast ScScRad9 checkpoint protein is subjected to ScMec1/ScTel1-dependent hyperphosphorylation and interacts with ScRad53 after DNA damage EMBO J 17:567988 Volkmer E., Karnitz L.M (1999) Human homologs of Schizosaccharomyces pombe rad1, hus1, and ScScRad9 form a DNA damage-responsive protein complex J Biol Chem 274:567-70 Wang B., Matsuoka S., Carpenter P.B., Elledge S.J (2002) 53BP1, a mediator of the DNA damage checkpoint Science 298:1435-8 Wang H., Elledge S.J (1999) DRC1, DNA replication and checkpoint protein 1, functions with DPB11 to control DNA replication and the S-phase checkpoint in Saccharomyces cerevisiae Proc Natl Acad Sci 96:3824-9 144 Warenda A.J and Konopka J.B (2002) Septin function in Candida albicans morphogenesis Mol Biol Cell 13:2732-46 Weinert T.A., Kiser G.L., Hartwell L.H (1994) Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair Genes Dev 8:652-65 Weinreich M., Stillman B (1999) Cdc7p-Dbf4p kinase binds to chromatin during S phase and is regulated by both the APC and the RAD53 checkpoint pathway EMBO J 18:5334-46 Weinert T.A., Hartwell L.H (1988) The SCSCRAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae Science 241:317-22 Weinert T.A., Hartwell L.H (1990) Characterization of SCSCRAD9 of Saccharomyces cerevisiae and evidence that its function acts posttranslationally in cell cycle arrest after DNA damage Mol Cell Biol 10:6554-64 Weinert T.A., Kiser G.L., Hartwell L.H (1994) Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair Genes Dev 8:652-65 Whiteway M., Dignard D., Thomas D.Y (1992) Dominant negative selection of heterologous genes: isolation of Candida albicans genes that interfere with Saccharomyces cerevisiae mating factor-induced cell cycle arrest Proc Natl Acad Sci U S A 89:9410-4 Wightman R., Bates S., Amornrrattanapan P., and Sudbery P (2004) In Candida albicans, the Nim1 kinases Gin4 and Hsl1 negatively regulate pseudo-hyphae formation and Gin4 also controls septin organization J Cell Biol 16: 581-591 Wold M.S (1997) Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism Annu Rev Biochem 66:61-92 Wysocki R., Javaheri A., Allard S., Sha F, Cote J., Kron S.J (2005) Role of Dot1dependent histone H3 methylation in G1 and S phase DNA damage checkpoint functions of ScScRad9 Mol Cell Biol 25:8430-43 Yaffe M.B., Smerdon S.J (2004) The use of in vitro peptide-library screens in the analysis of phosphoserine/threonine-binding domain structure and function Annu Rev Biophys Biomol Struct 33:225-44 Yang S.S., Yeh E., Salmon E.D., Bloom K (1997) Identification of a mid-anaphase checkpoint in budding yeast J Cell Biol 136:345-54 Ye X., Franco A.A., Santos H., Nelson D.M., Kaufman P.D., Adams P.D (2003) Defective S phase chromatin assembly causes DNA damage, activation of the S phase checkpoint, and S phase arrest Mol Cell 11:341-51 145 Yokoyama K., Takeo K (1983) Differences of asymmetrical division between the pseudomycelial and yeast forms of Candida albicans and their effect on multiplication Arch Microbiol 134:251-3 Zelada A., Castilla R., Passeron S., Cantore M.L (1996) Reassessment of the effect of glucagon and nucleotides on Candida albicans germ tube formation Cell Mol Biol (Noisy-legrand) 42:567-76 Zhao H., Tanaka K., Nogochi E., Nogochi C., Russell P (2003) Replication checkpoint protein Mrc1 is regulated by Rad3 and Tel1 in fission yeast Mol Cell Biol 23:8395-403 Zhao X., Muller E.G., Rothstein R (1998) A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools Mol Cell 2:329-40 Zhao X., Rothstein R (2002) The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1 Proc Natl Acad Sci U S A 99:3746-51 Zhao H., Russell P (2004) DNA binding domain in the replication checkpoint protein Mrc1 of Schizosaccharomyces pombe J Biol Chem 279):53023-7 Zhao X., Chabes A., Domkin V., Thelander L., Rothstein R (2001) The ribonucleotide reductase inhibitor Sml1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damage EMBO J 20:3544-53 Zhao X., Rothstein R (2002) The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1 Proc Natl Acad Sci U S A 99:3746-51 Zheng P., Fay D.S., Burton J., Xiao H., Pinkham J.L., Stern D.F (1993) SPK1 is an essential S-phase-specific gene of Saccharomyces cerevisiae that encodes a nuclear serine/threonine/tyrosine kinase Mol Cell Biol 13:5829-42 Zheng X., Wang Y., Wang Y (2004) Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis EMBO J 23:1845-56 Zhu G., Spellman P.T., Volpe T., Brown P.O., Botstein D., Davis T.N., Futcher B (2000) Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth Nature 406:90-4 146 Publications Li WJ., Wang YM., Zheng XD., Shi QM., Zhang TT., Bai C., Li D., Sang JL., Wang Y (2006)The F-box protein Grr1 regulates the stability of Ccn1, Cln3 and Hof1 and cell morphogenesis in Candida albicans Mol Microbiol 62:212-26 Shi QM., Wang YM., Zheng XD., Lee TH., Wang Y (2006) Critical Role of DNA Checkpoints in Mediating Genotoxic-Stress-induced Filamentous Growth in Candida albicans Mol Biol Cell [Epub ahead of print] 147 ... genotoxic -stress- induced filamentous growth 111 3.13 Cellular levels of G1 and B-type cyclins during HU -induced filamentous growth 113 CHAPTER DISCUSSION 4.1 Difference between genotoxic -stress- induced filamentous. .. also identified a DNA binding domain in SpMrc1 between amino acids 160-237 Mutation of two residues in the DNA binding domain, K235 and K236, severely compromises the DNA binding activity of SpMrc1,... constitutive filamentous growth of C albicans 66 3.2 Inhibition of DNA polymerase α or deletion of CaRNR2 also induces filamentous growth 69 3.3 HU -induced filamentous growth is independent of