Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 173 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
173
Dung lượng
3,21 MB
Nội dung
MOLECULAR CLONING AND CHARACTERIZATION OF sq163, A ZEBRAFISH LIVER MUTANT LO LI JAN (B.Sc., Melbourne University, Australia) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF BIOLOGICAL SCIENCES NATIONAL UNIVERSITY OF SINGAPORE 2008 Acknowledgement The pursuit of my Ph.D. study, like the truth in science, did not take a straightforward path. Across two continents and shift of three projects, it is interesting that I have come so far, considerably. That does not come easy. For those people that have either directly or indirectly made this possible and even enjoyable at times, my deepest appreciation goes to them. My supervisor, Associate Prof. Hong Yunhan, he is not only a great scientist but has been an unbelievable mentor in the past years. My Ph.D. conversion committee members, Dr. Vladimir KORZH and Dr. Wangshu, and my pre-thesis committee members, Prof. Ding Jeakling and Associate Prof. Christoph Winkler, my special thanks go to them for giving my project invaluable comments and suggestions and eventually an unequivocal green light during the conversion and pre-thesis presentation respectively. To all my colleagues in the Functional Genomics Laboratory (IMCB), Changqing, Chaoming, Chen Jun, Cheng Hui, Cheng Wei, Dongni, Evelyn, Gao Chuan, Honghui, Hussain, Linda, Mengyuan, Peiying, Qian Feng, Sharon, Shulan and Zhenhai, and in the Developmental Laboratory (DBS), Mingyou, Tianshen, Veron and Zhendong, I extend my heartfelt thanks for their technical help and active discussion and most importantly, their invaluable friendship. Not forgetting the enormous supports from the zebrafish and sequencing facility in the Institute of Molecular and Cell Biology, I would like to acknowledge their contributions. To the scholarship offered by the National University of Singapore, my gratitude goes for the opportunity given. Finally, to my parents, my husband and three daughters, I cannot thank them enough for their boundless love. I think I can only repay them by loving them back, twice as much. ii Table of Contents Acknowledgement . ii Table of Contents . iii Summary . ixii List of Abbreviations . ix List of Tables . ixi List of Figures xii List of Publications and List of Conference Participation xiv Chapter Introduction . 1.1 Germ layers and organogenesis 1.2 Liver: Structure and Functions 1.2.1 The liver structure 1.2.1.1 The hepatic vascular system . 1.2.1.2 The biliary system . 1.2.1.3 The three dimensional architecture of the liver 1.2.2 The liver functions . 1.3 Liver organogenesis 10 1.3.1 Liver is an endodermal-derived organ . 11 1.3.2 Liver morphogenesis 12 1.3.3 Molecular mechanisms underlying liver development 13 1.3.3.1 Acquisition of competency . 14 1.3.3.2 Hepatic specification . 18 1.3.3.3 Liver bud formation and growth . 21 1.3.3.3.1 Liver bud formation . 21 1.3.4.3.2 Growth and apoptosis of hepatoblasts . 23 1.3.3.4 Hepatocyte differentiation and establishment of hepatic architecture 27 1.3.3.5 Cholangiocyte differentiation . 30 1.4 Zebrafish: A model for studies of liver development . 34 1.4.1 Advantages of zebrafish . 34 1.4.2 Liver development study in zebrafish 40 1.4.2.1 Morphological description of liver development 40 1.4.2.2 Molecular mechanisms of liver development . 42 1.4.2.3 Signaling molecules and transcription factors 43 1.5 Bms1l 50 1.6 Rationales and aims of the project 51 iii Chapter Material and method 52 2.1 Zebrafish . 53 2.1.1 Fish strains and maintenance . 52 2.1.2 Collection of fertilized eggs . 53 2.1.3 Collection of unfertilized eggs . 54 2.2 General DNA application . 55 2.2.1 Gene Cloning . 55 2.2.1.1 Polymerase Chain Reaction (PCR) . 55 2.2.1.2 Purification of PCR product/DNA fragments . 56 2.2.1.3 Plasmid DNA extraction . 56 2.2.1.4 Ligation of DNA inserts into plasmid vectors 57 2.2.1.5 Transformation of DH5α competent cells with plasmids or ligation products using a heat-shock method . 57 2.2.1.5.1 E.coli strain 56 2.2.1.5.2 Preparation of competent cells . 58 2.2.1.5.3 Heat-shock transformation . 58 2.2.2 DNA sequencing 59 2.2.3 Site-directed mutagenesis 59 2.2.4 Zebrafish genomic DNA extraction . 60 2.2.4.1 Genomic DNA extraction from adult zebrafish 60 2.2.4.2 Isolation of genomic DNA from embryos or scales of adult zebrafish 61 2.2.5 Preparation of ‘home-made’ Taq . 61 2.3 General RNA application 62 2.3.1 RNA extraction from embryos or adult zebrafish 63 2.3.2 Removal of genomic DNA 63 2.3.3 mRNA isolation . 63 2.3.4 Reverse Transcription PCR (RT-PCR) 64 2.3.4.1 One-step RT-PCR . 64 2.3.4.2 Two-step RT-PCR 64 2.3.5 mRNA synthesized by in vitro transcription . 65 2.3.6 Northern Blot analysis . 65 2.3.6.1 Probe preparation 66 2.3.6.2 RNA sample preparation . 66 2.3.6.3 RNA gel electrophoresis . 67 2.4 Mapping 68 2.4.1 Preparation of mapping pairs . 68 2.4.2 Genomic DNA preparation 68 2.4.3 Rough mapping 69 2.4.3.1 Mapping panel 70 2.4.3.2 BSA . 71 2.4.4 Intermediate mapping 75 iv 2.4.5 Fine mapping and candidate gene approach 75 2.4.6 Genotyping sq163+/- fish or sq163-/- embryos . 76 2.5 Whole Mount in situ Hybridization (WISH) 77 2.5.1 Preparation of DIG-labeled RNA probe 77 2.5.2 High resolution WISH . 79 2.5.3 High throughput WISH 81 2.6 Microinjection . 82 2.6.1 Preparation of injected materials . 82 2.6.2 Preparation of injection needles and embryos supporter . 83 2.6.3 Microinjection 83 2.7 Immunochemistry . 84 2.7.1 Cryosectioning of zebrafish embryos 84 2.7.2 phospho-Histone H3 Immunostaining and TUNEL Assay . 85 2.8 Microscopy and picture capturing 85 Chapter Isolation of sq163 . 86 3.1 Identification of sq163 by large-scale phenotypic screening 86 3.1.1 Forward genetic screen 86 3.1.2 sq163 confers a small liver phenotype 87 3.2 Positional cloning of sq163 . 89 3.2.1 Introduction 89 3.2.2 Generation of sq163 mapping families 94 3.2.3 Initial mapping of sq163 95 3.2.4 Intermediate mapping 97 3.2.5 Fine mapping and chromosomal walking on BAC contig . 101 3.3 Candidate gene approach of sq163 . 103 3.3.1 sq163 alters a conserved domain in Bms1l 103 3.3.2 L154 to Q154 substitution in Bms1l causes small liver phenotype in sq163 108 3.3.3 bms1l mRNA can rescue sq163 small liver phenotype . 108 3.3.4 Knockdown bms1l gene phenocopies the small liver phenotype in sq163 110 3.3.5 Expression patterns of bms1l . 112 3.4.5 Knockdown of rcl1 114 3.4 Discussion . 116 3.4.1 Positional cloning of sq163 116 3.4.2 Mutations in bms1l . 117 v 3.4.3 Ribosomal proteins, development and cancer . 118 Chapter Characterization of bms1lsq163 . 122 4.1 Introduction . 122 4.2 Results . 123 4.2.1 bms1lsq163 confers a small liver phenotype 123 4.2.2 bms1lsq163 and hepatic competency 127 4.2.3 bms1lsq163 and hepatoblasts proliferation . 129 4.2.4 Mutant hepatoblasts are impaired in proliferation . 130 4.3 Discussion . 132 Chapter Conclusions 136 Reference List 139 vi Summary The liver is one of the main organs of endodermal origin. Most knowledge of liver development is obtained from reverse genetics and explants culture approaches performed on mice and chick. However, various gaps still exist in the whole picture of liver organogenesis due to limitations of such methodologies and early lethality of liver defects. Zebrafish, a recently chosen model for the study of vertebrate development, is particularly suitable for studying liver organogenesis via forward genetics. To take advantage of the zebrafish system for the investigation of the molecular mechanisms of liver development, we carried out a middle-scale genetic screen for liver defective mutants and adopted the map-based cloning method for the identification of mutated genes. By exploiting the polymorphisms exhibited in 226 pairs of simple sequence length polymorphism (SSLP) markers and polymorphic mapping families, the bulk segregation analysis (BSA) protocol has mapped one of the small liver mutants, sq163 to linkage group 12. From ~6800 meiotic events, subsequent detailed mapping in combination with candidate gene approach have identified a T to A mutation in the ribosomal biogenesis protein (Bms1l) gene, which results in the L154 to Q154 substitution in a GTPase motif in Bms1l. Genetic evidence from co-segregation analysis, morpholino knockdown and phenotypic rescuing experiment unequivocally demonstrated that the bms1lsq163 mutation is responsible for the small liver phenotype. Bms1l is a key component in the 40S ribosomal biogenesis pathway that recruits many other ribosomal proteins onto the preribosome-rRNA complex. Its role in this universal mechanism of ribosomes production has been well studied and established in yeast. The positional cloning of sq163 is the first vii genetic indication of Bms1l possibly playing a specific function in vertebrate liver organogenesis. Preliminary phenotypic characterization of the mutant using digestive organ specific molecular markers suggested that liver budding and initial growth are affected in the homozygous mutant which continues to impinge on subsequent expansion of the liver, as well as other digestive organs such as the intestine and pancreas, resulting in their retardation after 3dpf. Whole mount in situ hybridization on wildtype embryos showed that bms1l is enriched in the entire digestive tract and its accessory organs, consistent with the bms1lsq163 mutant phenotypes. Proliferation assay suggests that impairment of hepatoblasts proliferation is one of the consequences of bms1lsq163 that give rise to the small liver phenotype. Excitingly, one of the main interacting partners in the ribosomal biogenesis pathway, rc1l, was shown to share highly similar expression patterns with bms1l in the digestive organs, further suggesting that the ribosomal pathway is necessary for zebrafish liver development. While both examination of earlier mutant embryos with more extensive markers and investigation at the cellular and biochemical level will be necessary to reveal further insights into the functional consequences of bms1lsq163, the work reported in this thesis has demonstrated the possible involvement of a seemingly housekeeping gene in specific development process such as liver formation, of which eventually may be instrumental in filling up some of the gaps in liver organogenesis. viii List of Abbreviations A aa AP BAC BCIP BMP BSA1 BSA2 bp adenine amino acid alkaline phosphatase Bacterial Artificial Chromosomes 5-bromo-4-chloro-3-indolyl phosphate bone morphogenetic protein bulk segregation analysis bovine serum albumin DEPC DIG DMSO DNA dNTP dpf DTT EF-Tu ENU Fgf GDP GEF GFP Gln GTP hnf hpf ifabp IPTG Kb Leu (L) lfabp M base pair carboxyl domain calf intestinal alkaline phosphatase centimorgan diamond-blackfan anemia digestive-organ expansion factor diethylpyrocarbonate digoxigenin dimethyl sulfoxide deoxyribonucleic acid deoxyribonucleotide triphosphate days post-fertilization dithiothreitol eubacterial protein elongation factor N-ethyl-N-nitrosourea fibroblast growth factor guanosine diphosphate guanine exchange factor green fluorescent protein glutamine Guanosine-5'-triphosphate hepatocyte nuclear factor hours post-fertilization intestine fatty acid binding protein isopropyl b-D-thiogalactopyranoside kilo base pair leucine liver fatty acid binding protein mole per liter MGH Massachussets General Hospital MPNST MO mRNA N-domain ng malignant peripheral nerve sheath tumors morpholino messenger ribonucleic acid amino domain nanogram C-domain CIP CM DBA def ix nl npo ORF PBS PCR PFA PTU Q rp RPS19 rRNA RT-PCR SSC STM T UTR UV μl WISH nanoliter nil per os open reading frame phosphate-buffered saline polymerase chain reaction paraformaldehyde 1-phenyl-2-thiourea glutamine ribosomal protein ribosomal protein S19 ribosomal RNA reverse-transcription polymerase chain reaction sodium chloride-trisodium citrate solution septum transversum mesenchyme Thymine untranslated region ultraviolet microliter whole mount in situ hybridization x Fukuda-Taira, S. (1981). Hepatic induction in the avian embryo: specificity of reactive endoderm and inductive mesoderm. J Embryol. Exp Morphol. 63, 111-125. Ganiatsas, S., Kwee, L., Fujiwara, Y., Perkins, A., Ikeda, T., Labow, M.A., and Zon, L.I. (1998). SEK1 deficiency reveals mitogen-activated protein kinase cascade crossregulation and leads to abnormal hepatogenesis. Proc Natl Acad Sci U S A 95, 6881-6886. Gao, X., Sedgwick, T., Shi, Y.B., and Evans, T. (1998). Distinct functions are implicated for the GATA-4, -5, and -6 transcription factors in the regulation of intestine epithelial cell differentiation. Mol Cell Biol 18, 2901-2911. Gelperin, D., Horton, L., Beckman, J., Hensold, J. and Lemmon, S.K. (2001). Bms1p, a novel GTP-binding protein, and the related Tsr1p are required for distinct steps of 40S ribosome biogenesis in yeast. RNA 7, 1268-1283. Germain, L., Blouin, M.J., and Marceau, N. (1988). Biliary epithelial and hepatocytic cell lineage relationships in embryonic rat liver as determined by the differential expression of cytokeratins, alpha-fetoprotein, albumin, and cell surface-exposed components. Cancer Res 48, 4909-4918. Giroux, S. and Charron, J. (1998). Defective development of the embryonic liver in Nmyc-deficient mice. Dev Biol 195, 16-28. Gissen, P., Johnson, C.A., Morgan, N.V., Stapelbroek, J.M., Forshew, T., Cooper, W.N., McKiernan, P.J., Klomp, L.W., Morris, A.A., Wraith, J.E., McClean, P., Lynch, S.A., Thompson, R.J., Lo, B., Quarrell, O.W., Di Rocco, M., Trembath, R.C., Mandel, H., Wali, S., Karet, F.E., Knisely, A.S., Houwen, R.H., Kelly, D.A., and Maher, E.R. (2004). Mutations in VPS33B, encoding a regulator of SNARE-dependent membrane fusion, cause arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome. Nat Genet. 