ulsed laser deposition and characterization of pb(zr, ti)o3 and lanio3 thin films

198 255 0
ulsed laser deposition and characterization of pb(zr, ti)o3 and lanio3 thin films

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

PULSED LASER DEPOSITION AND CHARACTERIZATION OF Pb(Zr, Ti)O3 AND LaNiO3 THIN FILMS YU YONGHE (B Eng., M Eng.) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF MECHANICAL ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2006 ACKNOWLEDGEMENTS The author is very grateful to Prof Lai Man On and Prof Lu Li, the project supervisors, for their constant guidance, flexible arrangements, constructive suggestions and critical discussions throughout this project Many friends offered help during this project, their credits should be cited Thanks should be given to Mr Thomas Tan, Mdm Zhong Xiangli, Mr Jurami Madon, Mr Maung Aye Thein, Mr Ng Hong Wei, Mr Abdul Khalim of the Materials Science Laboratory for their helpful technical support Special thanks are given to Dr Zhu Tiejun, Dr Tang Songbai, Mr Xia Hui, Mr Zhang Zhen, Mr Lacassin Lionel Alexandre Philippe, Mr Doan Vien Duyen Oanh, fellows of Thin Film Group for their help and invaluable discussions This work was partly performed at Singapore Synchrotron Light Source (SSLS) under NUS Core Support C-380-003-003-001, A*STAR/MOE RP 397908M and A*STAR 12 105 0038 grants The author would like to thank Dr Yang Ping and Dr Liu Tao from SSLC for their assistance in the synchrotron experiment Thanks are also extended to the Management of TÜV SÜD PSB Corporation, especially to Dr Huang Xianya for his encouragement and support Finally, the author would like to express his gratitude to his family for their understanding, concern, support and encouragement i TABLE OF CONTENTS Acknowledgements i Table of Contents ii viii List of Publications x Summary List of Figures xii List of Tables xv List of Acronyms and Symbols xvi CHAPTER INTRODUCTION 1.1 Background 1.2 Motivation 1.3 Scope and outline of thesis CHAPTER 2.1 LITERATURE REVIEW Overview 2.1.1 Ferroelectric Materials 2.1.2 Ferroelectric Thin Film Synthesis Techniques 2.1.3 Application of Ferroelectric Thin Films 12 2.1.3.1 Sensors and actuators 2.1.3.2 Non-volatile random access memory 13 2.1.3.3 Microelectronic devices 2.2 13 14 Pulsed Laser Depositing Ferroelectric Thin Films 15 2.2.1 Advantages of PLD 15 2.2.2 Pulse Laser Deposition Process 16 ii 2.2.3 Deposition Parameters 17 2.2.3.1 Substrate temperature 17 2.2.3.2 Background gas 18 2.2.3.3 Laser fluence 19 2.2.3.4 Target composition 19 2.2.3.5 Underlayer electrodes 20 2.2.4 Angular Distributions of Ablated Species 22 2.2.4.1 Film thickness 22 2.2.4.2 Chemical composition 23 2.2.4.3 Particulates 23 Growth of Biaxially Aligned Thin Films 24 2.3.1 Significance of Biaxially Aligned Films 24 2.3.2 Epitaxial Growth on Single Crystal Substrates 25 2.3.3 Thermo-Mechanically Processed Biaxially Textured Substrates 26 2.3.4 Ion Beam Assisted Deposition (IBAD) 26 2.3.5 Inclined Substrate Deposition (ISD) 27 2.3 2.4 Elastic Constants of Thin Films 28 2.4.1 Nano-indentation 29 2.4.2 Cantilever Technique 30 2.4.3 Bulge Testing 30 2.4.4 X-Ray Diffraction 31 2.4.5 Resonant Technique 33 2.5 Residual Stresses in Ferroelectric Thin Films 34 2.5.1 Generation of Residual Stresses in Thin Films 35 2.5.2 Measurement Techniques of Residual Stresses within Thin Films 36 iii 2.5.2.1 Curvature method 36 2.5.2.1.1 Laser scanning technique 37 2.5.2.1.2 Double crystal diffraction topography 38 2.5.2.2 X-ray diffraction 39 2.5.2.2.1 General theory 39 2.5.2.2.2 X-ray elastic constants 40 2.5.2.2.3 Macroscopically elastic anisotropy 43 2.5.2.2.4 Epitaxial films 45 2.5.2.3 2.5.3 Residual stress measurement of ferroelectric films 46 Effect of Residual Stresses on Ferroelectric Performances of The Films 47 2.6 Measurement on Thin Film Piezoelectric Constants 49 2.6.1 Background 49 2.6.2 Substrate Effect on Piezoelectric Constants 50 2.6.3 Normal Loading Method 53 2.6.4 Pneumatic Loading Method 53 2.6.5 AFM/STM 54 2.6.6 Interferometer Method 55 2.6.7 Embedded Beam Method 56 CHAPTER EXPERIMENTAL PROCEDURES 3.1 Thin Film Deposition 57 3.2 Microstructure Examination 59 3.3 Crystalline Structure Assessment 59 3.4 High Resolution Rocking Curve Measurement 60 iv 3.5 Stress/Strain Measurement By XRD 61 3.6 Electrical Measurement 62 3.7 Chemical Analysis 62 CHAPTER HIGHLY (100) ORIENTED PZT FILMS GROWN ON AMORPHOUS SUBSTRATES WITH LNO UNDERLAYER ELECTRODE 4.1 Background 63 4.2 Microstructure and Orientation of The Films 65 4.3 Electrical Properties of PZT Films on SiO2/Si and Glass Substrates 73 4.4 Discussions 74 4.5 Summary 78 CHAPTER DISTRIBUTION IN ORIENTATION AXIS OF THIN FILMS GROWN BY PLD 5.1 Background 79 5.2 Distribution in Orientation Axis of the Films Axis 80 5.3 Microstructure of Films 84 5.4 Electrical Properties of PZT Films 86 5.5 Discussion 87 5.6 Summary 89 CHAPTER BIAXIALLY ALIGNED LaNiO3 THIN FILMS GROWN ON AMORPHOUS SURFACE USING PULSED LASER DEPOSITION 6.1 Background 90 6.2 Geometries of Pulsed Laser Deposition on Tilt Substrate(TSPLD) 92 6.3 Orientations of LNO Films Grown by TSPLD 94 v 6.4 Microstructure of LNO Films Grown by TSPLD 102 6.5 Discussion 104 6.6 Summary 107 CHAPTER MEASUREMENT OF IN-PLANE ELASTIC CONSTANTS OF FILMS BY X-RAY DIFFRACTION INCORPORATED WITH FOUR-POINT BENDING 7.1 Background 108 7.2 Stress Analysis Of Composite Film-Substrate Beam 109 7.3 Evaluation of Thin Film Elastic Constants 113 7.4 Measurement on Elastic Constants of PZT Film on Aluminum Substrate 117 7.5 Discussion 118 7.6 Summary 121 CHAPTER RESIDUAL STRESSES OF THIN FILMS ON SINGLE CRYSTAL SUBSTRATES MEASURED BY HIGH RESOLUTION ROCKING CURVE TECHNIQUE 8.1 Background 122 8.2 Principles of Measurement Technique 124 8.3 Measuring Residual Stresses in LNO and PZT Films 126 8.4 Discussion 130 8.5 Summary 132 CHAPTER EVALUATION OF X-RAY STRESS ELASTIC CONSTANTS OF PZT AND LNO FILMS 9.1 Background 133 9.2 Principles of XECs Measurement 135 vi 9.2.1 Residual stress measurement 135 9.2.2 Determination of XECs 136 9.3 Examples of XECs Measurement 139 9.3.1 XECs of LNO film 139 9.3.2 XECs of PZT film 140 9.4 Discussion 141 9.5 Summary 146 CHAPTER 10 MEASURING PIEZOELECTRIC CONSTANTS OF THIN FILMS BY X-RAY DIFFRACTION 10.1 Background 147 10.2 Principles of the Measurement 150 10.2.1 Strain measurement using X-ray diffraction 150 10.2.2 Measurement of strain induced by electricity 151 10.2.3 Determination of piezoelectric constants Experimental details 153 10.3 Measurement Results 154 10.4 Discussion 157 10.5 Summary 161 CHAPTER 11 CONCLUSIONS 162 CHAPTER 12 FUTURE WORKS 165 REFERENCES 166 vii List of Publications Following papers directly related to the research project were published during the study: Y.H Yu, M.O Lai and L Lu, Determination on X-ray elastic constants of solid thin films, Smart Structure Materials, 16(2007)487-492 Y.H Yu, M.O Lai, L Lu and P Yang, Measuring residual stress of PZT thin film on Si(100) by synchrotron x-ray rocking curve technique, J of Alloys and Compounds, (2007) doi:10.1016/j.jallcom.2006.02.10 Y.H Yu, M.O Lai, L Lu and G.Y Zheng, Measurement of in-plane elastic constants of crystalline solid films by X-ray diffraction coupled with four point bending, Surface and Coating Technology, 200(2006)4006-4010 Y.H Yu, M.O Lai and L Lu, Highly (100) oriented Pb(Zr0.52Ti0.48)O3/LaNiO3 films grown on amorphous substrates by pulsed laser deposition, J of Applied Physics A, Materials Science and Processing (2007) doi:10.1007/s00339-0073968-y Y.H Yu, M.O Lai and L Lu, Distribution in orientation axis of thin film grown by pulsed laser deposition, Thin Solid Films, (2007) in press viii Y.H Yu, M.O Lai and L Lu, Measurement of thin film piezoelectric constants using X-ray diffraction technique, submitted to IEEE Trans Ultrasonics, Ferroelectrics, and Frequency Control, (2007) Y.H Yu, M.O Lai and L Lu, Biaxially aligned films grown on amorphous surface using tilted substrate pulsed laser deposition, to be submitted (2007) Y.H Yu, M.O Lai and L Lu, Measurement on elastic constants of thin films by synchrotron X-ray diffraction, The 4th International Conference on Materials for Advanced Technologies (ICMAT 2007), Conf116a2326, 1-6 July, 2007, Singapore Y.H Yu, M.O Lai and L Lu, P Yang, Residual stresses of PZT films grown on single crystal substrate by high resolution rocking curve technique, Proc of The 1st International Symposium on Functional Materials, p730-736, Conf70a106, 6-10 Dec., 2005, Kuala Lumpur, Malaysia 10 Y.H Yu, M.O Lai and L Lu and G.Y Zheng, Measuring in-plane elastic constants by X-ray diffraction coupled four-point bending technique, Proc of The 2nd International Conference on Advances of Thin Film and Coatings, 34-GEN951, 13-17 July, 2004, Singapore ix Chapter 11 Conclusions A unique technique was proposed to determine X-ray stress constants of thin films using HRRC The residual stress of the film on single crystal substrate was first measured by HRRC X-ray elastic constants S1hkl and S 2hkl were then obtained based on the measured residual stress and the lattice spacing d{ vs sin2{ curves of the film before and after loading on the film while the magnitude of the loading was not necessary to be known S1330 and 330 S of LNO film were measured to be -4.69 and 22.45 TPa–1 respectively, while 321 S of PZT film was obtained to be 12.84 TPa–1 f f X-ray diffraction technique was developed to measure both d 33 and d 31 of f piezoelectric films d 33 was calculated from the change in the out-of-plane f lattice spacing of the piezoelectric films while d 31 was obtained from the change in the slope of the dh{ vs sin2{ curves before and after applying an electric field over the films 10 The present newly developed method using X-ray diffraction technique directly measured the strains induced by an externally applied electric field instead of surface displacement, the errors due to environment and/or vibration were eliminated 164 Chapter 12 Future work CHAPTER 12 FUTURE WORK The deposition conditions should be further optimized to improve the quality of the biaxially aligned films on amorphous substrates Four-point bend testing technique incorporated in the X-ray diffraction may be applied to proper samples with much harder films on softer substrates (relative high value of Ef©tf / Es©ts) to measure both the in-plane Young’s modulus and the Poisson’s ratio of the films Further improvement is necessary to measure piezoelectric constants using X-ray diffraction technique e.g the use of stronger X-ray source such as synchrotron radiation, so that the top electrode size could be reduced to 1mm in diameter or less The effects of residual stresses of the films on ferroelectric properties may be explored The stability of residual stresses in the films under mechanical and electrical loading may be studied 165 References REFERENCES [1] Y Xu, Ferroelectric materials and their applications, North-Holland (1991) [2] K Uchino, Piezoelectric Actuators and Ultrasonic Motors, Kluwer Academic Publishers (1997) [3] M Dawber, K.M Rabe and J.F Scott, Rev Mod Phys., 77(2005)1083 [4] K Bhattacharya and G Ravichandran, Acta Mater., 51(2003)5941 [5] T Venkatesan, Thin solid films, 216(1992)52 [6] H Takasu, J Electroceram., 4(2000)327 [7] T.M Shaw, S Trolier-McKinstry and P.C McIntyre, Annu Rev Mater Sci 30(2000)263 [8] J.F Scott, Annu Rev Mater Sci., 28(1998)79 [9] K Uchino, Ferroelectric devices, Marcel Dekker, Inc New York (1999) [10] D.L Smith, Thin-Film Deposition: principles and practice, McGraw-Hill, Inc (1995) [11] D.B Chrisey and G.K Hubler, Pulse Laser Deposition of Thin Films, John Wiley & Sons, Inc (1993) [12] K Wasa and S Hayakawa, Handbook of Sputter Deposition Technology, Noyes Publication (1992) [13] Z.H Barber, J of Mater Chem., 16(2006)334 [14] C.H Lin, B.M Yen, H.C Kuo, H Chen, T.B Wu and G.E Stillman, J Mater Res., 15(1) (2000) 115 [15] M Shimizu, M Okaniwa, H Fujisawa and H Niu, Jpn J App Phys., 41(2002)6686 [16] Y Otani, S Okamura and T Shiosaki, J Electroceram., 13(2004)15 [17] J Zeng and C Lin, J Mater Res., 14(7) (1999) 2712 [18] C.K Barlinggay and S.K Dey, Appl Phys Lett., 61(1992)1278 166 References [19] Y Shimizu, K.R Uadayakumar and L.E Cross, J Am Ceram Soc., 74(1994)3023 [20] D.K.Fork, The heteroepitaxial growth of YBCO and other metal oxides on silicon and GaAs by pulsed laser deposition, Ph.D Thesis, Stanford University (1992) [21] Y.K Kim, H Morioka, S Okamoto, T Watanabe, S Yokoyama, A Sumi and H Funakubo, Appl Phys Lett., 87 (2005) 182907 [22] P Muralt, J Micromech Microeng 10(2000) 136 [23] L Jyrki, Laser-ablation deposition and characterization of polycrystalline Ndmodified Pb(Zr,Ti)O3 thin films, Ph.D Thesis, University of Oulu, Finland (1999) [24] P Muralt, Piezoelectric thin films for MEMS, Integrated Ferroelectrics, 17 (1997) 297 [25] S Zurn, M Hsieh, G Smith, D Markus, M Zang, G Hughes, Y Nam, M Arik and D Polla, Smart Mater Struct 10 (2001) 252 [26] T Fayfield, V Scott, W.P Robbins, S Ramalingam, B Klamacki and M Li, Ultrasonic Symposium (1989) 1191 [27] C.-R Cho, L.F Francis and M.S Jang, Jpn J Appl Phys 38 (1999) L751 [28] S.U Biodean, R Carl, P.V Buskirk and J Ward, Solid State Technol July (1997) 235 [29] H.M Smith and A.F Turner, Appl Opt 4(1965)147 [30] D Dijkkamp, T Venkatesan, X.D Wu, S.A Shaheen, N Jisravi, Y.H MinLee, W.L McLean and M Croft, Appl Phys Lett., 51(1987)619 [31] W Biegal, R Klarmann, M Hanika, K Sturm and B Stritz, Mater Sci Eng., B56(1998)195 [32] S Titamala, A.C Rastogiod, S.B Desu, J Electroceram., 5(2000)7 [33] C Wang, B.L Cheng, S.Y Wang, H.B Lu, Y.L Zhou, Z.H Chen and G.Z Yang, Thin Solid Films, 485(2005)82 [34] B Yang, Y.P Wang, Y.F Chen, S.N Zhou, Z.G Liu and W.W Cao, Appl Phys A, DOI: 10:1007/s00339-004-2549-6 (2004) [35] X.L Zhong, L Lu, M.O Lai, Surf Coat Technol., 198(2005)400 [36] H Kidoh, A Morimoto and T Shimizu, Appl Phys Lett., 59(1991)237 167 References [37] D.J Lichtenwalner, O Auciello,, R Datal, A.F Kingon, J Appl Phys., 74(1993)7497 [38] C Yang, J Liu, S Zhang and Z Chen, Mater Sci Eng., B99(2003)356 [39] J Zhao, L, Lu, C.V Thompson, Y.F Lu, W.D Song, J Cryst Growth, 225(2001)173 [40] T Hangan, P.N Barnes, L Brunke, I Maartense and J Murphy, Physica, C 397(2003)47 [41] A Safari, C Tantigate and J Lee, Science and Technology of Electroceramic Thin Films, Kluwer Academic Publishers (1995) [42] T.E Itina, J Hermann, P Delaporte and M Sentis, Phys Rev., E66 (2002) 066406 [43] D Roy, S.B Krupanidhi and J.P Doughterty, J Appl Phys., 69(1991)7930 [44] J.S Horwitz, K.S Grabowski, D.B Chrisey and R.E Leuchtner, Appl Phys Lett., 59 (1991) 1565 [45] R.E Leuchtner, K.S Grabowski, D.B Chrisey and J S Horwitz, Appl Phys.Lett., 60 (1992) 1193 [46] J-M Lin, S.Y Xu, W.Z Zhou, X.H Jiang, C.K Ong, L.C Lim, Mater Sci & Eng A269 (1999) 67 [47] G.A.Peterson and J.R Mcneil, Thin Solid Films, 200(1992)87 [48] S.Y Chow and S Wany, Ceram Int., 30(2004)1257 [49] O Auciello, L Mantese, J Duarte, et al., J Appl Phys 73 (1993) 5197 [50] T.J Zhu and L Lu, J Appl Phys., 95(2004)241 [51] Y Park, S.M Jeong, S.II Moon, K.W Joeng, S.H Kim, J.T Song and J Yi, Jpn J Appl Phys 38 (1999) 6801 [52] J Yin, Q.L Li, Z.G Liu, M.Wang, Z.C Wu and T Yu, J Appl Phys A, 70 (2000) 69 [53] M Tajiri and H Nozawa, Jpn J Appl Phys 40(2001) 5590 [54] W.S Kim, S.-M Ha, H.-H Park and C E Kim, Thin Solid Films, 355-356 (1999)531 [55] B.S Lee and J.Y Lee, Jpn J Phys 38 (1999) L870 [56] W.Y Choi and H.G Kim, Jpn J Appl Phys., 38 (1999) 122 168 References [57] J Yin, T Zhu, Z.G Liu and T Yu, Appl Phys Lett, 75(23) (1999) 3698 [58] J.W Hong, W.Jo, D.C Kim, S.M Cho H.J Nam, H.M Lee and J.U Bu, Appl Phys Lett, 75(20) (1999) 3183 [59] D Bao and N Mizutani, Appl Phys Lett, 77(7) (2000) 1041 [60] J.H Cho and K.C Park, Appl Phys Lett, 75 (4) (1999) 549 [61] B.Yang, S Aggarwal, A.M Dhote, T.K Song and R Ramesh, Appl Phys Lett 71(3) (1997)356 [62] T.J Zhu, L Lu, X.B Zhao, Z.G Ji, and J Ma,, J Cryst Growth, 291(2006)385 [63] S Poelders, R Auer, G Linker, R Smithey and R Schneider, Physica C, 247 (1995) 309 [64] S.S Kim, B.I Kim, Y.B Park, T.S Kang, J.H Je, Appl Surf Sci., 169170(2001)553 [65] F Sanchez, M.V Garcia-Cuenca, N Domingo, C Ferrater, V Varela, Vaccum, 64(2002)337 [66] T.J Zhu and L Lu, Appl Phys A , DOI: 10.1007/s00339-003-2379-y (2003) [67] J Zhu, L Zheng, Y Zhang, X HuaWei, W B Luo and Y R Li, Mater Chem Phys., 100(2006)451 [68] N Wakiya, T Azuma, K Shinozaki and N Mizutani, Thin Solid Films, 410(2002)114 [69] S Amoruso, B Toftmann and J Schou, Phys Rev., E69 (2004) 056403 [70] M.F Davis, J Wosik, K, Foster, S.C Deshmukh, H.K Rampersad, S Shah, P Siemsen, J.C Wolfe and D.J Economou, J Appl Phys., 69(10)(1991)7182 [71] S.R Foltyn, R.E Muenchausen, R.C Dye, X.D Wu, L Luo, D.W Cooke and R.C Taber, Appl Phys Lett., 59(11)(1991)1374 [72] A Sajjadi, K.K Lau, F Saba, F Beech and I.W Boyd, Appl Surf Sci 46(1990)84 [73] J Zhao, Multilayer ferroelectric thin films prepared in situ using scanning excimer laser and their characteristics, Ph.D Thesis, Huazhong University of Science and Technology (1997) 169 References [74] S.K Hau, K.H Wong, P.W Chan, C.L Choy and H.K Wong, J Mater Sci Lett., 11(1992)1266 [75] D.H.A Blank, R.P.J Ijsselsteijn, P.G Out, H.J.H Kuiper, J Flofsura and H Rogalla, Mater Sci Eng., B13(1992)67 [76] D.S Misra and S.B Palmer, Physica C, 176(1991)43 [77] Y Wang, C Ganpule, B.T Liu, H Li K Mori, B Hill, M Wuttig, R Ramesh, J Finder, Z Yu, R Droopad and K Eeisenbeiser, Appl Phys Lett., 80(2002)97 [78] D Dimos, P Chaudhari, J Mannhart, and F K LeGoues, Phys Rev Lett., 61(1988)219 [79] L Zheng, J Zhu, Y Zhang, S W Jiang, Y R Li, X HuaWei and J L Li, Appl Surf Sci., 252(2006) 3609 [80] C.R Cho, Mater Sci Engng., B64(1999)113 [81] K Hwang, Y Lim and B Kim, Mater Res Bull., 34(12-13) (1999)2069 [82] F Sanchoz, C Ferrater, X Alcobe, J Bassas, M V Garci, M Varela, Thin Solid Films, 384(2001)200 [83] T Kiguchi, N Wakiya, K Shinozaki and N Mizutami, Microelectron Eng., 66(2003)708 [84] M Tsukada, H Yamawaki and M Kondo, Appl Phys Lett., 83 (2003)4393 [85] K Nagashima, M Aratani and H Funakubo, Jpn J Appl Phys., Part 2, 39(2000)L996 [86] Q He, D.K Christen, R Feenstra, , D.P Norton, M Paranthaman, E.D Specht, D.K.Lee, A Goyal, D.M Krooeger, Physica C , 314(1999) 105 [87] A Goyal, D.P Norton, J.D Budai, M Paranthman, E.D Specht, D.M Christen, Q He, B Saffian, F.A List, D.F Lee, P.M Martin, C.E Klabund, E Hartfield, V.K Sikka, Appl Phys Lett., 69(1996)1795 [88] Q He, D.K Christen, J.D Budai, E.D Specht, D.K.Lee, A Goyal, D.P Norton, M Paranthaman, F.A List, D.M Krooeger, Physica C, 275(1997) 155 [89] K.G Ressler, N Sonnenberg and M J Cima, J Am Ceram Soc., 80(10)(1997)2637 [90] N Sonnenberg, A.S Longo, M.J Cima, B.P Chang, K.G Ressler, P.C Mclntyre and Y.P Liu, J Appl Phys., 74(2)(1993)1027 170 References [91] L.S Yu, J.M.E Harper, J.J Cuomo and D.A Smith, J Vac Sci Technol A, 4(1986)443 [92] P Ghekiere, S Mahieu, R D Gryse and D Depla, Thin Solid Films, 515 (2006)485 [93] U Balachandran, B Ma, M Li, B L Fisher, R.E Koritala, D.J Miller and S.E Dorris, Physica C, 392-396(2003)806 [94] Y Xu, C.H Lei, B Ma, H Evans, H Efstathidis, M Rane, M Massey, U Balachandran and R Bhattacharya, Supercond Sci Technol., 19(2006)835 [95] K.K Uprety, B.Ma, R.E Koitala, B.L Fisher, S.E Dorris and U Balachandran, Supercond Sci Technol., 18(2005)294 [96] K Hasegawa, K Fujino, H Mukai, M Konishi, K Hayashi, K Sato, S Honjo, Y Sato, H Ishii and Y Iwata, Appl Supercond., 4(1996)487 [97] S Mahieu, P Ghekiere, D Depla, R D Gryse, O.I Lebedev and G.V Tendeloo, J Cryst Growth, 290(2006)272 [98] S Mahieu, G.D Winter, D Depla, R.D Gryse, and J Denul, Surf Coat Technol., 187(2004)122 [99] S Gnanarajan, A Katsaros and N Savvides, Appl Phys Lett., 70(1997)2816 [100] X Xiong and D Winkler, Physica C, 336(2000)70 [101] D T Read, Meas Sci Technol., 9(1998)676 [102] J.K Luo, A.J Flewitt, S.M Spearing, N.A Fleck and W.I.Milne, Mater Lett., 58(2004)2306 [103] W.D Nix, Metall Trans A 20 (1989) 2217 [104] B Bharat and X Li, Int Mater Rev., 48 (3) (2003) 125 [105] K.R Virwani, A.P Malshe, W.F Schmidt and D.K Sood, Smart Mater Struct 12, (2003) 1028 [106] A.J Kalkman, A.H Verbruggen and G.C.A.M Janssen, Appl Phys Lett., 78 (18) (2001) 2673 [107] G Cornella, S_H Lee, W D Nix and J.C Bravman, Appl Phys Lett., 70(20) (1997) 2949 [108] P Villain, P.-O Renault, Ph Goudeau, and K.F Badawi, Thin Solid Films, 406 (2002) 185 171 References [109] P.-O Renault, K.F Badawi, L Bimbault, and Ph Goudeau, Appl Phys Lett., 73 (14) (1998) 1952 [110] V Hauk, editor, Structural and residual stress analysis by nondestructive methods, Amsterdam, Elsevier (1997) [111] K.F Badawi, P Villain, Ph Goudeau P.-O Renault, Appl Phys Lett., 80 (25) (2002) 4705 [112]P.-O Renault, E Le Bourhis, P Villain, Ph Goudeau, K.F Badawi and D Faurie, Appl Phys Lett 83 (3) (2003) 473 [113] X Jin, C.O Kim and Y.P Lee, J Vac Sci Technol., A20 (3) (2002) 612 [114] L Kiesewetter, J-M Zhang, D Houdeau and A Steckenborn, Sen and Actuators A, 35(1992) 153 [115] S Peraud, S Pautrot, P Villechaise, P Mazot and J Mendez, Thin Solid Films, 292(1997) 55 [116] D Fauie, P.-O Renault, E Le Bourhis and Ph Goudeau, J Appl Phys., 98 (2005)093511 [117] M Alquero, M.L Calzada and L Pardo and E Snoeck, J Mater Res., 14(2) (1999) 4570 [118] L Lian and N.R Sottos, J of Appl Phys., 87(8) (2000)3941 [119] J.S Horwitz, W Chang, W Kim, S.B Qadri, J M Pond, S W Kirchoefer and D B Chrisey, J Electroceram 4:2/3 (2000)357 [120] T Kitamura, H Hirakata, T Itsuji, Engng Fract Mech 70(2003)2089 [121] R.E Kumon, D.C Hurley, Thin Solid Films, 484(2005)251 [122] G.A.C.M Spierings, G.J.M Dormans, W G.J Moors, M.J.E Ulenaers and P.K Larsen, J App Phys., 78(3) (1995) 1926 [123] S.S Sengupta, S.M Park, D.A Payne and L.H Allen, J Appl Phys., 83 (4) (1998) 2291 [124] C.D.E Lakeman, Ph.D Thesis, University of Illionis at Urbana-Champaign, (1994) [125] L Zhang, M Ichiki, R Maeda, J Eur Ceram Soc., 24(2004)1673 [126] P Gergaud, S Labat, et al Stress in Ag/Ni multilayers: Mater Res Soc Symp Proc 472 (1997)299 172 References [127] S.B Desu, D.P.Vjay et al., Stresses in sputtering RuOx thin films, Thin Solid Films, 350(1999)21 [128] Z.B Zhao, J Hershberger, S.M Yalisove and J.C Bilello, Thin Solid Films, 415(2002)21 [129] S Kamiya, M Sato and M Saka, J of Appl Phys 86(1) (1999) 224 [130] Y Okada and S Nakajima, Appl Phys Lett 59(1991)1066 [131] G.G Stoney, Proc R Soc London A 82 (1909) 172 [132] R.E Cuthrell, D.M Mattox, C.R Peeples, P.L Dreike and K.P Lamppa, J Vac Sci Technol A, 6(1988)2914 [133] U Welzel, J Ligot, P Lamparter, A.C Vermeulen and E.J Mittemeijer, J Appl Cryst., 38(2005)1 [134] M Leoni, U Wezel, P Lamparter, E.J Mittemeijer and J.-D Kamminga, Philos Mag A, 81(1999)597 [135] J Stickforth, Tech Mitt Krupp, Forsch.-Ber 24(1966)89 [136] W Voigt, Lehrbuch der Kristallphysik, Teubner, Leipzig/Berlin (1928) [137] A Reuss, Z Angew Math Mech (1929)49 [138] R Hill, Proc Phy Soc A65 (1952)349 [139] R.W Vook, F Witt, J.-D Kanninga, E.J Mittemeijer, J Appl Phys 86 (1999) 1904 [140] I.C Noyan and J.B Cohen, Residual stress-measurement by diffraction and interpretation, Springer-Verlag (1987) [141] Japanese Material Society, X-ray Stress Measurement Method, Tokyo (1981) [142] C.M Brakman, J Appl Cryst 16 (1983)325 [143] S Matthie, H.-R.Venk, G.W.Vinel, J Appl Cryst 21(1988)285 [144] T.L Alford, Y Zeng, et al., Mater Res Soc Symp Proc 472 (1997)293 [145] S.L Lee and G.P Capsimalis, Advances in X-ray analysis, 39 (1997)257 [146] J.-D Kanninga, M Leoni, U Welzel, P Lamparter and E.J Mittemeijer, Materials Science Forum, 347-349 (2000) 42 [147] A Segmuller and M Murakami, in Treatise on materials Science and Technology, 27 (1988)143, Academic Press, Inc 173 References [148] V Holy, U Pietsch and T Baumbach, High-Resolution X-Ray Scattering from Thin Films and Multilayers, (1999) Springer [149] P.F Fewster, X-ray Scattering from Semiconductors, (2000) Imperial College Press [150] X.J Zheng, Z.Y Yang, Y.C Zhou, Scripta Mater., 49(2003)71 [151] Y.C Zhou, Z.Y Yang, X.J Zheng, Surf Coat Technol., 162(2003)202 [152] X Zheng, J Li, Y Zhou, Acta Mater., 52(2004)3313 [153] K Yao, S Yu, F E-H Tay, Appl Phys Lett., 82(2003)4540 [154] F Yang, W.D Fei, Thin Solid Films, 503(2006)272 [155] T.M Shaw, Z Suo, M Huang, E Liniger, R.B Laibowitz and J.D Baniecki, Appl Phys Lett, 75(14) (1999) 2129 [156] X Lu, J Zhu, X Li, Z Zhang, X Zhang, D Wu and F Yan, Y Ding and Y Wang, Appl Phys Lett., 76 (21) (2000) 3103 [157] L Lian and N.R Sottos, J Appl Phys., 95(2004) 629 [158] A Gruverman, B.J Rodriguez, A.I Kingon, R.J Nemanich, A.K Tagantsev, J.S Cross and M Tsukada, Appl Phys Lett., 83(2003) 728 [159] K.F Etzold, R.A Roy, K.L Saenger and J.J Cuomo, Mater Res Soc Symp Proc 200 (1990) 297 [160] K Lefki and G.J.M Dormans, J Appl Phys., 76(3) (1994)1964 [161] F Xu, F Chu and S Trolier-Mckinstry, J of Appl Phys., 86 (1999) 588 [162] G.-T Park, J.-J Choi, J Ryu, H Fan and H.-E Kim, Appl Phys Lett., 80 (2002)4606 [163] J.F Shepard Jr., P.J Mose, S Trolier-McKinstry, Sen and Actuators, A71 (1998) 133 [164] E Cattan, T Haccart and D Remiiens, J Appl Phys., 86 (1999)7017 [165] P Verardi and F Craciun, Rev Sci Instrum., 74 (2003) 4453 [166] O Kuffer, I Maggio-Aprile, J.M Triscone and O Fischer, Appl Phys Lett, 77 (2000)1701 174 References [167] J.A Christman, R.R Woolcott, Jr., A.I Kingon and R.J Nemanish, Appl Phys Lett., 73(1998)3851 [168] Z Xie, E.Z Luo, J.B Xu, I.H Wilson, H.B Peng, L.H Zhao and B.R Zhao, Appl Phys Lett., 76(14)(2000)1923 [169] C Durkan, D.P Chu, P Migliorato and M.E Welland, Appl Phys Lett., 76(3)(2000)366 [170] G Zavala and J H Fendler, J Appl Phys 81(11) (1997)7480 [171] H Maiwa, J A Christman, S.-H Kim, D-J Kim et al., Jpn J Appl Phys 38(1999)5402 [172] A.L Kholkin, Ch Wutchrich, D.V Taylor and N Setter, Rev Sci Instrum 67(5)(1996)1935 [173] Z Huang and R W Whatmore, Rev Sci Instrum., 76 (2005) 123906 [174] I Kanno, H Kotera and K Wasa, Sen and Actuators A: Physical, 107 (2003)68 [175] D Cattan, B Jaber, P Tronc, D Remiens and B Thierry, J Vac Sci Technol A, 16(1) (1998)169 [176] S Trolier-McKinstry and P Muralt, J Electroceram., 12 (2004)7 [177] A Barzegar, D Damjanovic, N Ledermann, and P Muralt, J Appl Phys., 93 (2003) 4756 [178] K.S Hwang, T Manabe, T Nagahama, I Yamaguchi, T Kumagai and S Misuta, Thin Solid Films, 347 (1999)106 [179] J.-J Choi, G.-T Park, C.-S Park and H.-E Kim, J Mater Res., 20(3) (2005) 728 [180] B.G Chae, Y.S Yang, S.H Lee, M.S Jang, S.J Lee, S.H Kim, W.S Baek and S.C Kwon, Thin Solid Films, 410 (2002) 107 [181] M.-J Shyu, T.-J Hong, and T.-B Wu, Materials Letters, 23 (1995) 221 [182] C.-C Yang, M.-S Chen, T.-J Hong, C.-M Wu, J.-M Wu and T.-B Wu, Appl Phys Lett., 66(20)(1995) 2643 [183] T.-F Tseng, K.-S Liu and T.-B Wu, Appl Phys Lett., 68(18) (1996) 2505 [184] J Yin, X.Y Chen, Q.C Li, X.Y Liu, and Z.G Liu, J Mater Sci., 33 (1998) 5631 [185] S Miyake, K Yamanoto, S Fujihara and T Kimura, J Am Ceram Soc., 85(4)(2002) 992 175 References [186] T.J Zhu, L Lu and C.V Thompson, J Cryst Growth, 273 (2004) 172 [187] N Wakiya, K Kuroyanagi, Y Xuan, K Shinozaki, and N Mizutani, Thin Solid Films, 357 (1999) 166 [188] W Wu, K.H Wong and C.L Choy, J Vac Sci Technol A 18(2000) 79 [189] K Kakimoto, H Ohsato, H Kakemoto, and Y Masuda, J Eur Ceram Soc 24 (2004) 993 [190] T Chen, X M Li, S Zhang, and H R Zeng, J Cryst Growth, 270 (2004) 553 [191] G.A Petersen, Jr and J.R Mcneil, Thin Solid Films, 220 (1992) 87 [192] W.C Goh, S.Y Xu, S.J Wang and C.K Ong, J Appl Phys 89(2001) 4497 [193] B Rodriguez-Navarro, Thin Solid Films, 389 (2001) 288 [194] M Tyunina and S Leppavuori, J Appl Phys., 87(11) (2000) 8132 [195] K.L Saenger, J Appl Phys., 70(10)(1991) 5629 [196] M Tyunina, J Wittborn, C Bjormander and K.V Rao, J Vac Sci Technol A, 16(4), (1998) 2381 [197] M Li, B Ma, R.E Koritala, B.L Fisher, K Venkataraman, V.A Maroni, V Vlasko-Vlasov, P Berghuis, U Welp, K.E Grey, U Balachandran, Physica C, 387(2003) 373 [198] M Bauer, R Semerad and H Kinder, IEEE Trans Appl Supercon., 9(1999) 1502 [199] L.T Nguyen, F.D Tichelaar, and J.C Lodder, J Magn Magn Mater., 209-291 (2005) 1294 [200] B Balachandran, B Ma, M Li, B.L Fisher, R.E Koritala, D.J Miller and S.E Dorris, Physica C, 392-396 (2003) 806 [201] B Balachandran, M Li, R.E Koritala, B.F Fisher and B Ma, Physica C, 372376 (2002) 869 [202] B Ma, M Li, Y.A Jee, R.E Koriala, B.L Fisher, and U Balachandran, Physica C, 366 (2002) 270 [203] K Wada, M Yoshiya, N Yamaguchi and H Matsubara, Surface & Coatings Technology, 200(2006) 2725 [204] C.V Thompson, Ann Rev Mater Sci., (2000) 159 [205] D.M Evans and H Wilman, Acta Cryst., (1952) 731 176 References [206] S.S Kim, T.S Kang and J.H Je, Thin Solid Films, 405(2002)117 [207] Y.H Yu, M.O Lai and L Lu, Thin Solid Films, (2007) in press [208] R.E Koritala, M.P Chudzik, Z.P Luo, D.J Miller, C.R Kannewurf and U Balachandran, IEEE Trans Appl Supercond., 11(2001)3473 [209] S.P Timoshenko and J.N Goodier, Theory of Plasticity, McGraw-Hill, New York, 3rd Edition (1969) [210]Landolt-Börnstein, Hdb Physik, Vol III /16a (Ferroelectrics: Oxides), Springer, Berlin/Heidelberg/ New York (1981)426 [211] T.J Garino and M Harrington, Mater Res Soc Symp Proc 243 (1992) 341 [212] P.S Dobal, S.Bhaskar, S.B Majumder and R.S Katiyar, J Appl Phys., 86(2) (1999)828 [213] J.F Shepard Jr., S Trolier-McKinstry, M A Hendrickson and R Zeto, Inter Symposium on Applications of Ferroelectrics, (1996)161 [214] Y.H Yu, M.O Lai, L Lu and G.Y Zheng, Surf Coat Technol., 200(2006)4006 [215] S Watanable, T Fujui and T Fujii, Appl Phys Lett., 66(1995)1481 [216] D.L Polla and L.F Francis, MRS Bull., July(1996)59 [217] W.A Brantley, J Appl Phys., 44(1)(1973)534 [218] E Atar, C Sarioglu, Ugur Demirler, E Sabri Kayali and H Cimenoglu, Scripta Mater., 48(2003)1331 [219] C Sarioglu, U Demirler, M K Kazmanli and M U Urgen, Surf Coat Tech., 190(2005)238 [220] P Villain, Ph Goudeau, P.-O Renault, and K.F Badawi, Appl Phys Lett., 81 (23) (2002)4365 [221] J.A Sue, Surf Coat Tech 54/55 (1992)154 [222] Y.H Yu, M.O Lai and L Lu, J Alloys Compd., (2007) doi: 10.1016/j.jallcom.2006.02.109 [223] C.V Thompson, Lecture notes for SMA5108/MIT2.373J, MIT (2003) [224] Q.-M Wang, Y Ding, Q Chen, M Zhao, and J Cheng, Appl Phys Lett., 86, 162903 (2005) [225] J Ouyang and A.L Roytburd, Acta Mater., 54(2006) 531 177 References [226] J.F Shepard Jr., P.J Mose, and S Trolier-McKinstry, Sen and Actuators, A71 (1998) 133 [227] N Ledermann, P Muralt, J Baborowski, S Gentil, K Mukati, M Cantoni, A Seifert and N Setter, Sen and Actuators A, 105 (2003)162 [228] L Chen, J-H Li, J Slutsker, J Ouyang, and A.L Roytburd, J Mater Res 19(2004)2853 [229] J Ouyang, R.Ramesh and A.L Roytburd, Appl Phys Lett., 86 (2005) 152901 [230] S Buhlmann, B Dwir, J Baborowski, and P Muralt, Appl Phys Lett., 80(2002)3195 [231] V Agarajan, A Roytburd, A Stanishevsky, S Prasertchoung, T Zhao, L Chen, J Melngailis, O Auciello and R Ramesh, Nature Mater., 2(2003)43 [232] S Kimura and K Izumi, Appl Phys Lett., 80(2002)2365 [233] T Fry, Evaluation of the repeatability of residual stress measurements using Xray diffraction, MATC(MN)019, National Physical Laboratory, U.K.(2003) 178 ... ALIGNED LaNiO3 THIN FILMS GROWN ON AMORPHOUS SURFACE USING PULSED LASER DEPOSITION 6.1 Background 90 6.2 Geometries of Pulsed Laser Deposition on Tilt Substrate(TSPLD) 92 6.3 Orientations of LNO Films. .. Yu, M.O Lai and L Lu, Distribution in orientation axis of thin film grown by pulsed laser deposition, Thin Solid Films, (2007) in press viii Y.H Yu, M.O Lai and L Lu, Measurement of thin film piezoelectric... Ferroelectric Thin Films 34 2.5.1 Generation of Residual Stresses in Thin Films 35 2.5.2 Measurement Techniques of Residual Stresses within Thin Films 36 iii 2.5.2.1 Curvature method 36 2.5.2.1.1 Laser

Ngày đăng: 14/09/2015, 18:31

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan