Mechanical models for malaria infected erythtocytes 7

11 110 0
Mechanical models for malaria infected erythtocytes 7

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Chapter Conclusions and Future Work Chapter Conclusions and Future Work This thesis focused on the modeling of malaria (P.f) infected erythrocytes. One of the main objectives was to propose computational models for the malaria (P.f) infected erythrocytes at their different stages of parasite maturation, in particular at the mid and late stages, for which no accurate models had been proposed currently. The other was to relate the loss of cell deformability to the change in mechanical properties of the cell membrane and structural changes occurred within the cell. 7.1 Conclusions The major contributions and findings of this thesis are summarized as follows: 1. A two-component model was developed to study the malaria (P.f.) infected erythrocyte deformation. Finite element analysis was done to simulate the cell deformation in micropipette aspiration and optical tweezers stretching. The simulation was done using finite element program ABAQUS. The model was able to predict the cell deformation in both of these two experiments. 2. The effect of initial membrane shear modulus µ on the malaria (P.f.) infected erythrocyte deformability was studied using the two-component model. The values of initial membrane shear modulus were obtained by comparing the finite element simulation result with that of experiments. Considering the decreasing cell sizes and data deviation, the analysis 140 Chapter Conclusions and Future Work provided the range of initial membrane shear modulus for each parasite maturation stage. The increase in membrane shear modulus with the progression of disease state was quantified. 3. The effect of bending stiffness on the cell deformability was studied by simulating the cell deformation in both micropipette aspiration and optical tweezers stretching. Parametric studies were done by varying the initial bending stiffness D0 in the range of 3.3 x 10 -20 J to 1.5 x 10 -18 J. The bending stiffness was found to have little effect on the cell deformation. 4. The hemispherical cap model was commonly used for analyzing cell deformation in micropipette aspiration, due to its simplicity in calculating membrane shear modulus. However, with the wide range of micropipette sizes used in the experiments, this model may not be valid for all pipette sizes. The model and method proposed in this thesis allowed us to test the validity of hemispherical cap model by applying the model to analyze the simulation curves with known values of membrane shear modulus. Using this method, the range of 0.1 ≤ Rp Rcell ≤ 0.4 was proved valid for using hemispherical cap model in micropipette aspiration. For cells that can be assumed as a liquid enclosed by incompressible membrane, it is easier to apply hemispherical cap model due to its simplicity in calculation, and the results will be valid as long as 0.1 ≤ Rp Rcell ≤ 0.4. 5. It may not be suitable to use hemispherical cap model and two-component model to analyze the infected cells in the middle to late stages, since the parasite occupies more than 40% of the host cell’s volume. An advanced 141 Chapter Conclusions and Future Work multi-component model was developed to study the effect of parasite inclusion on the host cell deformation. Finite element simulations were done using ABAQUS to simulate the deformation in both micropipette aspiration and optical tweezers stretching. This advanced model was able to simulate mechanical probing at the different locations of the host cell and explain the difference in shear modulus given by hemispherical cap model for the same cell. The multi-component model also allowed us to quantify the effect of PVM stiffness and sizes. 