36, 400404. Golling, G., Amsterdam, A., Sun, Z., Antonelli, M., Maldonado, E., Chen, W., Burgess, S., Haldi, M., Artzt, K., Farrington, S., Lin, S.Y., Nissen, R.M., and Hopkins, N. (2002). Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development. Nat Genet. 31, 135-140. Granato, M., van Eeden, F.J., Schach, U., Trowe, T., Brand, M., Furutani-Seiki, M., Haffter, P., Hammerschmidt, M., Heisenberg, C.P., Jiang, Y.J., Kane, D.A., Kelsh, R.N., Mullins, M.C., Odenthal, J., and Nusslein-Volhard, C. (1996). Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development 123, 399-413. Gualdi, R., Bossard, P., Zheng, M., Hamada, Y., Coleman, J.R., and Zaret, K.S. (1996). Hepatic specification of the gut endoderm in vitro: cell signaling and transcriptional control. Genes Dev 10, 1670-1682. 144 Haffter, P., Granato, M., Brand, M., Mullins, M.C., Hammerschmidt, M., Kane, D.A., Odenthal, J., van Eeden, F.J., Jiang, Y.J., Heisenberg, C.P., Kelsh, R.N., Furutani-Seiki, M., Vogelsang, E., Beuchle, D., Schach, U., Fabian, C., and Nusslein-Volhard, C. (1996). The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1-36. Hayhurst, G.P., Lee, Y.H., Lambert, G., Ward, J.M., and Gonzalez, F.J. (2001). Hepatocyte nuclear factor 4alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Mol Cell Biol 21, 1393-1403. Heasman, J. (2002). Morpholino oligos: making sense of antisense? Dev Biol 243, 209214. Hentsch, B., Lyons, I., Li, R., Hartley, L., Lints, T.J., Adams, J.M., and Harvey, R.P. (1996). Hlx homeo box gene is essential for an inductive tissue interaction that drives expansion of embryonic liver and gut. Genes Dev 10, 70-79. Her, G.M., Chiang, C.C., Chen, W.Y., and Wu, J.L. (2003). In vivo studies of liver-type fatty acid binding protein (L-FABP) gene expression in liver of transgenic zebrafish (Danio rerio). FEBS Lett. 538, 125-133. Hilberg, F., Aguzzi, A., Howells, N., and Wagner, E.F. (1993). c-Jun is essential for normal mouse development and hepatogenesis. Nature 365, 179-181. Holtzinger, A. and Evans, T. (2005). Gata4 regulates the formation of multiple organs. Development 132, 4005-4014. Horne-Badovinac, S., Lin, D., Waldron, S., Schwarz, M., Mbamalu, G., Pawson, T., Jan, Y., Stainier, D.Y., and Abdelilah-Seyfried, S. (2001). Positional cloning of heart and soul reveals multiple roles for PKC lambda in zebrafish organogenesis. Curr Biol 11, 14921502. Horne-Badovinac, S., Rebagliati, M., and Stainier, D.Y. (2003). A cellular framework for gut-looping morphogenesis in zebrafish. Science 302, 662-665. Houssaint, E. (1980). Differentiation of the mouse hepatic primordium. I. An analysis of tissue interactions in hepatocyte differentiation. Cell Differ. 9, 269-279. Huang, H., Vogel, S.S., Liu, N., Melton, D.A., and Lin, S. (2001). Analysis of pancreatic development in living transgenic zebrafish embryos. Mol Cell Endocrinol 177, 117-124. Hunter, M.P., Wilson, C.M., Jiang, X., Cong, R., Vasavada, H., Kaestner, K.H., and Bogue, C.W. (2007). The homeobox gene Hhex is essential for proper hepatoblast differentiation and bile duct morphogenesis. Dev Biol 308, 355-367. Johnson, G.R. and Moore, M.A. (1975). Role of stem cell migration in initiation of mouse foetal liver haemopoiesis. Nature 258, 726-728. 145 Johnson, R.S., van Lingen, B., Papaioannou, V.E., and Spiegelman, B.M. (1993). A null mutation at the c-jun locus causes embryonic lethality and retarded cell growth in culture. Genes Dev 7, 1309-1317. Jung, J., Zheng, M., Goldfarb, M., and Zaret, K.S. (1999). Initiation of mammalian liver development from endoderm by fibroblast growth factors. Science 284, 1998-2003. Junqueira et al. (1996) Basic Histology, 8th edition. Appleton & Lange. Kaestner, K.H., Hiemisch, H., and Schutz, G. (1998). Targeted disruption of the gene encoding hepatocyte nuclear factor 3gamma results in reduced transcription of hepatocyte-specific genes. Mol Cell Biol 18, 4245-4251. Kaestner, K.H., Katz, J., Liu, Y., Drucker, D.J., and Schutz, G. (1999). Inactivation of the winged helix transcription factor HNF3alpha affects glucose homeostasis and islet glucagon gene expression in vivo. Genes Dev 13, 495-504. Kaestner, K.H., Lee, K.H., Schlondorff, J., Hiemisch, H., Monaghan, A.P., and Schutz, G. (1993). Six members of the mouse forkhead gene family are developmentally regulated. Proc Natl Acad Sci U S A 90, 7628-7631. Kageyama, R. and Ohtsuka, T. (1999). The Notch-Hes pathway in mammalian neural development. Cell Res 9, 179-188. Kalinichenko, V.V., Zhou, Y., Bhattacharyya, D., Kim, W., Shin, B., Bambal, K., and Costa, R.H. (2002). Haploinsufficiency of the mouse Forkhead Box f1 gene causes defects in gall bladder development. J Biol Chem 277, 12369-12374. Kamiya, A., Kinoshita, T., Ito, Y., Matsui, T., Morikawa, Y., Senba, E., Nakashima, K., Taga, T., Yoshida, K., Kishimoto, T., and Miyajima, A. (1999). Fetal liver development requires a paracrine action of oncostatin M through the gp130 signal transducer. EMBO J 18, 2127-2136. Kamiya, A., Kojima, N., Kinoshita, T., Sakai, Y., and Miyaijma, A. (2002). Maturation of fetal hepatocytes in vitro by extracellular matrices and oncostatin M: induction of tryptophan oxygenase. Hepatology 35, 1351-1359. Karbstein, K. and Doudna. J.A. (2006). GTP-dependent formation of a ribonucleoprotein subcomplex required for ribosome biogenesis. J. Mol. Biol. 356, 432-443. Karbstein, K., Jonas, S. and Doudna. J.A. (2005). An essential GTPase promotes assembly of preribosomal RNA processing complexes. Molecular Cell 20, 633-643. Kawakami, K., Takeda, H., Kawakami, N., Kobayashi, M., Matsuda, N., and Mishina, M. (2004). A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell 7, 133-144. 146 Keijzer, R., van Tuyl, M., Meijers, C., Post, M., Tibboel, D., Grosveld, F., and Koutsourakis, M. (2001). The transcription factor GATA6 is essential for branching morphogenesis and epithelial cell differentiation during fetal pulmonary development. Development 128, 503-511. Keng, V.W., Fujimori, K.E., Myint, Z., Tamamaki, N., Nojyo, Y., and Noguchi, T. (1998). Expression of Hex mRNA in early murine postimplantation embryo development. FEBS Lett. 426, 183-186. Keng, V.W., Yagi, H., Ikawa, M., Nagano, T., Myint, Z., Yamada, K., Tanaka, T., Sato, A., Muramatsu, I., Okabe, M., Sato, M., and Noguchi, T. (2000). Homeobox gene Hex is essential for onset of mouse embryonic liver development and differentiation of the monocyte lineage. Biochem Biophys. Res Commun. 276, 1155-1161. Kressler, D., Linder, P. and de La Cruz, L. (1999). Protein trans-acting factors involved in ribosome biogenesis in Saccharomyces cerevisiae. Mol. Cell Biol. 19, 7897-7912. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., and Schilling, T.F. (1995). Stages of embryonic development of the zebrafish. Dev Dyn. 203, 253-310. Kimmel, C.B., Warga, R.M., and Schilling, T.F. (1990). Origin and organization of the zebrafish fate map. Development 108, 581-594. Koch, A., Denkhaus, D., Albrecht, S., Leuschner, I., von Schweinitz, D., and Pietsch, T. (1999). Childhood hepatoblastomas frequently carry a mutated degradation targeting box of the beta-catenin gene. Cancer Res 59, 269-273. Kodama, Y., Hijikata, M., Kageyama, R., Shimotohno, K., and Chiba, T. (2004). The role of notch signaling in the development of intrahepatic bile ducts. Gastroenterology 127, 1775-1786. Koutsourakis, M., Langeveld, A., Patient, R., Beddington, R., and Grosveld, F. (1999). The transcription factor GATA6 is essential for early extraembryonic development. Development 126, 723-732. Krapp, A., Knofler, M., Frutiger, F., Hughes, G.J., Hagenbuchle, O., and Wellauer, P.K. (1996). The p48 DNA-binding subunit of transcription factor PTF1 is a new exocrine pancreas-specific basic helix–loop–helix protein. EMBO J. 15: 4317–4329. Krapp, A., Knofler, M., Ledermann, B., Burki, K., Berney, C., Zoerkler, N., Hagenbuchle, O., and Wellauer, P.K. (1998). The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes Dev 12, 3752-3763. Krupczak-Hollis, K., Wang, X., Kalinichenko, V.V., Gusarova, G.A., Wang, I.C., Dennewitz, M.B., Yoder, H.M., Kiyokawa, H., Kaestner, K.H., and Costa, R.H. (2004). The mouse Forkhead Box m1 transcription factor is essential for hepatoblast mitosis and 147 development of intrahepatic bile ducts and vessels during liver morphogenesis. Dev Biol 276, 74-88. Kuo, C.T., Morrisey, E.E., Anandappa, R., Sigrist, K., Lu, M.M., Parmacek, M.S., Soudais, C., and Leiden, J.M. (1997). GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev 11, 1048-1060. Lai, E., Prezioso, V.R., Smith, E., Litvin, O., Costa, R.H., and Darnell, J.E., Jr. (1990). HNF-3A, a hepatocyte-enriched transcription factor of novel structure is regulated transcriptionally. Genes Dev 4, 1427-1436. Lai, E., Prezioso, V.R., Tao, W.F., Chen, W.S., and Darnell, J.E., Jr. (1991). Hepatocyte nuclear factor alpha belongs to a gene family in mammals that is homologous to the Drosophila homeotic gene fork head. Genes Dev 5, 416-427. Lam, S.H., Wu, Y.L., Vega, V.B., Miller, L.D., Spitsbergen, J., Tong, Y., Zhan, H., Govindarajan, K.R., Lee, S., Mathavan, S., Murthy, K.R., Buhler, D.R., Liu, E.T., and Gong, Z. (2006). Conservation of gene expression signatures between zebrafish and human liver tumors and tumor progression. Nat Biotechnol. 24, 73-75. Lambertsson, A. (1998). The Minute genes in Drosophila and their molecular functions. Adv. Genet. 38, 69-134. Landry, C., Clotman, F., Hioki, T., Oda, H., Picard, J.J., Lemaigre, F.P., Rousseau, G.G., (1997). HNF-6 is expressed in endoderm derivatives and nervous system of the mouse embryo and participates to the cross-regulatory network of liver-enriched transcription factors. Dev Biol 192:247–257 Laverriere, A.C., MacNeill, C., Mueller, C., Poelmann, R.E., Burch, J.B., and Evans, T. (1994). GATA-4/5/6, a subfamily of three transcription factors transcribed in developing heart and gut. J Biol Chem 269, 23177-23184. Lawson, K.A., Meneses, J.J., and Pedersen, R.A. (1986). Cell fate and cell lineage in the endoderm of the presomite mouse embryo, studied with an intracellular tracer. Dev Biol 115, 325-339. Lee, C.S., Sund, N.J., Behr, R., Herrera, P.L., and Kaestner, K.H. (2005a). Foxa2 is required for the differentiation of pancreatic alpha-cells. Dev Biol 278, 484-495. Lee, C.S., Friedman, J.R., Fulmer, J.T., and Kaestner, K.H. (2005b). The initiation of liver development is dependent on Foxa transcription factors. Nature 435, 944-947. Lemaigre, F.P. (2003). Development of the biliary tract. Mech. Dev 120, 81-87. Li, H., Arber, S., Jessell, T.M., and Edlund, H. (1999). Selective agenesis of the dorsal pancreas in mice lacking homeobox gene Hlxb9. Nat Genet. 23, 67-70. 148 Li, J., Ning, G., and Duncan, S.A. (2000). Mammalian hepatocyte differentiation requires the transcription factor HNF-4alpha. Genes Dev 14, 464-474. Li, L., Krantz, I.D., Deng, Y., Genin, A., Banta, A.B., Collins, C.C., Qi, M., Trask, B.J., Kuo, W.L., Cochran, J., Costa, T., Pierpont, M.E., Rand, E.B., Piccoli, D.A., Hood, L., and Spinner, N.B. (1997). Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat Genet. 16, 243-251. Li, W.C., Yu, W.Y., Quinlan, J.M., Burke, Z.D., and Tosh, D. (2005). The molecular basis of transdifferentiation. J Cell Mol Med. 9, 569-582. Lin, J.W., Biankin, A.V., Horb, M.E., Ghosh, B., Prasad, N.B., Yee, N.S., Pack, M.A., and Leach, S.D. (2004). Differential requirement for ptf1a in endocrine and exocrine lineages of developing zebrafish pancreas. Dev Biol 270, 474-486. Liu, Y.W., Gao, W., Teh, H.L., Tan, J.H., and Chan, W.K. (2003). Prox1 is a novel coregulator of Ff1b and is involved in the embryonic development of the zebra fish interrenal primordium. Mol Cell Biol 23, 7243-7255. Lohrum, M., Lugwig, R.L., Kubbutat, M., Hanlon, M and Vousden K.H. (2003). Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell 3, 577-587. Lorent, K., Yeo, S.Y., Oda, T., Chandrasekharappa, S., Chitnis, A., Matthews, R.P., and Pack, M. (2004). Inhibition of Jagged-mediated Notch signaling disrupts zebrafish biliary development and generates multi-organ defects compatible with an Alagille syndrome phenocopy. Development 131, 5753-5766. Maclnnes., A.W., Amsterdam, A., Whittaker, C.A., Hopkins, N. and Lees, J.A. (2008). Loss of p53 synthesis in zebrafish tumors with ribosomal protein gene mutations. PNAS 105(30), 10408-10413. Martinez Barbera, J.P., Clements, M., Thomas, P., Rodriguez, T., Meloy, D., Kioussis, D., and Beddington, R.S. (2000). The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. Development 127, 2433-2445. Matsumoto, K., Yoshitomi, H., Rossant, J., and Zaret, K.S. (2001). Liver organogenesis promoted by endothelial cells prior to vascular function. Science 294, 559-563. Matthews, R.P., Lorent, K., and Pack, M. (2008). Transcription factor onecut3 regulates intrahepatic biliary development in zebrafish. Dev Dyn. 237, 124-131. Matthews, R.P., Lorent, K., Russo, P., and Pack, M. (2004). The zebrafish onecut gene hnf-6 functions in an evolutionarily conserved genetic pathway that regulates vertebrate biliary development. Dev Biol 274, 245-259. Matthews, R.P., Plumb-Rudewiez, N., Lorent, K., Gissen, P., Johnson, C.A., Lemaigre, F., and Pack, M. (2005). Zebrafish vps33b, an ortholog of the gene responsible for human 149 arthrogryposis-renal dysfunction-cholestasis syndrome, regulates biliary development downstream of the onecut transcription factor hnf6. Development 132, 5295-5306. Mayer, A.N. and Fishman, M.C. (2003). Nil per os encodes a conserved RNA recognition motif protein required for morphogenesis and cytodifferentiation of digestive organs in zebrafish. Development 130, 3917-3928. McCright, B., Gao, X., Shen, L., Lozier, J., Lan, Y., Maguire, M., Herzlinger, D., Weinmaster, G., Jiang, R., and Gridley, T. (2001). Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic Notch2 mutation. Development 128, 491-502. McCright, B., Lozier, J., and Gridley, T. (2002). A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency. Development 129, 1075-1082. Medlock, E.S. and Haar, J.L. (1983). The liver hemopoietic environment: I. Developing hepatocytes and their role in fetal hemopoiesis. Anat. Rec. 207, 31-41. Medvinsky, A. and Dzierzak, E. (1996). Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86, 897-906. Michelmore,R.W., Paran,I., and Kesseli,R.V. (1991). Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. U. S. A 88, 9828-9832. Micsenyi, A., Tan, X., Sneddon, T., Luo, J.H., Michalopoulos, G.K., and Monga, S.P. (2004). Beta-catenin is temporally regulated during normal liver development. Gastroenterology 126, 1134-1146. Molkentin, J.D., Lin, Q., Duncan, S.A., and Olson, E.N. (1997). Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev 11, 1061-1072. Monaghan, A.P., Kaestner, K.H., Grau, E., and Schutz, G. (1993). Postimplantation expression patterns indicate a role for the mouse forkhead/HNF-3 alpha, beta and gamma genes in determination of the definitive endoderm, chordamesoderm and neuroectoderm. Development 119, 567-578. Morrisey, E.E., Ip, H.S., Lu, M.M., and Parmacek, M.S. (1996). GATA-6: a zinc finger transcription factor that is expressed in multiple cell lineages derived from lateral mesoderm. Dev Biol 177, 309-322. Morrisey, E.E., Tang, Z., Sigrist, K., Lu, M.M., Jiang, F., Ip, H.S., and Parmacek, M.S. (1998). GATA6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo. Genes Dev 12, 3579-3590. 150 Motoyama, J., Kitajima, K., Kojima, M., Kondo, S., and Takeuchi, T. (1997). Organogenesis of the liver, thymus and spleen is affected in jumonji mutant mice. Mech. Dev 66, 27-37. Muller, A.M., Medvinsky, A., Strouboulis, J., Grosveld, F., and Dzierzak, E. (1994). Development of hematopoietic stem cell activity in the mouse embryo. Immunity. 1, 291301. Mullins, M.C., Hammerschmidt, M., Haffter, P., and Nusslein-Volhard, C. (1994). Largescale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr Biol 4, 189-202. Murphey, R.D. and Zon, L.I. (2006). Small molecule screening in the zebrafish. Methods 39, 255-261. Narita, N., Bielinska, M., and Wilson, D.B. (1997). Wild-type endoderm abrogates the ventral developmental defects associated with GATA-4 deficiency in the mouse. Dev Biol 189, 270-274. Nasevicius, A. and Ekker, S.C. (2000). Effective targeted gene 'knockdown' in zebrafish. Nat Genet. 26, 216-220. Ng, A.N., Jong-Curtain, T.A., Mawdsley, D.J., White, S.J., Shin, J., Appel, B., Dong, P.D., Stainier, D.Y., and Heath, J.K. (2005). Formation of the digestive system in zebrafish: III. Intestinal epithelium morphogenesis. Dev Biol 286, 114-135. Nishina, H., Vaz, C., Billia, P., Nghiem, M., Sasaki, T., De la Pompa, J.L., Furlonger, K., Paige, C., Hui, C., Fischer, K.D., Kishimoto, H., Iwatsubo, T., Katada, T., Woodgett, J.R., and Penninger, J.M. (1999). Defective liver formation and liver cell apoptosis in mice lacking the stress signaling kinase SEK1/MKK4. Development 126, 505-516. Norton, W.H., Mangoli, M., Lele, Z., Pogoda, H.M., Diamond, B., Mercurio, S., Russell, C., Teraoka, H., Stickney, H.L., Rauch, G.J., Heisenberg, C.P., Houart, C., Schilling, T.F., Frohnhoefer, H.G., Rastegar, S., Neumann, C.J., Gardiner, R.M., Strahle, U., Geisler, R., Rees, M., Talbot, W.S., and Wilson, S.W. (2005). Monorail/Foxa2 regulates floorplate differentiation and specification of oligodendrocytes, serotonergic raphe neurones and cranial motoneurones. Development 132, 645-658. Ober, E.A., Field, H.A., and Stainier, D.Y. (2003). From endoderm formation to liver and pancreas development in zebrafish. Mech. Dev 120, 5-18. Ober, E.A., Verkade, H., Field, H.A., and Stainier, D.Y. (2006). Mesodermal Wnt2b signalling positively regulates liver specification. Nature 442, 688-691. Oda, T., Elkahloun, A.G., Pike, B.L., Okajima, K., Krantz, I.D., Genin, A., Piccoli, D.A., Meltzer, P.S., Spinner, N.B., Collins, F.S., and Chandrasekharappa, S.C. (1997). Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nat Genet. 16, 235-242. 151 Odenthal, J. and Nusslein-Volhard, C. (1998). fork head domain genes in zebrafish. Dev Genes Evol 208, 245-258. Odom, D.T., Zizlsperger, N., Gordon, D.B., Bell, G.W., Rinaldi, N.J., Murray, H.L., Volkert, T.L., Schreiber, J., Rolfe, P.A., Gifford, D.K., Fraenkel, E., Bell, G.I., and Young, R.A. (2004). Control of pancreas and liver gene expression by HNF transcription factors. Science 303, 1378-1381. Offield, M.F., Jetton, T.L., Labosky, P.A., Ray, M., Stein, R.W., Magnuson, M.A., Hogan, B.L., and Wright, C.V. (1996). PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 122, 983-995. Oliver, G., Sosa-Pineda, B., Geisendorf, S., Spana, E.P., Doe, C.Q., and Gruss, P. (1993). Prox 1, a prospero-related homeobox gene expressed during mouse development. Mech. Dev 44, 3-16. Opferman, J.T. and Zambetti, G.P. (2006). Translational research? Ribosome integrity and a new p53 tumor suppressor checkpoint. Cell death and differentiation 13, 898-901. Pack, M., Solnica-Krezel, L., Malicki, J., Neuhauss, S.C., Schier, A.F., Stemple, D.L., Driever, W., and Fishman, M.C. (1996). Mutations affecting development of zebrafish digestive organs. Development 123, 321-328. Pan, X., Wan, H., Chia, W., Tong, Y., and Gong, Z. (2005). Demonstration of sitedirected recombination in transgenic zebrafish using the Cre/loxP system. Transgenic Res 14, 217-223. Parviz, F., Matullo, C., Garrison, W.D., Savatski, L., Adamson, J.W., Ning, G., Kaestner, K.H., Rossi, J.M., Zaret, K.S., and Duncan, S.A. (2003). Hepatocyte nuclear factor 4alpha controls the development of a hepatic epithelium and liver morphogenesis. Nat Genet. 34, 292-296. Patton, E.E. and Zon, L.I. (2001). The art and design of genetic screens: zebrafish. Nat Rev Genet. 2, 956-966. Pontoglio, M., Barra, J., Hadchouel, M., Doyen, A., Kress, C., Bach, J.P., Babinet, C., and Yaniv, M. (1996). Hepatocyte nuclear factor inactivation results in hepatic dysfunction, phenylketonuria, and renal Fanconi syndrome. Cell 84, 575-585. Postlethwait, J.H., Johnson, S.L., Midson, C.N., Talbot, W.S., Gates, M., Ballinger, E.W., Africa, D., Andrews, R., Carl, T., Eisen, J.S., and . (1994). A genetic linkage map for the zebrafish. Science 264, 699-703. Pyati, U.J., Cooper, M.S., Davidson, A.J., Nechiporuk, A., and Kimelman, D. (2006). Sustained Bmp signaling is essential for cloaca development in zebrafish. Development 133, 2275-2284. 152 Pyati, U.J., Webb, A.E., and Kimelman, D. (2005). Transgenic zebrafish reveal stagespecific roles for Bmp signaling in ventral and posterior mesoderm development. Development 132, 2333-2343. Rausa, F., Samadani, U., Ye, H., Lim, L., Fletcher, C.F., Jenkins, N. A., Copeland, N.G., Costa, R. H. (1997). The cut-homeodomain transcriptional activator HNF-6 is coexpressed with its target gene HNF-3 beta in the developing murine liver and pancreas. Dev Biol 192:228-246. Rastegar, S., Albert, S., Le, R., I, Fischer, N., Blader, P., Muller, F., and Strahle, U. (2002). A floor plate enhancer of the zebrafish netrin1 gene requires Cyclops (Nodal) signalling and the winged helix transcription factor FoxA2. Dev Biol 252, 1-14. Reimold, A.M., Etkin, A., Clauss, I., Perkins, A., Friend, D.S., Zhang, J., Horton, H.F., Scott, A., Orkin, S.H., Byrne, M.C., Grusby, M.J., and Glimcher, L.H. (2000). An essential role in liver development for transcription factor XBP-1. Genes Dev 14, 152157. Reiter, J.F., Alexander, J., Rodaway, A., Yelon, D., Patient, R., Holder, N., and Stainier, D.Y. (1999). Gata5 is required for the development of the heart and endoderm in zebrafish. Genes Dev 13, 2983-2995. Reiter, J.F., Kikuchi, Y., and Stainier, D.Y. (2001). Multiple roles for Gata5 in zebrafish endoderm formation. Development 128, 125-135. Rossi, J.M., Dunn, N.R., Hogan, B.L., and Zaret, K.S. (2001). Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. Genes Dev 15, 1998-2009. Roy, S., Qiao, T., Wolff, C., and Ingham, P.W. (2001). Hedgehog signaling pathway is essential for pancreas specification in the zebrafish embryo. Curr Biol 11, 1358-1363. Rudolph, D., Yeh, W.C., Wakeham, A., Rudolph, B., Nallainathan, D., Potter, J., Elia, A.J., and Mak, T.W. (2000). Severe liver degeneration and lack of NF-kappaB activation in NEMO/IKKgamma-deficient mice. Genes Dev 14, 854-862. Sadler, K.C., Amsterdam, A., Soroka, C., Boyer, J., and Hopkins, N. (2005). A genetic screen in zebrafish identifies the mutants vps18, nf2 and foie gras as models of liver disease. Development 132, 3561-3572. Sadler, K.C., Krahn, K.N., Gaur, N.A., and Ukomadu, C. (2007). Liver growth in the embryo and during liver regeneration in zebrafish requires the cell cycle regulator, uhrf1. Proc Natl Acad Sci USA 104, 1570-1575. Sánchez, R. and Sali, A. ( 1998 ) Large-scale protein structure modeling of the Saccharomyces cerevisiae genome. Proc. Natl. Acad. Sci. USA 95, 13597-13602. Sander, M., Sussel, L., Conners, J., Scheel, D., Kalamaras, J., Dela, C.F., Schwitzgebel, V., Hayes-Jordan, A., and German, M. (2000). Homeobox gene Nkx6.1 lies downstream 153 of Nkx2.2 in the major pathway of beta-cell formation in the pancreas. Development 127, 5533-5540. Sasaki, H. and Hogan, B.L. (1993). Differential expression of multiple fork head related genes during gastrulation and axial pattern formation in the mouse embryo. Development 118, 47-59. Schmidt, C., Bladt, F., Goedecke, S., Brinkmann, V., Zschiesche, W., Sharpe, M., Gherardi, E., and Birchmeier, C. (1995). Scatter factor/hepatocyte growth factor is essential for liver development. Nature 373, 699-702. Schulte-Merker, S., Hammerschmidt, M., Beuchle, D., Cho, K.W., De Robertis, E.M., and Nusslein-Volhard, C. (1994). Expression of zebrafish goosecoid and no tail gene products in wild-type and mutant no tail embryos. Development 120, 843-852. Seiliez, I., Thisse, B., and Thisse, C. (2006). FoxA3 and goosecoid promote anterior neural fate through inhibition of Wnt8a activity before the onset of gastrulation. Dev Biol 290, 152-163. Shalaby, F., Rossant, J., Yamaguchi, T.P., Gertsenstein, M., Wu, X.F., Breitman, M.L., and Schuh, A.C. (1995). Failure of blood-island formation and vasculogenesis in Flk-1deficient mice. Nature 376, 62-66. Shepard, J.L., Amatruda, J.F., Stern, H.M., Subramanian, A., Finkelstein, D., Ziai, J., Finley, K.R., Pfaff, K.L., Hersey, C., Zhou, Y., Barut, B., Freedman, M., Lee, C., Spitsbergen, J., Neuberg, D., Weber, G., Golub, T.R., Glickman, J.N., Kutok, J.L., Aster, J.C., and Zon, L.I. (2005). A zebrafish bmyb mutation causes genome instability and increased cancer susceptibility. Proc Natl Acad Sci U S A 102, 13194-13199. Shih, D.Q., Navas, M.A., Kuwajima, S., Duncan, S.A., and Stoffel, M. (1999). Impaired glucose homeostasis and neonatal mortality in hepatocyte nuclear factor 3alpha-deficient mice. Proc Natl Acad Sci U S A 96, 10152-10157. Shim, E.Y., Woodcock, C., and Zaret, K.S. (1998). Nucleosome positioning by the winged helix transcription factor HNF3. Genes Dev 12, 5-10. Shimoda, N., Knapik, E.W., Ziniti, J., Sim, C., Yamada, E., Kaplan, S., Jackson, D., de Sauvage, F., Jacob, H., and Fishman, M.C. (1999). Zebrafish genetic map with 2000 microsatellite markers. Genomics 58, 219-232. Shin, D., Shin, C.H., Tucker, J., Ober, E.A., Rentzsch, F., Poss, K.D., Hammerschmidt, M., Mullins, M.C., and Stainier, D.Y. (2007). Bmp and Fgf signaling are essential for liver specification in zebrafish. Development 134, 2041-2050. Shiojiri, N. (1984). The origin of intrahepatic bile duct cells in the mouse. J Embryol. Exp Morphol. 79, 25-39. 154 Shiojiri, N. and Katayama, H. (1987). Secondary joining of the bile ducts during the hepatogenesis of the mouse embryo. Anat. Embryol. (Berl) 177, 153-163. Shiojiri, N., Lemire, J.M., and Fausto, N. (1991). Cell lineages and oval cell progenitors in rat liver development. Cancer Res 51, 2611-2620. Solnica-Krezel, L., Schier, A.F., and Driever, W. (1994). Efficient recovery of ENUinduced mutations from the zebrafish germline. Genetics 136, 1401-1420. Sosa-Pineda, B., Wigle, J.T., and Oliver, G. (2000). Hepatocyte migration during liver development requires Prox1. Nat Genet. 25, 254-255. Soulet, F., Al Saati, T., Amalric, F. and Bouche, G. (2001). Fibroblast growth factor-2 interacts with free ribosomal protein S19. Biochem. Biophys. Res Commun. 289, 591596. Sprague, J., Doerry, E., Douglas, S., and Westerfield, M. (2001). The Zebrafish Information Network (ZFIN): a resource for genetic, genomic and developmental research. Nucleic Acids Res 29, 87-90. Stafford, D. and Prince, V.E. (2002). Retinoic acid signaling is required for a critical early step in zebrafish pancreatic development. Curr Biol 12, 1215-1220. Stainier, D.Y. (2001). Zebrafish genetics and vertebrate heart formation. Nat Rev Genet. 2, 39-48. Stainier, D.Y. (2002). A glimpse into the molecular entrails of endoderm formation. Genes Dev. 16, 893-907. Stemple, D.L. (2004). TILLING--a high-throughput harvest for functional genomics. Nat Rev Genet. 5, 145-150. Stuart, G.W., McMurray, J.V., and Westerfield, M. (1988). Replication, integration and stable germ-line transmission of foreign sequences injected into early zebrafish embryos. Development 103, 403-412. Sumazaki, R., Shiojiri, N., Isoyama, S., Masu, M., Keino-Masu, K., Osawa, M., Nakauchi, H., Kageyama, R., and Matsui, A. (2004). Conversion of biliary system to pancreatic tissue in Hes1-deficient mice. Nat Genet. 36, 83-87. Summerton, J. and Weller, D. (1997). Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev 7, 187-195. Sun, Z. and Hopkins, N. (2001). vhnf1, the MODY5 and familial GCKD-associated gene, regulates regional specification of the zebrafish gut, pronephros, and hindbrain. Genes Dev 15, 3217-3229. 155 Suzuki, A., Iwama, A., Miyashita, H., Nakauchi, H., and Taniguchi, H. (2003). Role for growth factors and extracellular matrix in controlling differentiation of prospectively isolated hepatic stem cells. Development 130, 2513-2524. Suzuki, A., Zheng, Y.W., Kaneko, S., Onodera, M., Fukao, K., Nakauchi, H., and Taniguchi, H. (2002). Clonal identification and characterization of self-renewing pluripotent stem cells in the developing liver. J Cell Biol 156, 173-184. Suzuki, E., Evans, T., Lowry, J., Truong, L., Bell, D.W., Testa, J.R., and Walsh, K. (1996). The human GATA-6 gene: structure, chromosomal location, and regulation of expression by tissue-specific and mitogen-responsive signals. Genomics 38, 283-290. Talbot, W.S. and Schier, A.F. (1999). Positional cloning of mutated zebrafish genes. Methods Cell Biol 60, 259-286. Talbot, W.S., Trevarrow, B., Halpern, M.E., Melby, A.E., Farr, G., Postlethwait, J.H., Jowett, T., Kimmel, C.B., and Kimelman, D. (1995). A homeobox gene essential for zebrafish notochord development. Nature 378, 150-157. Tanaka, M., Fuentes, M.E., Yamaguchi, K., Durnin, M.H., Dalrymple, S.A., Hardy, K.L., and Goeddel, D.V. (1999). Embryonic lethality, liver degeneration, and impaired NFkappa B activation in IKK-beta-deficient mice. Immunity. 10, 421-429. Thisse, C. and Zon, L.I. (2002). Organogenesis--heart and blood formation from the zebrafish point of view. Science 295, 457-462. Thomas, P.Q., Brown, A., and Beddington, R.S. (1998). Hex: a homeobox gene revealing peri-implantation asymmetry in the mouse embryo and an early transient marker of endothelial cell precursors. Development 125, 85-94. Trede, N.S., Zapata, A., and Zon, L.I. (2001). Fishing for lymphoid genes. Trends Immunol 22, 302-307. Tremblay, K.D. and Zaret, K.S. (2005). Distinct populations of endoderm cells converge to generate the embryonic liver bud and ventral foregut tissues. Dev Biol 280, 87-99. Uechi, T., Nakajima, Y., Nakao, A., Torihara, H., Chakraborty, A., Inoue, K. and Kenmochi, N. (2006) Ribosomal protein gene knockdown causes developmental defects in zebrafsih. Plos One 1, e37. Uehara, Y., Minowa, O., Mori, C., Shiota, K., Kuno, J., Noda, T., and Kitamura, N. (1995). Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature 373, 702-705. Vassy, J., Kraemer, M., Chalumeau, M.T., and Foucrier, J. (1988). Development of the fetal rat liver: ultrastructural and stereological study of hepatocytes. Cell Differ. 24, 9-24. 156 Volarevic, S., Stewart, M.J., Ledermann, B., Ziberman, F., Terracciano., L., Montini, E., Grompe, M., Kozma, S.C. and Thomas, G. (2000). Proliferation, but not growth blocked by conditional deletion of 40S ribosomal protein S6. Science 288, 2045-2047. Wallace, K.N. and Pack, M. (2003). Unique and conserved aspects of gut development in zebrafish. Dev Biol 255, 12-29. Wallace, K.N., Yusuff, S., Sonntag, J.M., Chin, A.J., and Pack, M. (2001). Zebrafish hhex regulates liver development and digestive organ chirality. Genesis 30, 141-143. Wang, D., Jao, L.E., Zheng, N., Dolan, K., Ivey, J., Zonies, S., Wu, X., Wu, K., Yang, H., Meng, Q., Zhu, Z., Zhang, B., Lin, S., and Burgess, S.M. (2007). Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions. Proc Natl Acad Sci U S A 104, 12428-12433. Warga, R.M. and Nusslein-Volhard, C. (1999). Origin and development of the zebrafish endoderm. Development 126, 827-838. Watt, A.J., Zhao, R., Li, J., and Duncan, S.A. (2007). Development of the mammalian liver and ventral pancreas is dependent on GATA4. BMC. Dev Biol 7, 37. Wegierski, T., Billy, E., Nasr, F. and Filipowicz, W. (2001). Bms1p, a G-domaincontaining protein, associates with Rcl1p and is required for 18S rRNR biogenesis in yeast. RNA 7, 1254-1267. Wei, Y., Fabre, M., Branchereau, S., Gauthier, F., Perilongo, G., and Buendia, M.A. (2000). Activation of beta-catenin in epithelial and mesenchymal hepatoblastomas. Oncogene 19, 498-504. Weinstein, D.C., Altaba, A., Chen, W.S., Hoodless, P., Prezioso, V.R., Jessell, T.M., and Darnell, J.E., Jr. (1994). The winged-helix transcription factor HNF-3 beta is required for notochord development in the mouse embryo. Cell 78, 575-588. Weinstein, M., Monga, S.P., Liu, Y., Brodie, S.G., Tang, Y., Li, C., Mishra, L., and Deng, C.X. (2001). Smad proteins and hepatocyte growth factor control parallel regulatory pathways that converge on beta1-integrin to promote normal liver development. Mol Cell Biol 21, 5122-5131. Wells, J.M. and Melton, D.A. (1999). Vertebrate endoderm development. Annu Rev Cell Dev Biol 15, 393-410. Wendik, B., Maier, E., and Meyer, D. (2004). Zebrafish mnx genes in endocrine and exocrine pancreas formation. Dev Biol 268, 372-383. Westerfield, M. (1989). The zebrafish book: A guide for the laboratory use of zebrafish (Brachydanio rerio). University of Oregon Press, Eugene, OR. 157 Wienholds, E., Schulte-Merker, S., Walderich, B., and Plasterk, R.H. (2002). Targetselected inactivation of the zebrafish rag1 gene. Science 297, 99-102. Wienholds, E., van Eeden, F., Kosters, M., Mudde, J., Plasterk, R.H., and Cuppen, E. (2003). Efficient target-selected mutagenesis in zebrafish. Genome Res 13, 2700-2707. Wool, I.G. (1996). Extraribosomal functions of ribosomal proteins. Trends Biochem. Sci. 21, 164-165. Wool, I.G., Chan, Y.L., Gluck, A. (1996). Mammalina ribosomes: The structure and the evolution of the proteins. In: Hershey JWB, Mathews MS, Sonenberg N, editors. Translational control. Cold Spring Harbor (New York): Cold Spring Harbor Laboratory Press. Pp. 685-732. Ye, H., Kelly, T.F., Samadani, U., Lim, L., Rubio, S., Overdier, D.G., Roebuck, K.A., and Costa, R.H. (1997). Hepatocyte nuclear factor 3/fork head homolog 11 is expressed in proliferating epithelial and mesenchymal cells of embryonic and adult tissues. Mol Cell Biol 17, 1626-1641. Yee, N.S., Yusuff, S., and Pack, M. (2001). Zebrafish pdx1 morphant displays defects in pancreas development and digestive organ chirality, and potentially identifies a multipotent pancreas progenitor cell. Genesis 30, 137-140. Yong, J., Tan, I., Lim, L., and Leung, T. (2006). Phosphorylation of myosin phosphatase targeting subunit (MYPT3) and regulation of protein phosphatase by protein kinase A. J Biol Chem 281, 31202-31211. Zaret, K.S. (1996). Molecular genetics of early liver development. Annu Rev Physiol 58, 231-251. Zaret, K.S. (2001). Hepatocyte differentiation: from the endoderm and beyond. Curr Opin Genet. Dev 11, 568-574. Zaret, KS. (2002). Regulatory phases of early liver development: paradigms of organogenesis. Review. Nat Rev Genet 3(7), 499-512. Zecchin, E., Mavropoulos, A., Devos, N., Filippi, A., Tiso, N., Meyer, D., Peers, B., Bortolussi, M., and Argenton, F. (2004). Evolutionary conserved role of ptf1a in the specification of exocrine pancreatic fates. Dev Biol 268, 174-184. Zhao, R. and Duncan, S.A. (2005). Embryonic development of the liver. Hepatology 41, 956-967. Zhao, R., Watt, A.J., Li, J., Luebke-Wheeler, J., Morrisey, E.E., and Duncan, S.A. (2005). GATA6 is essential for embryonic development of the liver but dispensable for early heart formation. Mol Cell Biol 25, 2622-2631. Zon, L.I. (1999). Zebrafish: a new model for human disease. Genome Res 9, 99-100. 158 Zon, L.I. and Peterson, R.T. (2005). In vivo drug discovery in the zebrafish. Nat Rev Drug Discov. 4, 35-44. 159 [...]... gastrulation at E7.5 The mRNA of Foxa1 can be first detected at E7 in the late primitive streak and then takes similar pattern as Foxa2 Unlike Foxa1 and Foxa2, the expression of Foxa3 extends from hindgut to the foregut/ midgut boundary from E8.5 onwards (Lai et al., 1991; Ang et al., 1993; Kaestner et al., 1993; Monaghan et al., 1993; Altaba et al., 1993; Sasaki and Hogan, 1993) The embryonic liver histology... tympanic cavity, the trachea, bronchi, and alveoli of the lungs, the urinary bladder and part of the urethra, and the follicles of the thyroid gland and thymus (Stainier, 2002) However although well defined by fate maps, due to the close proximity and the nature of the mechanistic movements among germ layers, especially between mesoderm and endoderm, an internal organ may be constituted by more than... primary liver bud, appearing at the ventral floor of the foregut by E8.5 to E9.0 (Douarin, 1975; Gualdi et al., 1996) Cell linage tracing experiments showed that two distinct populations of endodermal cells, lateral and medial, arising from three spatially separated embryonic domains, converge to generate the epithelial cells of the liver bud (Tremblay and Zaret, 2005) At this early stage the primary liver. .. terminal branches of the hepatic portal vein and hepatic artery coalesces into sinusoids in the liver and drains into the central vein in each lobule (Figure 1- 2A) The hepatic vein collects the blood from the central vein and leaves the liver and links to the inferior vena cava 4 Figure 1-1 Hepatic structure of the human liver showing the vascular and biliary system Adapted from http://www.moondragon.org/health/disorders/gallbladder.html... found that hepatic specification is normal in both chimeric embryos but the liver bud failed to expand, suggesting that although not needed for the specification step, these factors are essential for hepatoblast proliferation and differentiation (Zhao and Duncan, 2005; Watt et al., 2007) Interestingly but not surprisingly, like Foxa1 and Foxa2, Gata4 and Gata6 may have redundant functions during hepatic... physical regions based on a fate map generated by single endoderm cell labeling experiments at E7.5 (Lawson et al., 1986) Region I, the ventral foregut, gives rise to the thyroid, lung, liver and ventral pancreas Albumin, a characteristic marker of hepatic specification, can be detected at the ventral foregut at the stage E8.5 (Cascio and Zaret, 1991; Gualdi et al., 1996) Regions II and III, the dorsal... merges with the main 5 pancreatic duct in the hepatopancreatic ampulla that enters the duodenum at the major duodenal papilla (Figure 1-1) Figure 1-2 (A) Microscopic anatomy of the human liver highlighting (B) the lobule and portal triad Adapted from http://www.sacs.ucsf.edu/ 1.2.1.2 The three dimensional architecture of the liver A basic unit of the liver is a polygonal column called liver lobule The... (Bossard and Zaret, 2000) These data offered two possible explanations: the binding of Foxas and Gatas to the otherwise silent albumin enhancer will either facilitate the initiation of hepatic cell fate in the presence of the inductive signals in the ventral foregut, or remove repressive interaction in the dorsal endoderm The functional implication of the 17 occupancy of Foxa2 and Gata4 on the albumin... genetics and tissue explantation assay, majority of the mature knowledge of the molecular mechanisms governing liver development is obtained from mouse and chick, with data dated as far back as more than 30 years ago The findings so far can be summarized by a five-step model: (i) endoderm cells gaining competency to become hepatogenic cells, (ii) hepatoblast specification, (iii) liver bud 13 formation,... Specification (Foxa+,Gata+) 14 Figure 1-3 Hepatic competence and specification in the mouse liver (A) Acquisition of competence at 2-6 somite stage: The ventral foregut endoderm gains hepatic competence with the action of transcription factors Foxas and Gatas, and bone morphogenetic proteins (Bmps) that emanate from the adjacent cells of septum transversum mesenchyme (STM) (B) Hepatic specification at 7-8 . tube and tympanic cavity, the trachea, bronchi, and alveoli of the lungs, the urinary bladder and part of the urethra, and the follicles of the thyroid gland and thymus (Stain However although. formation, of which eventually may be instrumental in filling up some of the gaps in liver organogenesis. viii List of Abbreviations A adenine aa amino acid AP alkaline phosphatase. vertebrate liver organogenesis. Preliminary phenotypic characterization of the mutant using digestive organ specific molecular markers suggested that liver budding and initial growth are affected