1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Funtionalization of magnetic nanoparticles for bio applications

162 550 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 162
Dung lượng 1,35 MB

Nội dung

FUNCTIONALIZATION OF MAGNETIC NANOPARTICLES FOR BIO-APPLICATIONS WUANG SHY CHYI (B. Eng (Hons), NUS) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMICAL AND BIOMOLECULAR ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2008 ACKNOWLEDGEMENTS I would like to express my heartfelt gratitude to my supervisors, Professors K. G. Neoh, Daniel Pack, E.-T. Kang and Deborah Leckband for their continued guidance, invaluable suggestions and profound discussion throughout this work. Without their enthusiasm and help, this project would not be possible. The knowledge gained under their supervision and the research experiences pave the way for my lifelong study. I would also like to thank the other members of my committee for their help and time, as well as the research staff and laboratory officers, both in the National University of Singapore and the University of Illinois at Urbana-Champaign. Finally I thank my family, colleagues and numerous friends for their love, support and encouragement. ii TABLE OF CONTENTS ACKNOWLEDGEMENT ii TABLE OF CONTENTS iii SUMMARY v LIST OF TABLES vi LIST OF FIGURES vii NOMENCLATURE x CHAPTER 1: INTRODUCTION CHAPTER 2: LITERATURE REVIEW 2.1 Magnetic nanoparticles 2.2 Magnetic drug delivery 2.3 Cancer targeting 12 2.4 Magnetic Fluid Hyperthermia 14 2.5 Magnetic nanoparticles in imaging 15 2.6 Biocompatible polymers 18 CHAPTER 3: HEPARINIZED MAGNETITE NANOPARTICLES 3.1 Introduction 20 3.2 Methods and materials 21 3.3 Results and discussion 28 3.4 Chapter Conclusion 43 CHAPTER 4: DOXORUBICIN-ATTACHED MAGNETITE NANOPARTICLES 4.1 Introduction 44 4.2 Methods and materials 45 4.3 Results and discussion 51 iii 4.4 Chapter Conclusion 63 CHAPTER 5: ANTIBODY-ATTACHED MAGNETITE NANOPARTICLES 5.1 Introduction 65 5.2 Methods and materials 66 5.3 Results and discussion 70 5.4 Chapter Conclusion 80 CHAPTER 6: POLYPYRROLE-MAGNETITE NANOSPHERES 6.1 Introduction 81 6.2 Methods and materials 82 6.3 Results and discussion 91 6.4 Chapter Conclusion 124 CHAPTER 7: SUMMARY CONCLUSION 126 CHAPTER 8: RECOMMENDATIONS FOR FUTURE WORK 129 REFERENCES 132 LIST OF PUBLICATIONS 149 LIST OF CONFERENCES 150 iv SUMMARY Magnetite nanoparticles were modified to render them suitable for bio-applications, namely drug delivery and hyperthermia, using two different approaches. The first approach is to graft polymers onto the nanoparticles using surface-initiated atom transfer radical polymerization, followed by chemical linking of biomolecules onto the grafted polymers. The monomers used include N-isopropylacrylamide, Nvinylformamide and methacrylic acid while the immobilized biomolecules include heparin, folic acid, doxorubicin and anti-HER2/neu antibodies. It was found that the heparinized nanoparticles could reduce macrophage uptake, and at the same time inhibit plasma clotting. The doxorubicin-bearing nanoparticles were able to release a greater amount of the drug under acidic conditions as opposed to physiological pH, and could potentially serve as drug depots. Particles that were functionalized with anti-HER2/neu antibodies showed a preferential binding to cancer cells and may be useful for imaging purposes. The second approach was to encapsulate these magnetite nanoparticles into polypyrrole nanospheres via emulsion polymerization for potential use as hyperthermia causing agents. The nanospheres were then functionalized with folic acid or herceptin to impart onto them cancer cell-targeting properties. These functionalized nanospheres target cancer cells in vitro and possess good magnetization which is useful for magnetic fluid hyperthermia. v LIST OF TABLES Table 3.1 Dispersion of as-synthesized and functionalized magnetite in various solvents at 25ºC. Table 3.2 Comparison of PRT obtained in the absence and presence of magnetic nanoparticles. Table 6.1 Characteristics of the PPY nanospheres (Scale bar = 200nm). Table 6.2 Properties of NS(PVA). Table 6.3 Properties of NS(HA) and NS(HA)-HER2. Table 6.4 Amount of iron associated with SK-Br-3 and MDA-MB-231 cells after incubation with NS(HA) and NS(HA)-HER2. vi LIST OF FIGURES Figure 3.1 Schematic representation of the process for preparing MNP-NP-He. Figure 3.2 XPS C 1s and S 2p core-level spectra of as-synthesized MNP (a, c), magnetite-Cl (b, d) and N 1s core-level spectra of magnetite-Cl (e) and MNP-NP (f). Figure 3.3 XPS C 1s and S 2p core-level spectra of MNP-NP (a, c) and MNP-NPHe (b, d). Figure 3.4 FTIR spectra of MNP (a), magnetite-Cl (b), MNP-NP(c) and MNPNP-He (d) Figure 3.5 Room temperature magnetization curves of as-synthesized and functionalized magnetite nanoparticles as a function of applied magnetic field: MNP (a), MNP-NP (b) and MNP-NP-He (c). Figure 3.6 Optical microscopy images of macrophages cultured with control cells (a, b), MNP (c, d), MNP-NP (e, f) and MNP-NP-He (g, h) after and 24 h respectively. Figure scale bar = 50μm, inset scale bar = 25μm. Figure 3.7 Total uptake of as-synthesized and functionalized nanoparticles by macrophages after 2, and 24 h. Figure 3.8 Cytotoxicity of as-synthesized and functionalized magnetite nanoparticles, as measured by the viability of macrophages grown in media containing 0.2 mg/ml of these nanoparticles relative to the nontoxic control. T represents the results obtained with the toxic control. Results are represented as mean ± standard deviation. Figure 4.1 Schematic for synthesis of doxorubicin-conjugated particles. Figure 4.2 XPS C 1s core-level spectra of MNP-P(MAA)-NHNH2 (a), MNPP(MAA)-NH-N=Dox (b) and doxorubicin hydrochloride (c). Figure 4.3 Magnetization profiles of MNP-P(MAA)-NH-N=Dox in the solid state (a), and as dispersed in 1% agarose (b). Figure 4.4 In vitro doxorubicin release from MNP-P(MAA)-NH-N=Dox at 37°C or 42°C in various pHs as indicated. . Figure 4.5 Figure 4.6 magnetite In vitro doxorubicin release from MNP-P(MAA)-NH-N=Dox at 37°C. Arrow indicates point of pH change from 7.4 to 5.5 or 6.6. In vitro doxorubicin release from MNP-P(MAA)-NH-N=Dox. Arrow indicates point of temperature change from 37°C to 42°C and pH change from 7.4 to 5.5 or 6.6. vii Figure 4.7 Figure 4.7: Viabilities of MDA-MB-231 cells (relative to non-toxic controls) incubated with medium containing free doxorubicin (Dox) or MNP-P(MAA)-NH-N=Dox. “*”, “#”, “**” and “##” denote statistical differences (P < 0.05) between the similarly marked samples. Figure 4.8 Optical microscopy images of prussian blue staining of MDA-MB-231 cells cultured with MNP-P(MAA)-NH-N=Dox in pH 5.5 (a) and pH 7.4 (b). Scale bar = 25μm. Figure 5.1 Schematic for synthesis of MNP-NVAM-PEG-Ab. Figure 5.2 FTIR spectra of MNP-NVAM (a), MNP-NVAM-PEG (b) and MNPNVAM-PEG-Ab (c) Figure 5.3 Optical microscopy images of SK-Br-3 cells after a h incubation with MNP-NVAM-PEG-Ab (a) and co-treatment with MNP-NVAM-PEGAb and free antibody (b). Scale bar = 25 µm. Figure 5.4 Prussian blue staining of the liver (a), bladder (b), heart (c), kidney (d), spleen (e), lung (f), tumors (g-i) and the site of injection, tail (j). Scale bar = 50 µm. Figure 5.5 Prussian blue staining of the liver (a), bladder (b), heart (c), kidney (d), spleen (e), lung (f), tumors (g-i) and the site of injection, tail (j). Scale bar = 50 µm. Figure 5.6 MMOCT spectra of negative control (a), and phantom with an equivalent particle concentration of 23 µg Fe/ml (b). Scale bar = 250 μm. Figure 6.1 Schematic representation of the preparation route NS(PVA)-FA. Figure 6.2 (a) FTIR spectra of Fe3O4, PPY nanospheres and NS(PVA) (b) XRD spectrum of NS(PVA). Figure 6.3 Room temperature magnetization curves of NS(PVA) as a function of applied magnetic field. Figure 6.4 FESEM and TEM images of NS(PVA) with (a, b) %, (c, d) 23.5 %, (e, f) 28.0 % and (g, h) 38.8 % Fe3O4 content respectively. Figure 6.5 XPS C 1s core-level and wide scan spectra of (a, b) NS(PVA) and (c, d) NS(PVA)-FA. Viabilities of 3T3 fibroblasts incubated with medium containing 0.2 mg/ml of NS(PVA) with the indicated Fe3O4 content. FA-(28.0%) denoted NS(PVA)-FA with 28.0% of Fe3O4. “*” denotes statistical differences (P < 0.05) compared to the control experiment. Figure 6.6 viii Figure 6.7 Figure 6.8 Viabilities of MCF cells incubated with medium containing 0.2 mg/ml of nanospheres containing 28.0 % of Fe3O4. “*” denotes statistical differences (P < 0.05) compared to the control experiment. Optical microscopy images of MCF-7 cells cultured with: (a) no nanospheres (control) (b) NS(PVA) and (c) NS(PVA)-FA after 24 h. Figure scale bar = 50μm. Figure 6.9 Schematic for preparation of NS(HA) and subsequent functionalization with herceptin. Figure 6.10 Uptake of the nanospheres by HCC1954 cells: (a) Optical microscopy images of cells after 24 h incubation with (i) NS(HA), and (ii) NS(HA)-HER1. Figure scale bar = 50 μm. (b) Amount of iron in cells after h and 24 h incubation with NS(HA) and NS(HA)-HER1 determined using ICP. Figure 6.11 Schematic representation of the preparation of NS(HA)-HER2. Figure 6.12 XPS C 1s core-level spectra of (a) NS(NH2), (b) NS(HA)-HER2 and (c) herceptin. Figure 6.13 Amount of iron associated with SK-Br-3 cells after 2, and 24 h incubation with NS(HA), NS(HA)-HER2 and NS(HA)-HER2 with free herceptin. Three sets of duplicates were done for each data point. The iron association of NS(HA)-HER2 is significantly higher (P < 0.01) than those for NS(HA) and NS(HA)-HER2 with free herceptin at all time points. Figure 6.14 Transmission electron micrographs of cells cultured with (a) NS(HA)HER2 (b) NS(HA)-HER2 with pre- and co-treatment of 200 µg/ml free herceptin, for 4h. Figure 6.15 Cytotoxicities of NS(HA)-HER2 and NS(HA) with various concentrations of herceptin (HER), as measured by the viabilities of SK-Br-3 cells grown in media containing 0.2 mg/ml of these nanospheres relative to the non-toxic control. Results are represented as mean ± standard deviation. “*” denotes statistical differences (P < 0.05) compared to the control experiment. Figure 6.16 Plot of viability of cells versus iron uptake by breast cancer cells. Tested cell lines include SK-Br-3 (■), MDA-MB-231 (♦) and MCF-7 (▲). Figure 6.17 Magnetization curves of NS(HA)-HER2 in different environments (a) NS(HA)-HER2 solid, (b) NS(HA)-HER2 dispersed in culture medium with 1% agarose and (c) endocytosed NS(HA)-HER2 dispersed in culture medium with 1% agarose. ix NOMENCLATURE ATRP Atom-transfer radical polymerization Bpy 2-2’-bipyridyl CPA 3-chloropropionic acid CT Computed tomography CTCS 2-(4-chlorosulfonylphenyl) ethyltrichlorosilane DMF Dimethyl formamide DMSO Dimethyl sulphoxide EDC 1-ethyl-3-(3-dimethylamino)-propyl carbodiimide EGFR Human epidermal growth factor receptor FMOC-NH-PEG-SCM Fluorenylmethoxycarbonyl-poly(ethylene glycol)-succinimidyl carboxymethyl FTIR Fourier-transform infrared HA Hyaluronic acid HER2 Human epidermal growth factor receptor ICP Inductively coupled plasma spectroscopy LCST Lower critical solution temperature mAb Whole monoclonal antibodies MFH Magnetic fluid hyperthermia MMOCT Magnetomotive OCT MNP Magnetite nanoparticles MNP-NP poly(NIPAAM)-grafted MNP MNP-NP-He Magnetite-poly(NIPAAM)-Heparin MNP-P(MAA) P(MAA)-grafted MNP x References nanoparticles as drug carriers, European Biophysics J. Biophysics Letters 355 (2006) 446-450. [43] T. Mantyla, J.M. Hakumaki, T. Huhtala, A. Narvanen, S. Yla-Herttuala, Targeted magnetic resonance imaging of scavidin-receptor in human umbilical vein endothelial cells in vitro, Magnetic Resonance in Medicine 554 (2006) 800-804. [44] Y.M. Huh, Y.W. Jun, H.T. Song, S. Kim, J.S. Choi, J.H. Lee, S. Yoon, K.S. Kim, J.S. Shin, J.S. Suh, J. Cheon, In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals, J. Am. Chem. Soc. 12735 (2005) 12387-12391. [45] M.W. Smith, M. Gumbleton, Endocytosis at the blood-brain barrier: From basic understanding to drug delivery strategies, J. Drug Target. 144 (2006) 191-214. [46] S. Mukherjee, R.N. Ghosh, F.R. Maxfield, Endocytosis, Physiol. Rev. 77 (1997) 759-803. [47] M. Orciani, G. Cavaletti, V. Fino, M. Mattioli-Belmonte, G. Tredici, P. Bruni, R. Di Primio, Exploiting CD38-mediated endocytosis for immunoliposome internalization, Anticancer Drugs 196 (2008) 599-605. [48] S. Moore, M.A. Cobleigh, Targeting metastatic and advanced breast cancer. Semin. Oncol. Nurs. 231 (2007) 37-45. [49] A. Cirstoiu-Hapca, L. Bossy-Nobs, F. Buchegger, R. Gurny, F. Delie, Differential tumor cell targeting of anti-HER2 (Herceptin®) and anti-CD20 (Mabthera®) coupled nanoparticles, Int. J. Pharm. 3312 (2007) 190-196. [50] O. Germershaus, T. Merdan, U. Bakowsky, M. Behe, T. Kissel, Trastuzumabpolyethylenimine-polyethylene glycol conjugates for targeting HER2-expressing tumors, Bioconjug. Chem. 175 (2006) 1190-1199. [51] J. Overgaard, Effect of hyperthermia on malignant cells in vivo - Review and a hypothesis, Cancer 396 (1977) 2637-2646. [52] Cavalier.R, E.C. Ciocatto, Giovanel.Bc, Heidelbe.C, R.O. Johnson, Margotti.M, B. Mondovi, G. Moricca, Rossifan.a, Selective heat sensitivity of cancer cells Biochemical and Clinical Studies, Cancer 209 (1967) 1351. [53] Z. Saiyed, S. Telang, C. Ramchand, Application of magnetic techniques in the field of drug discovery and biomedicine, Biomagn Res. Technol. 11 (2003) 2. [54] M. Johannsen, U. Gneveckow, L. Eckelt, A. Feussner, N. Waldofner, R. Scholz, S. Deger, P. Wust, S.A. Loening, A. Jordan, Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique, Int. J. Hyperthermia 217 (2005) 637-647. [55] S. Nag, Principles and practice of brachytherapy, (1997) 752. [56] M. Kawashita, M. Tanaka, T. Kokubo, Y. Inoue, T. Yao, S. Hamada, T. Shinjo, Preparation of ferrimagnetic magnetite microspheres for in situ hyperthermic treatment of cancer, Biomaterials 2615 (2005) 2231-2238. - 135 - References [57] M.A. Brown, R.C. Semelka, MRI: Basic Principles and Applications, (2003) [58] P. Caravan, J.J. Ellison, T.J. McMurry, R.B. Lauffer, Gadolinium(III) chelates as MRI contrast agents: Structure, dynamics, and applications, Chem. Rev. 999 (1999) 2293-2352. [59] H.B. Na, J.H. Lee, K.J. An, Y.I. Park, M. Park, I.S. Lee, D.H. Nam, S.T. Kim, S.H. Kim, S.W. Kim, K.H. Lim, K.S. Kim, S.O. Kim, T. Hyeon, Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles, Angewandte Chemie-International Edition 4628 (2007) 5397-5401. [60] J.W.M. Bulte, D.L. Kraitchman, Iron oxide MR contrast agents for molecular and cellular imaging, NMR Biomed. 177 (2004) 484-499. [61] C. von zur Muhlen, D. von Elverfeldt, N. Bassler, I. Neudorfer, B. Steitz, A. Petri-Fink, H. Hofmann, C. Bode, K. Peter, Superparamagnetic iron oxide binding and uptake as imaged by magnetic resonance is mediated by the integrin receptor Mac-1 (CD11b, Atherosclerosis 1931 (2007) 102-111. [62] J. Yang, J. Gunn, S.R. Dave, M.Q. Zhang, Y.A. Wang, X.H. Gao, Ultrasensitive detection and molecular imaging with magnetic nanoparticles, Analyst 1332 (2008) 154-160. [63] A. Bjornerud, L. Johansson, The utility of superparamagnetic contrast agents in MRI: theoretical consideration and applications in the cardiovascular system, NMR Biomed. 177 (2004) 465-477. [64] E.X. Wu, H.Y. Tang, J.H. Jensen, Applications of ultrasmall superparamagnetic iron oxide contrast agents in the MR study of animal models, NMR Biomed. 177 (2004) 478-483. [65] D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto, Optical coherence Tomography, Science 2545035 (1991) 1178-1181. [66] S.A. Boppart, A.L. Oldenburg, C.Y. Xu, D.L. Marks, Optical probes and techniques for molecular contrast enhancement in coherence imaging, J. Biomed. Opt. 10 (2005) [67] B.E. Applegate, J.A. Izatt, Molecular imaging of endogenous and exogenous chromophores using ground state recovery pump-probe optical coherence tomography, Optics Express 1420 (2006) 9142-9155. [68] H. Cang, T. Sun, Z.Y. Li, J.Y. Chen, B.J. Wiley, Y.N. Xia, X.D. Li, Gold nanocages as contrast agents for spectroscopic optical coherence tomography, Opt. Lett. 3022 (2005) 3048-3050. [69] A. Agrawal, S. Huang, A.W.H. Lin, M.H. Lee, J.K. Barton, R.A. Drezek, T.J. Pfefer, Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells, J. Biomed. Opt. 114 (2006) - 136 - References [70] A.L. Oldenburg, M.N. Hansen, D.A. Zweifel, A. Wei, S.A. Boppart, Plasmonresonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography, Optics Express 14 (2006) 6724-6738. [71] D.C. Adler, S.W. Huang, R. Huber, J.G. Fujimoto, Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography, Optics Express 167 (2008) 4376-4393. [72] J.N. Anker, R. Kopelman, Magnetically modulated optical nanoprobes, Appl. Phys. Lett. 827 (2003) 1102-1104. [73] J.S. Aaron, J. Oh, T.A. Larson, S. Kumar, T.E. Milner, K.V. Sokolov, Increased optical contrast in imaging of epidermal growth factor receptor using magnetically actuated hybrid gold, Optics Express 14 (2006) 12930-12943. [74] A.L. Oldenburg, J.R. Gunther, S.A. Boppart, Imaging magnetically labeled cells with magnetomotive optical coherence tomography, Opt. Lett. 307 (2005) 747-749. [75] H. Otsuka, Y. Nagasaki, K. Kataoka, PEGylated nanoparticles for biological and pharmaceutical applications, Adv. Drug Deliv. Rev. 553 (2003) 403-419. [76] J.M. Dang, K.W. Leong, Natural polymers for gene delivery and tissue engineering, Adv. Drug Deliv. Rev. 584 (2006) 487-499. [77] J.N. Marhefka, P.J. Marascalco, T.M. Chapman, A.J. Russell, M.V. Kameneva, Poly(N-vinylformamide) - A drag-reducing polymer for biomedical applications, Biomacromolecules 75 (2006) 1597-1603. [78] K. Yamamoto, Y. Imamura, E. Nagatomo, T. Serizawa, Y. Muraoka, M. Akashi, Synthesis and functionalities of poly(N-vinylalkylamide). XIV. Polyvinylamine produced by hydrolysis of poly(N-vinylformamide) and its functionalization, Journal of Applied Polymer Science 895 (2003) 1277. [79] H. Dalmont, O. Pinprayoon, B.R. Saunders, Study of pH-responsive microgels containing methacrylic acid: Effects of particle composition and added calcium. Langmuir 246 (2008) 2834-40. [80] G.T. Chao, Z.Y. Qian, M.J. Huang, B. Kan, Y.C. Gu, C.Y. Gong, J.L. Yang, K. Wang, M. Dai, X.Y. Li, M.L. Gou, M.J. Tu, Y.Q. Wei, Synthesis, characterization, and hydrolytic degradation behavior of a novel biodegradable pH-sensitive hydrogel based on polycaprolactone, methacrylic acid, and poly(ethylene glycol), J. Biomedical Materials Research Part a 85A (2008) 36-46. [81] S. Sajeesh, C.P. Sharma, Novel pH responsive polymethacrylic acid-chitosanpolyethylene glycol nanoparticles for oral peptide delivery, J. Biomedical Materials Research Part B-Applied Biomaterials 76B2 (2006) 298-305. [82] K. Kontturi, P. Pentti, G. Sundholm, Polypyrrole as a model membrane for drug delivery, J. Electroanal. Chem. 453 (1998) 231. - 137 - References [83] A.N. Zelikin, D.M. Lynn, J. Farhadi, I. Martin, V. Shastri, R. Langer, Erodible conducting polymers for potential biomedical applications, Angewandte ChemieInternational Edition 411 (2002) 141-144. [84] A. Kotwal, C.E. Schmidt, Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials, Biomaterials 2210 (2001) 1055-1064. [85] L.M. Lira, S.I.C. de Torresi, Polymeric electro-mechanic devices applied to antibiotic-controlled release, Sensors and Actuators B-Chemical 1302 (2008) 638-644. [86] M.D. Kazatchkine, D.T. Fearon, J.E. Silbert, K.F. Austen, Surface-associated heparin inhibits zymosan-induced activation of the human alternative complement pathway by augmenting the regulatory action of the control proteins on particle bound C3b, J. Exp. Med. 1505 (1979) 1202-1215. [87] C. Passirani, G. Barratt, J.P. Devissaguet, D. Labarre, Long-circulating nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate), Pharm. Res. 157 (1998) 1046-1050. [88] T. Groth, A. Lendlein, Layer-by-layer deposition of polyelectrolytes - A versatile tool for the in vivo repair of blood vessels, Angewandte Chemie-International Edition 438 (2004) 926-928. [89] H. Hammerle, E. Betz, D. Herr, Human endothelial cells are stimulated and vascular smooth muscle cells are inhibited in their proliferation and migration by heparins, Vasa-J. Vascular Diseases 203 (1991) 207-215. [90] M. Oberhoff, S. Novak, C. Herdeg, A. Baumbach, A. Kranzhofer, A. Bohnet, B. Horch, H. Hanke, K.K. Haase, K.R. Karsch, Local and systemic delivery of low molecular weight heparin stimulates the reendothelialization after balloon angioplasty, Cardiovasc. Res. 383 (1998) 751-762. [91] C.F. Lee, C.J. Wen, C.L. Lin, W.Y. Chiu, Morphology and temperature responsiveness-swelling relationship of poly(N-isopropylamide-chitosan) copolymers and their application to drug release, J. Polymer Science Part A-Polymer Chemistry 4212 (2004) 3029-3037. [92] W. Leobandung, H. Ichikawa, Y. Fukumori, N.A. Peppas, Monodisperse nanoparticles of poly(ethylene glycol) macromers and N-isopropyl acrylamide for biomedical applications, J Appl Polym Sci 8710 (2003) 1678-1684. [93] B. Tasdelen, N. Kayaman-Apohan, O. Guven, B.M. Baysal, Anticancer drug release from poly(N-isopropylacrylamide, Radiat. Phys. Chem. 736 (2005) 340-345. [94] A. Polozova, A. Yamazaki, J.L. Brash, F.M. Winnik, Effect of polymer architecture on the interactions of hydrophobically-modified poly-(N-isopropylamides) and liposomes, Colloids and Surfaces A-Physicochemical and Engineering Aspects 1471-2 (1999) 17-25. - 138 - References [95] A. Yamazaki, F.M. Winnik, R.M. Cornelius, J.L. Brash, Modification of liposomes with N-substituted polyacrylamides: identification of proteins adsorbed from plasma, Biochimica Et Biophysica Acta-Biomembranes 14211 (1999) 103-115. [96] X.W. Li, W.G. Liu, G.X. Ye, B.Q. Zhang, D.W. Zhu, K.D. Yao, Z.Q. Liu, X.Z. Sheng, Thermosensitive N-isopropylacrylamide-N-propylacrylamide-vinyl pyrrolidone terpolymers: Synthesis, characterization and preliminary application as embolic agents, Biomaterials 2634 (2005) 7002-7011. [97] E. Marutani, S. Yamamoto, T. Ninjbadgar, Y. Tsujii, T. Fukuda, M. Takano, Surface-initiated atom transfer radical polymerization of methyl methacrylate on magnetite nanoparticles, Polymer 457 (2004) 2231-2235. [98] Y.L. Li, K.G. Neoh, E.T. Kang, Poly(vinyl alcohol) hydrogel fixation on poly(ethylene terephthalate) surface for biomedical application, Polymer 4526 (2004) 8779-8789. [99] Y. Ito, M. Sisido, Y. Imanishi, Synthesis and antithrombogenicity of anionic polyurethanes and heparin-bound polyurethanes, J. Biomed. Mater. Res. 208 (1986) 1157-1177. [100] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray photoelectron spectroscopy: A reference book of standard spectra for identification and interpretation of XPS data, (1992) [101] G. Beamson, D. Briggs, High resolution XPS of organic polymers : the Scienta ESCA300 database, (1992) 295. [102] R.M. Silverstein, F.X. Webster, Spectrometric identification of organic compounds, (1998) 482. [103] D.L. LesliePelecky, R.D. Rieke, Magnetic properties of nanostructured materials, Chemistry of Materials 88 (1996) 1770-1783. [104] K.D. Sorge, J.R. Thompson, T.C. Schulthess, F.A. Modine, T.E. Haynes, S. Honda, A. Meldrum, J.D. Budai, C.W. White, L.A. Boatner, Oriented, single domain Fe nanoparticle layers in single crystal yttria-stabilized zirconia, IEEE Trans. Magn. 374 (2001) 2197-2199. [105] H.C. Lu, G.S. Yi, S.Y. Zhao, D.P. Chen, L.H. Guo, J. Cheng, Synthesis and characterization of multi-functional nanoparticles possessing magnetic, up-conversion fluorescence and bio-affinity properties, J. Materials Chemistry 148 (2004) 13361341. [106] C.J. Xu, K.M. Xu, H.W. Gu, X.F. Zhong, Z.H. Guo, R.K. Zheng, X.X. Zhang, B. Xu, Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins, J. Am. Chem. Soc. 12611 (2004) 3392-3393. [107] P. Tartaj, C.J. Serna, Synthesis of monodisperse superparamagnetic Fe, J. Am. Chem. Soc. 12551 (2003) 15754-15755. - 139 - References [108] N.A. Brusentsov, V.V. Gogosov, T.N. Brusentsova, A.V. Sergeev, N.Y. Jurchenko, A.A. Kuznetsov, O.A. Kuznetsov, L.I. Shumakov, Evaluation of ferromagnetic fluids and suspensions for the site-specific radiofrequency-induced hyperthermia of MX11 sarcoma cells in vitro, J. Magn Magn Mater 2251-2 (2001) 113-117. [109] C.J. Vanoss, Phagocytosis as a surface phenomenon, Annu. Rev. Microbiol. 32 (1978) 19-39. [110] Y. Tabata, Y. Ikada, Effect of the size and surface charge of polymer microspheres on their phagocytosis by macrophage, Biomaterials 94 (1988) 356-362. [111] N. Jaulin, M. Appel, C. Passirani, G. Barratt, D. Labarre, Reduction of the uptake by a macrophagic cell line of nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate), J. Drug Target. 83 (2000) 165-172. [112] C. Passirani, G. Barratt, J.P. Devissaguet, D. Labarre, Interactions of nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate) with the complement system, Life Sci. 628 (1998) 775-785. [113] T. Mosmann, Rapid colorimetric assay for cellular growth and survival Application to proliferation and cyto-toxicity assays, J. Immunol. Methods 651-2 (1983) 55-63. [114] J.F. Drake, Topically applied clotting material, 2462316060461 (1999) [115] K.J. Widder, A.E. Senyei, D.G. Scarpelli, Magnetic microspheres - Model system for site specific drug delivery in vivo, Proceedings of the Society for Experimental Biology and Medicine 1582 (1978) 141-146. [116] A. Senyei, K. Widder, G. Czerlinski, Magnetic guidance of drug carrying microspheres, J. Appl. Phys. 496 (1978) 3578-3583. [117] R.L. Momparler, M. Karon, S.E. Siegel, F. Avila, Effect of adriamycin on DNA, RNA, and protein synthesis in cell-free systems and intact cells, Cancer Res. 368 (1976) 2891-2895. [118] H. Kawano, S. Komaba, T. Yamasaki, M. Maeda, Y. Kimura, A. Maeda, Y. Kaneda, New potential therapy for orthotopic bladder carcinoma by combining HVJ envelope with doxorubicin. Cancer Chemother. Pharmacol. 616 (2008) 973-8. [119] I.C. Henderson, G.P. Canellos, Cancer of the Breast - Past Decade .2. N. Engl. J. Med. 3022 (1980) 78-90. [120] J.B. Sun, J.H. Duan, S.L. Dai, J. Reri, Y.D. Zhang, J.S. Tian, Y. Li, In vitro and in vivo antitumor effects of doxorubicin loaded with bacterial magnetosomes (DBMs) on H22 cells: The magnetic bio-nanoparticles as drug carriers, Cancer Lett. 258 (2007) 109-117. [121] M.W. Wilson, R.K. Kerlan, N.A. Fidelman, A.P. Venook, J.M. LaBerge, J. Koda, R.L. Gordon, Hepatocellular carcinoma: Regional therapy with a magnetic - 140 - References targeted carrier bound to doxorubicin in a dual MR imaging, Radiology 2301 (2004) 287-293. [122] H. Strauss, A. Hemsen, I. Karbe, C. Lautenschlager, M. Persing, C. Thomssen, Phase II trial of biweekly pegylated liposomal doxorubicin in recurrent platinumrefractory ovarian and peritoneal cancer. Anticancer Drugs 195 (2008) 541-5. [123] R. Popat, H.E. Oakervee, S. Hallam, N. Curry, L. Odeh, N. Foot, D.L. Esseltine, M. Drake, C. Morris, J.D. Cavenagh, Bortezomib, doxorubicin and dexamethasone (PAD) front-line treatment of multiple myeloma: updated results after long-term follow-up, Br. J. Haematol. 1414 (2008) 512-516. [124] J. Ko, K. Park, Y.S. Kim, M.S. Kim, J.K. Han, K. Kim, R.W. Park, I.S. Kim, H.K. Song, D.S. Lee, I.C. Kwon, Tumoral acidic extracellular pH targeting of pHresponsive MPEG-poly (beta-amino ester) block copolymer micelles for cancer therapy, J. Controlled Release 123 (2007) 109-115. [125] T. Etrych, M. Jelinkova, B. Rihova, K. Ulbrich, New HPMA copolymers containing doxorubicin bound via pH-sensitive linkage: synthesis and preliminary in vitro and in vivo biological properties, J. Controlled Release 731 (2001) 89-102. [126] V.A. Sethuraman, M.C. Lee, Y.H. Bae, A biodegradable pH-sensitive micelle system for targeting acidic solid tumors, Pharm. Res. 25 (2008) 657-666. [127] E.S. Lee, K. Na, Y.H. Bae, Super pH-sensitive multifunctional polymeric micelle, Nano Letters 52 (2005) 325-329. [128] J. Zhang, R.D.K. Misra, Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: Core-shell nanoparticle carrier and drug release response, Acta Biomaterialia (2007) 838-850. [129] X.Q. Liu, Y.P. Guan, Z.Y. Ma, H.Z. Liu, Surface modification and characterization of magnetic polymer nanospheres prepared by miniemulsion polymerization, Langmuir 2023 (2004) 10278-10282. [130] Q.L. Fan, K.G. Neoh, E.T. Kang, B. Shuter, S.C. Wang, Solvent-free atom transfer radical polymerization for the preparation of poly(poly(ethyleneglycol) monomethacrylate)-grafted Fe3O4 nanoparticles: Synthesis, characterization and cellular uptake, Biomaterials 2836 (2007) 5426-5436. [131] D. Wang, S.C. Miller, X.M. Liu, B. Anderson, X.S. Wang, S.R. Goldring, Novel dexamethasone-HPMA copolymer conjugate and its potential application in treatment of rheumatoid arthritis, Arthritis Research & Therapy 91 (2007) [132] S.C. Wuang, K.G. Neoh, E. Kang, D.W. Pack, D.E. Leckband, HER-2mediated endocytosis of magnetic nanospheres and the implications in cell targeting and particle magnetization. Biomaterials 2914 (2008) 2270-9. [133] K. Thode, R.H. Muller, M. Kresse, Two-time window and multiangle photon correlation spectroscopy size and zeta potential analysis - Highly sensitive rapid assay for dispersion stability, J. Pharm. Sci. 8910 (2000) 1317-1324. - 141 - References [134] C. Freitas, R.H. Muller, Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN (TM)) dispersions, Int. J. Pharm. 1682 (1998) 221-229. [135] J. Zhang, S. Rana, R.S. Srivastava, R.D.K. Misra, On the chemical synthesis and drug delivery response of folate receptor-activated, polyethylene glycolfunctionalized magnetite nanoparticles, Acta Biomaterialia (2008) 40-48. [136] I.F. Tannock, D. Rotin, Acid pH in tumors and its potential for therapeutic exploitation, Cancer Res. 4916 (1989) 4373-4384. [137] L.E. Gerweck, K. Seetharaman, Cellular pH gradient in tumor versus normal tissue: Potential exploitation for the treatment of cancer, Cancer Res. 566 (1996) 1194-1198. [138] T.C. Zhao, A. Tseng, N. Yano, Y. Tseng, P.A. Davol, R.J. Lee, L.G. Lum, J.F. Padbury, Targeting human CD34+ hematopoietic stem cells with anti-CD45 x antimyosin light-chain bispecific antibody preserves cardiac function in myocardial infarction. J. Appl. Physiol. 1046 (2008) 1793-800. [139] T.A. Elbayoumi, V.P. Torchilin, Tumor-specific antibody-mediated targeted delivery of Doxil® reduces the manifestation of auricular erythema side effect in mice. Int. J. Pharm. 3571-2 (2008) 272-9. [140] M. Epel, I. Carmi, S. Soueid-Baumgarten, S. Oh, T. Bera, I. Pastan, J. Berzofsky, Y. Reiter, Targeting TARP, a novel breast and prostate tumor-associated antigen, with T cell receptor-like human recombinant antibodies. Eur. J. Immunol. 386 (2008) 1706-20. [141] J.M. Stukel, J.J. Heys, M.R. Caplan, Optimizing delivery of multivalent targeting constructs for detection of secondary tumors. Ann. Biomed. Eng. 367 (2008) 1291-304. [142] J.F. Schenck, Physical interactions of static magnetic fields with living tissues, Progress in Biophysics & Molecular Biology 872-3 (2005) 185-204. [143] J.H. Lee, Y.M. Huh, Y. Jun, J. Seo, J. Jang, H.T. Song, S. Kim, E.J. Cho, H.G. Yoon, J.S. Suh, J. Cheon, Artificially engineered magnetic nanoparticles for ultrasensitive molecular imaging, Nat. Med. 131 (2007) 95-99. [144] D.E. Sosnovik, R. Weissleder, Emerging concepts in molecular MRI, Curr. Opin. Biotechnol. 181 (2007) 4-10. [145] A.M. Zysk, E.J. Chaney, S.A. Boppart, Refractive index of carcinogen-induced rat mammary tumours, Phys. Med. Biol. 519 (2006) 2165-2177. [146] A.L. Oldenburg, F.J.J. Toublan, K.S. Suslick, A. Wei, S.A. Boppart, Magnetomotive contrast for in vivo optical coherence tomography, Optics Express 1317 (2005) 6597-6614. [147] T.S. Ralston, D.L. Marks, P.S. Carney, S.A. Boppart, Interferometric synthetic aperture microscopy, Nature Physics 32 (2007) 129-134. - 142 - References [148] D.S. Xiao, Z.M. Qian, Plasma nitric oxide and iron concentrations in exercised rats are negatively correlated, Mol. Cell. Biochem. 2081-2 (2000) 163-166. [149] W.W.K. Cheng, T.M. Allen, Targeted delivery of anti-CD19 liposomal doxorubicin in B-cell lymphoma: A comparison of whole monoclonal antibody, Fab' fragments and single chain Fv, J. Controlled Release 1261 (2008) 50-58. [150] T.M. Allen, Ligand-targeted therapeutics in anticancer therapy, Nature Reviews Cancer 210 (2002) 750-763. [151] T.L. Cheng, K.W. Liao, S.C. Tzou, C.M. Cheng, B.M. Chen, S.R. Roffler, Hapten-directed targeting to single-chain antibody receptors, Cancer Gene Ther. 115 (2004) 380-388. [152] W.W.K. Cheng, D. Das, M. Suresh, T.M. Allen, Expression and purification of two anti-CD19 single chain Fv fragments for targeting of liposomes to CD19expressing cells, Biochimica Et Biophysica Acta-Biomembranes 17681 (2007) 21-29. [153] P. Gomez-Romero, Hybrid organic-inorganic materials - In search of synergic activity, Adv Mater 133 (2001) 163-174. [154] T.A. Skotheim, Handbook of conducting polymers, (1986) [155] W. Chen, X.W. Li, G. Xue, Z.Q. Wang, W.Q. Zou, Magnetic and conducting particles: preparation of polypyrrole layer on Fe3O4 nanospheres, Appl. Surf. Sci. 2181-4 (2003) 215-221. [156] J.G. Deng, Y.X. Peng, C.L. He, X.P. Long, P. Li, A.S.C. Chan, Magnetic and conducting Fe3O4-polypyrrole nanoparticles with core-shell structure, Polym. Int. 527 (2003) 1182-1187. [157] X.T. Yang, L.G. Xu, N.S. Choon, C.S.O. Hardy, Magnetic and electrical properties of polypyrrole-coated γ-Fe2O3 nanocomposite particles, Nanotechnology 146 (2003) 624-629. [158] L.H.M. Fonseca, A.W. Rinaldi, A.F. Rubira, L.F. Cotica, S.N. de Medeiros, A. Paesano, I.A. Santos, E.M. Girotto, Structural, magnetic, and electrochemical properties of poly(o-anisidine), Mater. Chem. Phys. 972-3 (2006) 252-255. [159] Y.Z. Long, Z.J. Chen, J.L. Duvail, Z.M. Zhang, M.X. Wan, Electrical and magnetic properties of polyaniline, Physica B-Condensed Matter 3701-4 (2005) 121130. [160] G.H. Qiu, Q. Wang, M. Nie, Polypyrrole-Fe3O4 magnetic nanocomposite prepared by ultrasonic irradiation, Macromolecular Materials and Engineering 2911 (2006) 68-74. [161] D.D. Ateh, H.A. Navsaria, P. Vadgama, Polypyrrole-based conducting polymers and interactions with biological tissues, J. Royal Society Interface 311 (2006) 741-752. - 143 - References [162] X.P. Jiang, Y. Marois, A. Traore, D. Tessier, L.H. Dao, R. Guidoin, Z. Zhang, Tissue reaction to polypyrrole-coated polyester fabrics: An in vivo study in rats, Tissue Eng. 84 (2002) 635-647. [163] C.E. Schmidt, V.R. Shastri, J.P. Vacanti, R. Langer, Stimulation of neurite outgrowth using an electrically conducting polymer, Proc. Natl. Acad. Sci. U. S. A. 9417 (1997) 8948-8953. [164] Z. Zhang, M. Rouabhia, Z.X. Wang, C. Roberge, G.X. Shi, P. Roche, J.M. Li, L.H. Dao, Electrically conductive biodegradable polymer composite for nerve regeneration: Electricity-stimulated neurite outgrowth and axon regeneration, Artif. Organs 311 (2007) 13-22. [165] J. Sudimack, R.J. Lee, Targeted drug delivery via the folate receptor, Adv.Drug Del.Rev. 41 (2000) 147-162. [166] S.D. Weitman, R.H. Lark, L.R. Coney, D.W. Fort, V. Frasca, V.R. Zurawski, B.A. Kamen, Distribution of the folate receptor Gp38 in normal and malignant cell lines and tissues, Cancer Res. 5212 (1992) 3396-3401. [167] F.M. Sirotnak, B. Tolner, Carrier-mediated membrane transport of folates in mammalian cells, Annu. Rev. Nutr. 19 (1999) 91-122. [168] I. Steinhauser, B. Spankuch, K. Strebhardt, K. Langer, Trastuzumab-modified nanoparticles: Optimisation of preparation and uptake in cancer cells, Biomaterials 2728 (2006) 4975-4983. [169] D.J. Slamon, G.M. Clark, S.G. Wong, W.J. Levin, A. Ullrich, W.L. Mcguire, Human-Breast Cancer - Correlation of relapse and survival with amplification of the HER2/neu oncogene, Science 2354785 (1987) 177-182. [170] R. Nahta, F.J. Esteva, HER-2-targeted therapy: Lessons learned and future directions, Clinical Cancer Research 914 (2003) 5078-5084. [171] T.H. Wang, W.C. Lee, Immobilization of proteins on magnetic nanoparticles, Biotechnology and Bioprocess Engineering (2003) 263-267. [172] Van der Pauw, L.J., A method of measuring specific resistivity and Hall effect of discs of arbitrary shape, Philips Res. Repts. 13 (1958) 1. [173] V.T. Binh, S.T. Purcell, V. Semet, F. Feschet, Nanotips and nanomagnetism, Appl. Surf. Sci. 132 (1998) 803-814. [174] D.J. Craik, Magnetic Oxides, (1975) [175] W.M. Zheng, F. Gao, H.C. Gu, Magnetic polymer nanospheres with high and uniform magnetite content, J. Magn Magn Mater 288 (2005) 403-410. [176] Y.C. Chang, D.H. Chen, Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions, J. Colloid Interface Sci. 2832 (2005) 446-451. - 144 - References [177] D.A. Barrett, M.S. Hartshorne, M.A. Hussain, P.N. Shaw, M.C. Davies, Resistance to nonspecific protein adsorption by poly(vinyl alcohol) thin films adsorbed to a poly(styrene) support matrix studied using surface plasmon resonance, Anal. Chem. 7321 (2001) 5232-5239. [178] G. Paradossi, F. Cavalieri, E. Chiessi, Poly(vinyl alcohol) as versatile biomaterial for potential biomedical applications, J. Materials Science-Materials in Medicine 148 (2003) 687-691. [179] M.B. Gorbet, M.V. Sefton, Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes, Biomaterials 2526 (2004) 5681-5703. [180] F.X. Hu, K.G. Neoh, L. Cen, E.T. Kang, Cellular response to magnetic nanoparticles "PEGylated" via surface-initiated atom transfer radical polymerization, Biomacromolecules 73 (2006) 809-816. [181] H.P.J. Wijn, Ferromagnetism, (1966) 560. [182] S. Chikazumi, Physics of magnetism, (1964) 554. [183] M.I. Shliomis, Magnetic Liquids, Uspekhi Fizicheskikh Nauk 1123 (1974) 427458. [184] R. Hergt, W. Andra, C.G. d'Ambly, I. Hilger, W.A. Kaiser, U. Richter, H.G. Schmidt, Physical limits of hyperthermia using magnetite fine particles, IEEE Trans. Magn. 345 (1998) 3745-3754. [185] M. Ma, Y. Wu, H. Zhou, Y.K. Sun, Y. Zhang, N. Gu, Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field, J. Magn Magn Mater 2681-2 (2004) 33-39. [186] M.K. Pratten, J.B. Lloyd, Pinocytosis and phagocytosis - the effect of size of a particulate substrate on its mode of capture by rat peritoneal macrophages cultured in vitro, Biochim. Biophys. Acta 8813 (1986) 307-313. [187] G.F. Dawson, G.W. Halbert, The in vitro cell association of invasin coated polylactide-co-glycolide nanoparticles, Pharm. Res. 1711 (2000) 1420-1425. [188] L.R. Coney, A. Tomassetti, L. Carayannopoulos, V. Frasca, B.A. Kamen, M.I. Colnaghi, V.R. Zurawski, Cloning of a tumor-associated antigen - Mov18 and Mov19 antibodies recognize a folate-binding protein, Cancer Res. 5122 (1991) 6125-6132. [189] A.C. Antony, The biological chemistry of folate receptors, Blood 7911 (1992) 2807-2820. [190] C.P. Leamon, P.S. Low, Delivery of macromolecules into living cells - a method that exploits folate receptor endocytosis, Proc. Natl. Acad. Sci. U. S. A. 8813 (1991) 5572-5576. [191] A. Quintana, E. Raczka, L. Piehler, I. Lee, A. Myc, I. Majoros, A.K. Patri, T. Thomas, J. Mule, J.R. Baker, Design and function of a dendrimer-based therapeutic - 145 - References nanodevice targeted to tumor cells through the folate receptor, Pharm. Res. 199 (2002) 1310-1316. [192] Y. Zhang, N. Kohler, M.Q. Zhang, Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake, Biomaterials 237 (2002) 15531561. [193] C. Sun, R. Sze, M.Q. Zhang, Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI, J. Biomedical Materials Research Part a 78A3 (2006) 550-557. [194] C.S. Porto, N.A. Musto, C.W. Bardin, G.L. Gunsalus, Binding of an extracellular steroid-binding globulin to membranes and soluble receptors from human breast cancer cells (MCF-7 cells), Endocrinology 1305 (1992) 2931-2936. [195] W.Y. Chan, H. Huang, S.C. Tam, Receptor-mediated endocytosis of trichosanthin in choriocarcinoma cells, Toxicology 1863 (2003) 191-203. [196] L. Cen, K.G. Neoh, Y. Li, E.T. Kang, Assessment of in vitro bioactivity of hyaluronic acid and sulfated hyaluronic acid functionalized electroactive polymer, Biomacromolecules 56 (2004) 2238-2246. [197] M.A. Simpson, C.M. Wilson, L.T. Furcht, A.P. Spicer, T.R. Oegema, J.B. McCarthy, Manipulation of hyaluronan synthase expression in prostate adenocarcinoma cells alters pericellular matrix retention and adhesion to bone marrow endothelial cells, J. Biol. Chem. 27712 (2002) 10050-10057. [198] A. Herrera-Gayol, S. Jothy, Effects of hyaluronan on the invasive properties of human breast cancer cells in vitro, Int. J. Exp. Pathol. 823 (2001) 193-200. [199] V. Dixit, J. Van den Bossche, D.M. Sherman, D.H. Thompson, R.P. Andres, Synthesis and grafting of thioctic acid-PEG-folate conjugates onto Au nanoparticles for selective targeting of folate receptor-positive tumor cells, Bioconjug. Chem. 173 (2006) 603-609. [200] Y.J. Lu, P.S. Low, Immunotherapy of folate receptor-expressing tumors: review of recent advances and future prospects, J. Controlled Release 911-2 (2003) 17-29. [201] L.A. Emens, N.E. Davidson, Trastuzumab in breast cancer, Oncology-New York 189 (2004) 1117-1128. [202] B.P. Toole, T.N. Wight, M.I. Tammi, Hyaluronan-cell interactions in cancer and vascular disease, J. Biol. Chem. 2777 (2002) 4593-4596. [203] A. Ito, Y. Kuga, H. Honda, H. Kikkawa, A. Horiuchi, Y. Watanabe, T. Kobayashi, Magnetite nanoparticle-loaded anti-HER2 immunoliposomes for combination of antibody therapy with hyperthermia, Cancer Lett. 2122 (2004) 167175. [204] J.W. Park, K. Hong, P. Carter, H. Asgari, L.Y. Guo, G.A. Keller, C. Wirth, R. Shalaby, C. Kotts, W.I. Wood, D. Papahadjopoulos, C.C. Benz, Development of anti- 146 - References p185(HER2) immunoliposomes for cancer therapy, Proc. Natl. Acad. Sci. U. S. A. 925 (1995) 1327-1331. [205] D. Artemov, N. Mori, B. Okollie, Z.M. Bhujwalla, MR molecular imaging of the HER2, Magnetic Resonance in Medicine 493 (2003) 403-408. [206] M. Tsujimoto, Y.K. Yip, J. Vilcek, Tumor Necrosis Factor - Specific binding and internalization in sensitive and resistant cells, Proc. Natl. Acad. Sci. U. S. A. 8222 (1985) 7626-7630. [207] J.R. Bradley, D.R. Johnson, J.S. Pober, Different classes of inhibitors of receptor-mediated endocytosis decrease tumor necrosis factor-induced geneexpression in human endothelial cells, J. Immunology 15012 (1993) 5544-5555. [208] B.S. Hendriks, L.K. Opresko, H.S. Wiley, D. Lauffenburger, Coregulation of epidermal growth factor receptor, Cancer Res. 635 (2003) 1130-1137. [209] B.S. Hendriks, L.K. Opresko, H.S. Wiley, D. Lauffenburger, Quantitative analysis of HER2-mediated effects on HER2 and epidermal growth factor receptor endocytosis - Distribution of homo- and heterodimers depends on relative HER2 levels, J. Biol. Chem. 27826 (2003) 23343-23351. [210] M.D. Pegram, G.E. Konecny, C. O'Callaghan, M. Beryt, R. Pietras, D.J. Slamon, Rational combinations of trastuzumab with chemotherapeutic drugs used in the treatment of breast cancer, J. Natl. Cancer Inst. 9610 (2004) 739-749. [211] G. Brockhoff, B. Heckel, E. Schmidt-Bruecken, M. Plander, E. Hofstaedter, A. Vollmann, S. Diermeier, Differential impact of Cetuximab, Pertuzumab and Trastuzumab on BT474 and SK-Br-3 breast cancer cell proliferation, Cell Prolif. 404 (2007) 488-507. [212] R. Nahta, F.J. Esteva, Herceptin: mechanisms of action and resistance, Cancer Lett. 2322 (2006) 123-138. [213] K. Kimura, T. Sawada, M. Komatsu, M. Inoue, K. Muguruma, T. Nishihara, Y. Yamashita, N. Yamada, M. Ohira, K. Hirakawa, Antitumor effect of trastuzumab for pancreatic cancer with high HER-2 expression and enhancement of effect by combined therapy with gemcitabine, Clinical Cancer Research 1216 (2006) 49254932. [214] S.J. Gong, C.J. Jin, S.Y. Rha, H.C. Chung, Growth inhibitory effects of trastuzumab and chemotherapeutic drugs in gastric cancer cell lines, Cancer Lett. 2142 (2004) 215-224. [215] R. Mandler, H. Kobayashi, E.R. Hinson, M.W. Brechbiel, T.A. Waldmann, Herceptin-geldanamycin immunoconjugates: Pharmacokinetics, biodistribution, and enhanced antitumor activity, Cancer Res. 644 (2004) 1460-1467. [216] P. Kauraniemi, S. Hautaniemi, R. Autio, J. Astola, O. Monni, A. Elkahloun, A. Kallioniemi, Effects of herceptin treatment on global gene expression patterns in HER2-amplified and nonamplified breast cancer cell lines, Oncogene 234 (2004) 1010-1013. - 147 - References [217] H. Guan, S.F. Jia, Z. Zhou, J. Stewart, E.S. Kleinerman, Herceptin downregulates HER-2, Clinical Cancer Research 115 (2005) 2008-2017. [218] B.M. Fendly, M. Winget, R.M. Hudziak, M.T. Lipari, M.A. Napier, A. Ullrich, Characterization of murine monoclonal-antibodies reactive to either the human epidermal growth-factor receptor or HER2/neu gene-product, Cancer Res. 505 (1990) 1550-1558. [219] J.C. Sarup, R.M. Johnson, K.L. King, B.M. Fendly, M.T. Lipari, M.A. Napier, A. Ullrich, H.M. Shepard, Characterization of an anti-P185hHER2 monoclonalantibody that stimulates receptor function and inhibits tumor-cell growth, Growth Regul. 12 (1991) 72-82. [220] J.L. Merlin, M. Barberi-Heyob, N. Bachmann, In vitro comparative evaluation of trastuzumab (Herceptin®) combined with paclitaxel (Taxol®) or docetaxel (Taxotere®) in HER2-expressing human breast cancer cell lines, Annals of Oncology 1311 (2002) 1743-1748. [221] S. Morup, Mossbauer-spectroscopy studies of suspensions of Fe3O4 microcrystals, J Magn Magn Mater 391-2 (1983) 45-47. [222] P.A. Dresco, V.S. Zaitsev, R.J. Gambino, B. Chu, Preparation and properties of magnetite and polymer magnetite nanoparticles, Langmuir 156 (1999) 1945-1951. [223] A.E. Berkowitz, J.A. Lahut, C.E. Vanburen, Properties of magnetic fluid particles, IEEE Trans. Magn. 162 (1980) 184-190. [224] J. Clarke, A.I. Braginski, The SQUID handbook v. 2. Applications, (2004) [225] S. Lee, S.C. Yang, M.J. Heffernan, W.R. Taylor, N. Murthy, Polyketal microparticles: A new delivery vehicle for superoxide dismutase, Bioconjug. Chem. 181 (2007) 4-7. [226] Z.H. Huang, X. Guo, W.J. Li, J.A. MacKay, F.C. Szoka, Acid-triggered transformation of diortho ester phosphocholine liposome, J. Am. Chem. Soc. 1281 (2006) 60-61. [227] D.J. Javier, N. Nitin, M. Levy, A. Ellington, R. Richards-Kortum, Aptamertargeted gold nanoparticles as molecular-specific contrast agents for reflectance imaging, Bioconjug. Chem. 196 (2008) 1309-1312. - 148 - Publications LIST OF PUBLICATIONS S. C. Wuang, K. G. Neoh, E.-T. Kang, D. W. Pack, and D. E. Leckband. “HER-2mediated Endocytosis of Magnetic Nanospheres and the Implications in Cell Targeting and Particle Magnetization” Biomaterials (2008) 29, 2270-2279. S. C. Wuang, K. G. Neoh, E.-T. Kang, D. W. Pack, and D. E. Leckband. “Synthesis and Functionalization of Polypyrrole-Fe3O4 Nanoparticles for Applications in Biomedicine” J. Mater. Chem. (2007) 17, 3354-3362. S. C. Wuang, K. G. Neoh, E.-T. Kang, D. W. Pack, and D. E. Leckband. “Polypyrrole Nanospheres with Magnetic and Cell-Targeting Capabilities.” Macromol. Rapid Comm. (2007) 28, 816-821. (Cover article) S. C. Wuang, K. G. Neoh, E.-T. Kang, D. W. Pack, and D. E. Leckband. “Heparinized Magnetic Nanoparticles: In-Vitro Assessment for Biomedical Applications” Adv. Funct. Mater. (2006) 16, 1723–1730. F. J. Xu, S. C. Wuang, B. Y. Zong, E.-T. Kang, K. G. Neoh. “Immobilization of Functional Oxide Nanoparticles on Silicon Surfaces via Si-C Bonded Polymer Brushes.” J. Nanosci. Nanotechnol. (2006) 6, 1458-1463. - 149 - Conferences LIST OF CONFERENCES S. C. Wuang, K. G. Neoh, E.-T. Kang, D. W. Pack, and D. E. Leckband. “Targeting Breast Cancer Cells via HER-2-mediated Endocytosis” Poster Presentation, Controlled Release Society Annual Meeting (2008), New York, New York S. C. Wuang, K. G. Neoh, E.-T. Kang, D. W. Pack, and D. E. Leckband. “Surface Functionalization of Magnetic Nanospheres for Cancer Cell Targeting” Poster Presentation, SBE's 3rd International Conference on Bioengineering and Nanotechnology (2007) Singapore S. C. Wuang, K. G. Neoh, E.-T. Kang, D. W. Pack, and D. E. Leckband. “Surface Functionalization of Magnetic Nanospheres for Cancer Cell Targeting” Poster Presentation, CNST Nanotechnology Workshop (2007) Urbana-Champaign, Illinois S. C. Wuang, F. X. Hu, K. G. Neoh and E.-T. Kang “Surface Functionalization of Magnetic Nanoparticles via Surface-Inititated Atom-Transfer Radical Polymerization (ATRP)” Poster Presentation, OLS-NUSNNI Workshop on Nanobiotechnology and Nanomedicine (2006) Singapore S. C. Wuang, K. G. Neoh, E.-T. Kang, D. W. Pack, and D. E. Leckband. “Functionalization of Magnetic Nanoparticles with Biomolecules” Oral Presentation, Particles 2006 Conference, (2006) Orlando, Florida S. C. Wuang, F. X. Hu, K. G. Neoh and E.-T. Kang “Surface Functionalization of Magnetic Nanoparticles via Surface-Inititated Atom-Transfer Radical Polymerization (ATRP)” Poster Presentation, Particles 2006 Conference, (2006) Orlando, Florida F. X. Hu, S. C. Wuang, K. G. Neoh and E.-T. Kang. “Surface Functionalized Magnetic Nanoparticles for Biomedical Applications” Poster Presentation, 2nd MRS-S Conference on Advanced Materials (2006) Singapore - 150 - [...]... saturation of ferromagnetic iron oxide [15] This behavior allows the tracking of such particles in a magnetic field gradient without losing the advantage of a stable colloidal suspension Nanotechnology has allowed for the production, characterization and functionalization of magnetic nanoparticles for specialized clinical applications Extensive research has been done on use of magnetic nanoparticles for bioapplications... are of great interest for researchers from a wide range of disciplines, including catalysis [8, 9], data storage [10], environmental remediation [11, 12] and more recently in biotechnology/biomedicine [13] Some of the more specific biomedical applications of magnetic nanoparticles include their use as magnetic contrast agents in magnetic resonance imaging (MRI), hyperthermia agents, where the magnetic. .. layer was first formed on the surface of the magnetite nanoparticles via ATRP followed by the immobilization of heparin onto the poly(NIPAAM) shell The poly(NIPAAM) layer also allows for the dispersion of the nanoparticles in formamide, the medium used for heparin immobilization Recent trends have shown that poly(NIPAAM) can be used for a number of potential biomedical applications such as for drug release... superparamagnetic nanoparticles very attractive for a broad range of biomedical applications because the risk of forming agglomerates is -4- Chapter 2 negligible at room temperature Superparamagnetic iron oxide (SPIO) nanoparticles are small synthetic γ-Fe2O3 or Fe3O4 particles with a core size of ~10 nm and an organic or inorganic coating Superparamagnetic magnetization is, compared to normal paramagnetic... with these biological entities Through manipulation by an external magnetic field, magnetic nanoparticles are potentially very useful in the transport and immobilization of magnetically tagged biological cargoes, and also in transferring energy from the exciting field The focus of this research project is to functionalize or modify magnetic nanoparticles to render them suitable for biomedical applications. .. application of a high frequency oscillating magnetic field, and magnetic drug delivery In most biomedical applications, magnetic nanoparticles perform best when the size of the nanoparticles is around 10–20 nm [14] Each nanoparticle then becomes a single magnetic domain and shows superparamagnetic behavior when the temperature is above the Curie temperature Superparamagnetism is a phenomenon by which magnetic. .. solution phases present during the synthesis Fe3O4 and CoFe2O4 nanoparticles can be prepared in very uniform sizes of about 9 and 12 nm, respectively Hydrothermal synthesis is a relatively little explored method for the synthesis of magnetic nanoparticles, although it allows the synthesis of high- -7- Chapter 2 quality nanoparticles To date, magnetic nanoparticles prepared from co-precipitation and thermal... imaging [19] and gene delivery [20, 21] applications The main advantages of magnetic nanoparticles in biomedicine are that they can be (i) visualized by magnetic resonance imaging due to their ability to change the T1 or T2 relaxation times of the surrounding tissues; (ii) manipulated by means of a magnetic field (i.e in magnetic drug delivery); and (iii) heated in a magnetic field to trigger drug release... years, magnetic nanoparticles have been proposed for use in a number of biomedical applications such as drug delivery, hyperthermia and chemotherapy and as radiotherapy enhancement agents because of their special physical properties [1-3] Magnetic nanoparticles have controllable sizes, smaller than cells and comparable to proteins and other biological entities, and hence they can be modified for interaction... temperature [32]; drug -8- Chapter 2 release can also be magnetically triggered from the drug-conjugated magnetic nanoparticles In biomedicine, one major hurdle that underlies the use of nanoparticle therapy is the problem of getting the particles to a particular site in the body [1] A potential benefit of using magnetic nanoparticles is the use of localized magnetic field gradients to attract the particles . FUNCTIONALIZATION OF MAGNETIC NANOPARTICLES FOR BIO-APPLICATIONS WUANG SHY CHYI (B. Eng (Hons), NUS) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMICAL. application of a high frequency oscillating magnetic field, and magnetic drug delivery. In most biomedical applications, magnetic nanoparticles perform best when the size of the nanoparticles. use of magnetic nanoparticles for bio- applications in recent years. For instance, dendrimer modified magnetic nanoparticles have been synthesized to improve protein binding [16]. Iron oxide nanoparticles

Ngày đăng: 14/09/2015, 14:03

TỪ KHÓA LIÊN QUAN