6. Using the multi-component model, it was found that compared to the PVM sizes and the stiffness of PVM and host cell membrane, the interaction between PVM and host cell membrane did not significantly play an important role in the cell deformation induced by optical tweezers. Even if they were stuck to each other after contact, it would not affect the cell deformation as much as the change in membrane stiffness, PVM sizes and PVM stiffness would. 7.2 Future Works The work in this thesis indicated interesting directions of studying the malaria infected erythrocytes. The future work can include the following: 1. The current multi-component model can be further developed to include not only the hemoglobin but also the food vacuole and the parasite itself within the parasitophorous vacuole membrane (PVM). If the experimental techniques allow us to probe the PVM and its internal structure directly, a 142 Chapter Conclusions and Future Work more complete model can be established. If the current experimental techniques are not able to probe them directly, a more complex multicomponent model is still a good tool to analyze the heterogeneity within the host cell. 2. These models can also be used in studying the mechanical properties of malaria P.vivax, which is believed to become softer instead of stiffer with the progression of infection stage. Due to the limitation of culturing techniques, we cannot conduct micropipette aspiration and optical tweezers stretching on P.vivax in our lab. If the experiment data of these two experiments are available for P.vivax cells, the models used in this thesis can be applied in studying their mechanical properties. 3. These models proposed in this thesis may also be used to evaluate the drug treatments on the mechanical properties of the cells. Since the severity of malaria can be regarded as a function of capillary blockage caused by the decrease in deformability of the infected erythrocytes, drugs can be developed to recover the natural deformability of the cell. These computational models can be used to quantify the effectiveness of these drugs. This can contribute to better understanding, diagnosis and treatment of malaria, as well as other diseases that induce similar effects on the living cells. 143 References References ABAQUS (v6.4). "ABAQUS Analysis User's Manual." Ashkin, A. and J. M. Dziedzic (1985). "Observation of radiation-pressure trapping of particles by alternating light beams." Physical Review Letters 54(12): 1245-1248. Ashkin, A., J. M. Dziedzic and T. Yamane (1987). "Optical trapping and manipulation of single cells using infrared laser beams." Nature 330(6150): 769-71. Barjas-Castro, M. L., M. M. Brandao, A. Fontes, F. F. Costa, C. L. Cesar and S. T. Saad (2002). "Elastic properties of irradiated RBCs measured by optical tweezers." Transfusion 42(9): 1196-9. Brandao, M. M., A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar and S. T. Saad (2003). "Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease." Eur J Haematol 70(4): 207-11. Bustamante, C., Z. Bryant and S. B. Smith (2003). "Ten years of tension: singlemolecule DNA mechanics." Nature 421(6921): 423-7. Cokelet, G. R., R. Soave, G. Pugh and L. Rathbun (1993). "Fabrication of in Vitro Microvascular Blood Flow Systems by Photolithography." Microvascular Research 46(3): 394-400. Dao, M., J. Li and S. Suresh (2006). "Molecularly based analysis of deformation of spectrin network and human erythrocyte." Materials Science and Engineering: C Proceedings of the First TMS Symposium on Biological Materials Science 26(8): 1232-1244. Dao, M., C. T. Lim and S. Suresh (2003). "Mechanics of the human red blood cell deformed by optical tweezers." J. Mech. Phys. Solids. 51(11-12): 2259-2280. Derganc, J., B. Bozic, S. Svetina and B. Zeks (2000). "Stability analysis of micropipette aspiration of neutrophils." Biophys J 79(1): 153-62. Dobbe, J. G., M. R. Hardeman, G. J. Streekstra, J. Strackee, C. Ince and C. A. Grimbergen (2002). "Analyzing red blood cell-deformability distributions." Blood Cells Mol Dis 28(3): 373-84. Dong, C., R. Skalak and K. L. Sung (1991). "Cytoplasmic rheology of passive neutrophils." Biorheology 28(6): 557-67. Dong, C., R. Skalak, K. L. Sung, G. W. Schmid-Schonbein and S. Chien (1988). "Passive deformation analysis of human leukocytes." J Biomech Eng 110(1): 27-36. 144 References Duffy, D. C., J. C. McDonald, O. J. A. Schueller and G. M. Whitesides (1998). "Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane)." Anal. Chem. 70(23): 4974-4984. Evans, E. and Y. C. Fung (1972). "Improved measurements of the erythrocyte geometry." Microvasc Res 4(4): 335-47. Evans, E. and A. Yeung (1989). "Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration." Biophys J 56(1): 151-60. Evans, E. A. (1983). "Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests." Biophys J 43(1): 27-30. Evans, E. A. and R. Skalak (1979). "Mechanics and thermodynamics of biomembranes: part 1." CRC Crit Rev Bioeng 3(3): 181-330. Ferko, M. C., A. Bhatnagar, M. B. Garcia and P. J. Butler (2007). "Finite-element stress analysis of a multicomponent model of sheared and focally-adhered endothelial cells." Ann Biomed Eng 35(2): 208-23. Fung, Y. C. (1990). Biomechanics : motion, flow, stress, and growth. New York ; London, Springer-Verlag. Fung, Y. C. (1993). Biomechanics : mechanical properties of living tissues. New York ; London, Springer-Verlag. Fung, Y. C. (1997). Biomechanics : circulation. New York ; London, Springer. Fung, Y. C. and P. Tong (1968). "Theory of the sphering of red blood cells." Biophys J 8(2): 175-98. Glenister, F. K., R. L. Coppel, A. F. Cowman, N. Mohandas and B. M. Cooke (2002). "Contribution of parasite proteins to altered mechanical properties of malaria-infected red blood cells." Blood 99(3): 1060-3. Gregersen, M. I., C. A. Bryant, W. E. Hammerle, S. Usami and S. Chien (1967). "Flow Characteristics of Human Erythrocytes through Polycarbonate Sieves 10.1126/science.157.3790.825." Science 157(3790): 825-827. Guest, M. M., T. P. Bond, R. G. Cooper and J. R. Derrick (1963). "Red Blood Cells: Change in Shape in Capillaries." Science 142: 1319-21. Guilak, F. and V. C. Mow (2000). "The mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage." J Biomech 33(12): 1663-73. Haldar, K., N. Mohandas, B. U. Samuel, T. Harrison, N. L. Hiller, T. Akompong and P. Cheresh (2002). "Protein and lipid trafficking induced in erythrocytes infected by malaria parasites." Cell Microbiol 4(7): 383-95. 145 References Henon, S., G. Lenormand, A. Richert and F. Gallet (1999). "A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers." Biophys J 76(2): 1145-51. Hill, M. (2002). "Hole's Human Anatomy & Physiology, 9th Edition.". Ho, M. and N. J. White (1999). "Molecular mechanisms of cytoadherence in malaria." Am J Physiol 276(6 Pt 1): C1231-42. Hochmuth, R. M. (2000). "Micropipette aspiration of living cells." J Biomech 33(1): 15-22. Hochmuth, R. M., R. N. Marple and S. P. Sutera (1970). "Capillary blood flow. I. Erythrocyte deformation in glass capillaries." Microvasc Res 2(4): 409-19. Hochmuth, R. M., H. P. Ting-Beall, B. B. Beaty, D. Needham and R. Tran-Son-Tay (1993). "Viscosity of passive human neutrophils undergoing small deformations." Biophys J 64(5): 1596-601. Huang, H., R. D. Kamm and R. T. Lee (2004). "Cell mechanics and mechanotransduction: pathways, probes, and physiology." Am J Physiol Cell Physiol 287(1): C1-11. Kyes, S. A., J. A. Rowe, N. Kriek and C. I. Newbold (1999). "Rifins: a second family of clonally variant proteins expressed on the surface of red cells infected with Plasmodium falciparum." Proc Natl Acad Sci U S A 96(16): 9333-8. Lenormand, G., S. Henon, A. Richert, J. Simeon and F. Gallet (2003). "Elasticity of the human red blood cell skeleton." Biorheology 40(1-3): 247-51. Leterrier, J. F. (2001). "Water and the cytoskeleton." Cell Mol Biol (Noisy-le-grand) 47(5): 901-23. Li, J., M. Dao, C. T. Lim and S. Suresh (2005). "Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte." Biophys J 88(5): 3707-19. Lim, C. T., M. Dao, S. Suresh, C. H. Sow and K. T. Chew (2004). "Large deformation of living cells using laser traps." Acta Materialia 52(7): 1837-1845. Lim, C. T., E. H. Zhou, A. Li, S. R. K. Vedula and H. X. Fu (2006). "Experimental techniques for single cell and single molecule biomechanics." Materials Science and Engineering: C Proceedings of the First TMS Symposium on Biological Materials Science 26(8): 1278-1288. Lim, C. T., E. H. Zhou and S. T. Quek (2006). "Mechanical models for living cells--a review." J Biomech 39(2): 195-216. 146 References Litvinov, R. I., H. Shuman, J. S. Bennett and J. W. Weisel (2002). "Binding strength and activation state of single fibrinogen-integrin pairs on living cells." Proc Natl Acad Sci U S A 99(11): 7426-31. Lu , M. and X. Luo (2001). Foundations of Elasticity. Magowan, C., W. Wollish, L. Anderson and J. Leech (1988). "Cytoadherence by Plasmodium falciparum-infected erythrocytes is correlated with the expression of a family of variable proteins on infected erythrocytes." J Exp Med 168(4): 1307-20. Marcelli, G., K. H. Parker and C. P. Winlove (2005). "Thermal fluctuations of red blood cell membrane via a constant-area particle-dynamics model." Biophys J 89(4): 2473-80. Marti, M., J. Baum, M. Rug, L. Tilley and A. F. Cowman (2005). "Signal-mediated export of proteins from the malaria parasite to the host erythrocyte." J Cell Biol 171(4): 587-92. McDonald, J. C. and G. M. Whitesides (2002). "Poly(dimethylsiloxane) as a material for fabricating microfluidic devices." Acc Chem Res 35(7): 491-9. Merkel, R. (2001). "Force spectroscopy on single passive biomolecules and single biomolecular bonds." Physics Reports 346(5): 343-385. Miller, L. H., D. I. Baruch, K. Marsh and O. K. Doumbo (2002). "The pathogenic basis of malaria." 415(6872): 673-679. Miller, L. H., S. Usami and S. Chien (1971). "Alteration in the rheologic properties of Plasmodium knowlesi--infected red cells. A possible mechanism for capillary obstruction." J Clin Invest 50(7): 1451-5. Mills, J. P., L. Qie, M. Dao, C. T. Lim and S. Suresh (2004). "Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers." Mech Chem Biosyst 1(3): 169-80. Missirlis, Y. F. and A. D. Spiliotis (2002). "Assessment of techniques used in calculating cell-material interactions." Biomolecular Engineering 19(2-6): 287-294. Parker, K. H. and C. P. Winlove (1999). "The deformation of spherical vesicles with permeable, constant-area membranes: application to the red blood cell." Biophys J 77(6): 3096-107. Pasloske, B. L., D. I. Baruch, M. R. van Schravendlijk, S. M. Handunnetti, M. Aikawa, H. Fujioka, T. F. Taraschi, J. A. Gormley and R. J. Howard (1993). "Cloning and characterization of a Plasmodium falciparum gene encoding a novel highmolecular weight host membrane-associated protein, PfEMP3." Molecular and Biochemical Parasitology 59(1): 59-72. Rand, R. P. and A. C. Burton (1964). "Mechanical Properties of the Red Cell Membrane. I. Membrane Stiffness and Intracellular Pressure." Biophys J 4: 115-35. 147 References Sato, M., D. P. Theret, L. T. Wheeler, N. Ohshima and R. M. Nerem (1990). "Application of the micropipette technique to the measurement of cultured porcine aortic endothelial cell viscoelastic properties." J Biomech Eng 112(3): 263-8. Schmid-Schonbein, G. W., K. L. Sung, H. Tozeren, R. Skalak and S. Chien (1981). "Passive mechanical properties of human leukocytes." Biophys J 36(1): 243-56. Secomb, T. W. and R. Hsu (1989). "Motion of nonaxisymmetric red blood cells in cylindrical capillaries." J Biomech Eng 111(2): 147-51. Shao, J. Y., G. Xu and P. Guo (2004). "Quantifying cell-adhesion strength with micropipette manipulation: principle and application." Front Biosci 9: 2183-91. Shelby, J. P., J. White, K. Ganesan, P. K. Rathod and D. T. Chiu (2003). "A microfluidic model for single-cell capillary obstruction by Plasmodium falciparuminfected erythrocytes." Proc Natl Acad Sci U S A 100(25): 14618-22. Shieh, A. C. and K. A. Athanasiou (2002). "Biomechanics of single chondrocytes and osteoarthritis." Crit Rev Biomed Eng 30(4-6): 307-43. Shieh, A. C. and K. A. Athanasiou (2003). "Principles of cell mechanics for cartilage tissue engineering." Ann Biomed Eng 31(1): 1-11. Shu, C., S. Kuo-Li Paul, R. Skalak, S. Usami and A. Tozeren (1978). "Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane." Biophysical Journal 24(2): 463-87. Simo, J. C. and K. S. Pister (1984). "Remarks on rate constitutive equations for finite deformation problems: computational implications." Computer Methods in Applied Mechanics and Engineering 46(2): 201-215. Skalak, R. and P. I. Branemark (1969). "Deformation of red blood cells in capillaries." Science 164(880): 717-9. Skalak, R., A. Tozeren, R. P. Zarda and S. Chien (1973). "Strain energy function of red blood cell membranes." Biophys J 13(3): 245-64. Sleep, J., D. Wilson, R. Simmons and W. Gratzer (1999). "Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study." Biophys J 77(6): 3085-95. Strey, H., M. Peterson and E. Sackmann (1995). "Measurement of erythrocyte membrane elasticity by flicker eigenmode decomposition." Biophys J 69(2): 478-88. Suresh, S., J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil and T. Seufferlein (2005). "Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria." Acta Biomater 1(1): 15-30. Suresh, S., J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil and T. Seufferlein (2005). "Supplementary material S5: computational modeling of optical tweezers stretching of malaria-infected human red blood cells." Acta Biomater 1(1): 15-30. 148 References Sutton, N., M. C. Tracey, I. D. Johnston, R. S. Greenaway and M. W. Rampling (1997). "A Novel Instrument for Studying the Flow Behaviour of Erythrocytes through Microchannels Simulating Human Blood Capillaries." Microvascular Research 53(3): 272-281. Theret, D. P., M. J. Levesque, M. Sato, R. M. Nerem and L. T. Wheeler (1988). "The application of a homogeneous half-space model in the analysis of endothelial cell micropipette measurements." J Biomech Eng 110(3): 190-9. Ting, B. P. (2007). Probing the elasticity change in breast cancer cells. Division of Bioengineering, National University of Singapore. Bachelor of Engineering Tsai, M. A., R. S. Frank and R. E. Waugh (1993). "Passive mechanical behavior of human neutrophils: power-law fluid." Biophys J 65(5): 2078-88. Van Vliet, K. J., G. Bao and S. Suresh (2003). "The biomechanics toolbox: experimental approaches for living cells and biomolecules." Acta Materialia The Golden Jubilee Issue. Selected topics in Materials Science and Engineering: Past, Present and Future 51(19): 5881-5905. Weed, R. I. (1970). "The importance of erythrocyte deformability." The American Journal of Medicine 49(2): 147-150. World-Health-Organization (2000). "Severe falciparum malaria." Transactions of the Royal Society of Tropical Medicine and Hygiene 94(Supplement 1): 1-90. World-Health-Organization (2008). World Malaria Report 2008. Yeoh, O. H. (1990). "Characterization of Elastic Properties of Carbon-Black-Filled Rubber Vulcanizates." Rubber Chem. Technol. 63: 792-805. Zarda, P. R., S. Chien and R. Skalak (1977). "Elastic deformations of red blood cells." J Biomech 10(4): 211-21. Zhou, C., P. Yue and J. J. Feng (2007). "Simulation of Neutrophil Deformation and Transport in Capillaries using Newtonian and Viscoelastic Drop Models." Ann Biomed Eng 35(5): 766-80. Zhou, E. H., C. T. Lim, T. K.S.W. and Q. S.T. (2004). "Finite element modeling of the micropipette aspiration of malaria-infected red blood cells." The 3rd international conference on experimental mechanics, Singapore, 2004. Zhou, E. H., C. T. Lim, T. K.S.W. and Q. S.T. (2004). "Proceedings of the 2nd world congress for Chinese biomedical engineers, Beijing, China." 149 Appendix Publications G. Y. Jiao, K. S. W. Tan, C. H. Sow, Ming Dao, Subra Suresh, C. T. Lim, Computational Modeling of the Micropipette Aspiration of Malaria Infected Erythrocytes, IFMBE Proceedings, Vol. 23, 1788-1791 (2009) G. Y. Jiao, K. S. W. Tan, C. H. Sow, Ming Dao, Subra Suresh, C. T. Lim, A Multicomponent Model for Malaria Infected Erythrocytes (Manuscript in preparation) A. Li, U. Lek-Uthai, S.W. Tan, R. Suwanarusk, G.Y. Jiao, G. Snounou, L. Renia, B. Russell and C.T. Lim, Nanomorphological changes to the surface of Plasmodium vivax infected erythrocytes (Manuscript in preparation) Conference Presentations G. Y. Jiao, K. S. W. Tan, C. H. Sow, Ming Dao, Subra Suresh, C. T. Lim, Modeling of Malaria Infected Red Blood Cells Using ABAQUS, at South East Asia Abaqus Regional Users’ Conference (Thailand) 2008 G. Y. Jiao, K. S. W. Tan, C. H. Sow, Ming Dao, Subra Suresh, C. T. Lim, Computational Mechanical Models for Malaria Infected Erythrocytes, at SingaporeMIT Alliance for Research and Technology ID-IRG (Singapore) 2009 150 [...]... Aspiration of Malaria Infected Erythrocytes, IFMBE Proceedings, Vol 23, 178 8- 179 1 (2009) G Y Jiao, K S W Tan, C H Sow, Ming Dao, Subra Suresh, C T Lim, A Multicomponent Model for Malaria Infected Erythrocytes (Manuscript in preparation) A Li, U Lek-Uthai, S.W Tan, R Suwanarusk, G.Y Jiao, G Snounou, L Renia, B Russell and C.T Lim, Nanomorphological changes to the surface of Plasmodium vivax infected erythrocytes... K S W Tan, C H Sow, Ming Dao, Subra Suresh, C T Lim, Modeling of Malaria Infected Red Blood Cells Using ABAQUS, at South East Asia Abaqus Regional Users’ Conference (Thailand) 2008 G Y Jiao, K S W Tan, C H Sow, Ming Dao, Subra Suresh, C T Lim, Computational Mechanical Models for Malaria Infected Erythrocytes, at SingaporeMIT Alliance for Research and Technology ID-IRG (Singapore) 2009 150 . of Malaria Infected Erythrocytes, IFMBE Proceedings, Vol. 23, 178 8- 179 1 (2009) G. Y. Jiao, K. S. W. Tan, C. H. Sow, Ming Dao, Subra Suresh, C. T. Lim, A Multi- component Model for Malaria Infected. Usami and S. Chien (19 67) . "Flow Characteristics of Human Erythrocytes through Polycarbonate Sieves 10.1126/science.1 57. 379 0.825." Science 1 57( 379 0): 825-8 27. Guest, M. M., T. P pathogenic basis of malaria. " 415(6 872 ): 673 - 679 . Miller, L. H., S. Usami and S. Chien (1 971 ). "Alteration in the rheologic properties of Plasmodium knowlesi infected red cells. A

Ngày đăng: 14/09/2015, 08:47

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan