Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 276 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
276
Dung lượng
6,55 MB
Nội dung
ROLES AND RELATIONSHIP OF GASOTRANSMITTERS HYDROGEN SULFIDE AND NITRIC OXIDE IN MYOCARDIAL INFARCTION CHUAH SHIN CHET B.Sc. (Hons), National University of Singapore A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF PHARMACOLOGY NATIONAL UNIVERSITY OF SINGAPORE 2009 ACKNOWLEDGEMENTS First and foremost, I would like to express my heartfelt gratitude to my project supervisor, Associate Professor Zhu Yi- Zhun for the great opportunity to work on this interesting project and also for his invaluable advice, patient guida nce and encouragement throughout the course of this project. I would also like to thank Dr Wang Hong and Dr Wang Zhongjing for their helpful input and constructive suggestions which were instrumental to the development of the project. My sincere thanks also goes out to past and present members of Dr. Zhu’s lab for the friendship, support and bantering of ideas along the way. Specifically, I would like to thank Miss Wong Wan Hui, who has done an excellent job in maintaining an orderly lab environment, and also for providing assistance with the purchasing o f necessary materials. It was also a great pleasure to work alongside Ms Loh Kok Poh, my fellow post-graduate lab-mate, who has been very encouraging. I would like to extend my appreciation to members of the Life Sciences Institute Cardiovascular Biology Group, academic and non-academic staff of the Department of Pharmacology, N US for their kind help rendered a long the way. I would also like to express my gratitude to the National University of Singapore for granting me this Ph.D. research scholarship, hence allowing me to pursue my interest in research. Last but not least, I would like to express my heartfelt appreciation to my family and husband KG. Without their strong support and loving encouragements, this project would not ve reached fruition. i TABLE OF CONTENTS ACKNOWLEDGEMENTS i TABLE OF CONTENTS .ii SUMMARY viii LIST OF TAB LES .xi LIST OF FIGUR ES xii LIST OF ABBREVIATIONS .xvii LIST OF PUB LICATIONS xx CHAPTER I INTRODUCTION .1 1.1 GENERA L OVERVIEW .2 1.2 MYOCA RDIAL INFA RCTION (MI) .3 1.2.1 Pathophysiology and Management of Myocardial Infarct ion 1.2.2 Animal Models of Acute Myocardial Infarction (AMI) .4 1.2.3 Experimental Model of MI: Simu lation of Hypoxic Condit ions in vitro .5 1.2.3.1 H9c2 1.2.3.2 Rat Neonatal Cardio myocytes 1.3 GA SOTRA NSMITTERS .7 1.3.1 Hydrogen Sulfide 10 1.3.1.1 Overview o f H2 S .10 1.3.1.2 Biosynthesis of H2 S 10 1.3.1.3 Metabolism of H2 S 13 1.3.1.4 Roles of H2 S in the Card iovascular System 15 1.3.1.4.1 Effect of H2 S on Vascular Tone .15 1.3.1.4.2 Effect of H2 S on the Ischemic Heart 15 1.3.1.5 S-ally lcysteine (SAC) as a Novel H2 S Donor 17 1.3.1.5.1 Garlic as a Cardioprotective Agent .17 1.3.1.5.2 SAC as a Cardioprotective Agent 18 1.3.2 Nit ric Oxide .20 1.3.2.1 Overview of NO 20 1.3.2.2 Biosynthesis of NO .21 1.3.2.3 NOS Isoforms .22 1.3.2.4 NO Metabolism .23 1.3.2.5 Roles of NO in the Cardiovascular System 24 1.3.2.6 Sildenafil as a Novel Substrate for Endogenous NO Production 27 1.3.2.6.1 Overview of Sildenafil 27 1.3.2.6.2 Sildenafil as a Cardioprotective Agent 28 1.3.3 Crosstalk between H2 S AND NO .30 1.3.3.1 H2 S and NO: Co mmon Functions .31 1.3.3.2 H2 S and NO: Ev idence for Crosstalk 31 1.3.3.3 H2 S and NO: Nitrosothiol Format ion 33 1.4 HYPOXIA-INDUCIBLE FA CTOR-1α (HIF-1α) .34 1.4.1 Hypoxia 34 1.4.2 Discovery of HIF 35 1.4.3 Regulation of HIF .36 ii 1.4.4 HIF-1α and the Card iovascular System 39 1.4.5 Downstream Targets of HIF in the Heart 40 1.4.5.1 iNOS as a Do wnstream Target of HIF 41 1.5 PI3K/AKT SIGNA LING PATHWA Y 42 1.6 RESEA RCH INTEREST AND OBJECTIVES .44 CHAPTER II MATERIALS AND MET HODS 48 2.1 MATERIA LS .49 2.1.1 Drugs .49 2.1.2 Chemicals .50 2.2 METHODS 51 2.2.1 Animal 51 2.2.1.1 Animal Model of Acute Myocardial Infarct ion (AMI) 51 2.2.2 Cell Cu lture .52 2.2.2.1 H9C2 .52 2.2.2.2 Neonatal Rat Primary Cardio myocytes .52 2.2.2.3 Isolation of Primary Card io myocytes .53 2.2.2.4 Hypoxia Model .54 2.3 EXPERIM ENTA L PROTOCOL 55 2.3.1 Experimental Protocol 1: SA C exerts Card ioprotection in AMI via a H2 S-related pathway with Concomitant NO Production 56 2.3.2 Experimental Protocol 2: NO-med iated Card ioprotection by Sildenafil invo lves a CSE/ H2 S-related pathway during Myocardial Ischemia .58 2.3.3 Experimental Protocol 3: Relationship between H2 S and NO in a Rat Model o f AMI 60 2.3.4 Experimental Protocol 4: H2 S exerts Cardioprotection by enhancing HIF-1α activation and iNOS exp ression through the PI3K/Akt-dependent pathway .62 2.4 EXPERIM ENTA L M ETHODS .65 Animal 2.4.1 Measurement of Infarct Size .65 2.4.2 Measurement of Hypertrophy Index .65 2.4.3 Hemodynamic Measurements .66 2.4.3.1 Blood Pressure 66 2.4.3.2 Electrocardiograms and Heart Rate 66 2.4.4 Morphological Examination— Hemato xylin & Eosin staining .67 Cell Cu lture 2.4.5 Cell Count .68 2.4.6 MTT Assay .68 2.4.7 LDH Assay .69 2.4.8 Trypan Blue Exclusion Assay 70 Biochemical Assays 2.4.9 Measurement of CSE Activ ity in the Left Ventricle 71 2.4.10 Measurement of H2 S Concentration in the Plasma .72 2.4.11 Measurement of Nitrate/Nit rite (NOx) Concentration in Left Ventricle and Plas ma .73 2.4.12 Measurement of Nitrate/Nitrite Concentration in Cell Mediu m .74 2.4.13 Total RNA Isolation from Animal Tissue 74 2.4.14 Total RNA Isolation fro m Cell Samp le 75 2.4.15 RNA Quantitation .76 iii 2.4.16 Reverse transcription-Poly merase Chain Reaction (RT-PCR) .76 2.4.17 Collection of Nuclear and Cytoplasmic Ext racts 79 2.4.18 Electrophoretic Mobility Shift Assay (EMSA) 79 2.4.19 Protein Extraction fro m Animal Tissue 81 2.4.20 Protein Ext raction fro m Cells .82 2.4.21 Western Blot .82 2.5 STATISTICA L ANA LYSIS 84 CHAPTER III S-ALLYLCYS TEIN E MEDIAT ES CARDIOPROTECTION VIA A HYDROGEN SULPHIDE-RELATED PATHWAY WITH CONCOMITANT NITRIC OXIDE PRODUCTION .85 3.1 RESULTS………………………………… ……………………… …………86 3.1.1 Preliminary Study…………………………… .………………… .….…….86 3.1.2 Survival Rate after Myocardial Infarction (M I)… ………. ……… .………87 3.1.3 Exclusion Criteria……………… ………………………… .………… .…87 3.1.4 Infarct Size…………………………………………………… .……………88 3.1.5 Ventricu lar Hypertrophy………………………… …………… ……… .89 3.1.6 Hemodynamic Parameters………………………………………… .………90 3.1.6.1 Blood Pressure……………………………… .………………………… ……….90 3.1.6.2 Electrocard iograms (ECGs ) ……………… .……………………… ……… 91 3.1.6.3 Heart Rate……………………………………… .……………………….……….94 3.1.7 Morphological Examination………………………………………… .…….94 3.1.8 CSE Activ ity in the Left Ventricle…………………………………… ……95 3.1.9 Plas ma H2 S Concentration…………………………………………… ……97 3.1.10 CSE Protein Exp ression……………………………… .……………… ….98 3.1.11 Nitrate/Nitrite Levels in the Left Ventricle…………………… .……… 100 3.1.12 Plas ma NOx Concentration…………………………… .……………… 101 3.2 DISCUSSION………………………………………………………………… 103 3.2.1 H2 S as a Cardioprotective Agent………………………………………… .103 3.2.2 Garlic as a Cardioprotective Agent……………………………………… .104 3.2.3 S-allycysteine (SA C) as a Cardioprotective Agent……………………… .104 3.2.4 SAC Improved Surv ival and Infarct Size after AMI…………………… .105 3.2.5 Effect of SA C on BP, ECG and Heart Rate……………………………… 106 3.2.6 SAC Improved Morphology of Ischemic LV………………………….… .107 3.2.7 Participation of H2 S/ CSE Pathway in SA C-Mediated Cardioprotection… 108 3.2.8 Participation of NO in SA C-Mediated Cardioprotection………………… 110 3.2.9 Summary of Findings for Experiment Protocol 1……………………… .110 CHAPTER IV NO-MEDIATED CARDIOPROTECTION B Y S ILDENAFIL IN MYOCARDIAL ISCHEMIA INVOLVES A H2 S/CSE PATHWAY .……………………… .………………… .112 4.1 RESULTS……………………………… .………………………………………113 4.1.1 Survival Rate after Acute Myocardial Infarction … ………… .………113 4.1.2 Exclusion Criteria………………………………… .……………… …113 4.1.3 Infarct Size………………………… ……………………………114 4.1.4 Ventricular Hypertrophy……………………… .…………………………114 4.1.5 Hemodynamic Parameters………………………… ……………………115 4.1.5.1 Blood Pressure……… .……………………………… .…………………115 iv 4.1.5.2 Electrocard iograms …………… ……………… .…………………116 4.1.5.3 Heart Rate……………………………………… .………………119 4.1.6 NOx Content in the Left Ventricle……………… .……………119 4.1.7 Plas ma NOx Concentration………………………………… …………120 4.1.8 Protein Exp ressions of eNOS and nNOS……………… ………121 4.1.9 iNOS Gene Expression………………………………… .……123 4.1.10 iNOS Protein Expression……………………………… …124 4.1.11 Effect of Sildenafil on H2 S Production in the Left Ventricle……… .…124 4.1.12 Effect of Sildenafil on Plasma H2 S Concentration…… …… .…125 4.1.13 Effect of Sildenafil on CSE Protein Exp ression……… .………… …126 4.2 DISCUSSION…………………………… 128 4.2.1 Sildenafil as a Cardioprotective Agent………………… .………… 128 4.2.2 Sildenafil Imp roved Survival and Limits Infarct Development in AMI… 129 4.2.3 Effect of Sildenafil on Hemodynamic Parameters ……………… .130 4.2.4 Effect of Sildenafil on Nitrate/Nitrite Concentration in the Body……… 132 4.2.5 Effect of Sildenafil on the Exp ressions of NOS Isoforms…………… 133 4.2.6 H2 S Involvement in Sildenafil-mediated Cardioprotection……… 134 4.2.7 Summary of Findings for Experiment Protocol 2……………………… .135 CHAPTER V ROLES AND RELATIONS HIP OF HYDROGEN S ULFIDE AND NITRIC OXIDE IN A RAT MODEL OF ACUTE MYOCARDIAL INFARCTION.……………………… 137 5.1 RESULTS …… 138 5.1.1 Survival Rate after Acute Myocardial Infarction …… ………… .… 138 5.1.2 Exclusion Criteria……………………… .138 5.1.3 Infarct Size…………………………………………… .……… .139 5.1.4 Ventricular Hypertrophy……………………………… .… 139 5.1.5 Hemodynamic Parameters……………………………… .………… .140 5.1.5.1 Blood Pressure…………………………………… 140 5.1.5.2 Electrocard iograms …………………………………… .………… 141 5.1.5.3 Heart Rate……………… .…………… 144 5.1.6 CSE Gene Expression……………………… .…………144 5.1.7 CSE Protein Expression…………………………… .…….146 5.1.8 H2 S Production in the Left Ventricle………………………… .… .……147 5.1.9 Plas ma H2 S Concentration……………………………… …148 5.1.10 Gene Exp ressions of NOS Isoforms……………………………… .…149 5.1.11 Protein Expressions of NOS Isoforms…………………………… .…… .152 5.1.12 Nitrate/ Nitrite (NOx) Content in the Left Ventricle……………… .… .155 5.1.13 Plas ma Nitrate/Nitrite Concentration…………………… 156 5.1.14 HIF-1α Protein Expression………………………………………… .… 157 5.1.15 HIF-1α Gene Expression………………………………… 158 5.2 DISCUSSION……………………………………………………… .……….160 5.2.1 Interplay between H2 S and NO…………… ….160 5.2.2 Exogenous H2 S and NO A meliorates MI…………… .…162 5.2.3 Effect of H2 S and NO on BP, ECG and Heart Rate………… .164 5.2.4 Effect of H2 S and NO on the CSE/H2 S System……… 165 5.2.5 Effect of H2 S and NO on the NOS/NO System…………… 167 5.2.6 Effect of H2 S and NO on the HIF System………………………… 169 5.2.7 Summary of Findings for Experiment Protocol 3…………………… .170 v CHAPTER VI H2 S EXERTS CARDIOPROTECTION B Y EN HANCING HIF-1 α ACTIVATION AND i NOS EXPRESS ION WITH THE INVOLVEMENT OF PI3 K/AKT PATHWAY IN H9 C2 AND PRIMARY CARDIOMYOCYTES……………………… .…………… ……172 6.1 RESULTS………………………………… …………… .…… ………173 6.1.1 Optimization of Hypo xia Conditions………… .………… .…………173 6.1.1.1 Selection of Hypoxia Model………………… .………… ………173 6.1.1.2 Optimization of CoCl Concentration…………… .……174 6.1.1.3 Optimization of Hypo xia Durat ion………………… .……… .….176 6.1.1.4 Optimization of NaHS Concentration…………… .177 6.1.2 Assessment of Cell Viab ility …………………………………… … 178 6.1.2.1 MTT Assay…………………………………………………… .178 6.1.2.2 LDH Assay……………………………………… ……………179 6.1.2.3 Trypan Blue Exclusion Assay……………………… .………… 180 6.1.2.3.1 H9C2………………………………………… .……… 180 6.1.2.3.2 Card io myocytes……………………………………… 181 6.1.3 Involvement of HIF-1α/ iNOS Pathway in H2 S-Mediated Card ioprotection ……182 6.1.3.1 Protein Exp ression of HIF-1α in Total Cell Lysates……… .……182 6.1.3.2 Gene Expression of HIF-1α……… ……………. .……184 6.1.3.3 Protein Expression of HIF-1α in Nuclear and Cytoplasmic Fract ions .186 6.1.3.4 Electrophoretic Mobility Shift Assay (EMSA) for HIF-1α Binding 188 6.1.3.5 iNOS Gene Exp ression……………………………………… .190 6.1.3.6 iNOS Protein Exp ression……………………………………… 192 6.1.3.7 NO Production………………………………………… 193 6.1.4 Involvement of PI3K/Akt Pathway in H2 S-Mediated Card ioprotection……… 195 6.1.4.1 Protein Expression of Akt…………………… …………… .195 6.1.4.2 Protein Exp ression of p-Akt ………………………… 197 6.1.4.3 Akt Activation……………………………… ……… .199 6.1.4.4 Protein Expression of eNOS ………………… …… 201 6.1.4.5 Protein Expression of p-eNOS…………… .…… .203 6.1.4.6 eNOS Activation………………………………… .205 6.1.4.7 Nitrate/Nitrite Concentration …………….………… 207 6.1.5 Protein Expression of HIF-1α…………………………… 209 6.2 DISCUSSION…………………………………………………… …211 6.2.1 Overview of HIF-1……………………………………… .…… .….211 6.2.2 HIF-1 Involvement in NaHS-mediated Cardioprotection… … …212 6.2.3 Optimization of Hypo xia Model and Conditions……………… .213 6.2.4 Determination of NaHS Concentration………………………… .215 6.2.5 Cell Viabilities of H9C2 and Card io myocytes after Hypoxia…… 215 6.2.6 Effect of NaHS on HIF-1α Protein and Gene Exp ressions……… .218 6.2.7 Effect of NaHS on HIF-1α Transcriptional Activity …………… 219 6.2.8 Effect of NaHS on iNOS Exp ressions and NO Production……… 220 6.2.9 Involvement of PI3K/Akt Pathway in NaHS-mediated Cardioprotection 222 6.2.10 PI3K Lies Upstream of HIF-1α Signaling……………………… 224 6.2.11 Summary of Findings for Experiment Protocol 4……………… .225 vi CHAPTER VII S UMMARY OF CONTRIB UTIONS AND FUTUR E DIRECTIONS 227 7.1 SUMMARY OF CONTRIBUTIONS………………………………… 228 7.2 FUTURE DIRECTIONS………………………………………… 231 REFERENC ES ………………………………….…… ……………………………… 233 vii SUMMARY Hydrogen sulfide (H2 S) and nitric oxide (NO) are gasotransmitters endogenously synthesized in the body, sharing several common roles such as vasodilation. Additionally, both are implicated in the disease progression of myocardial infarction (MI), which will be examined in this study. Furthermore, several works have investigated their interaction in the vascular system, but due to the disparity in outcomes observed, their relationship is far from clear. Thus far, the interplay between H2 S and NO in the cardiovascular system has not been researched on. For this thesis, we aim to elucidate the roles and relationship of H2 S and NO in MI, and s hed light on the mechanisms involved. In the first study, S-allylcysteine (SAC) is proposed to be a novel H2 S donor as it exerted cardioprotection through a CSE (H2 S-synthesizing enzyme)/H2 S-related pathway. Pretreatment with SAC before MI induction lowered mortality and reduced infarct size. This was accompanied by an increase in left ventricular (LV) H2 S production and plasma H2 S concentration. Co-treatment with propargylglycine (PAG; CSE inhibitor) which blocked H2 S production and lowered plasma H2 S concentration was shown to abrogate the improvements in survival and infarct. Furthermore, SAC increased NO content in the LV and plasma, implicating NO involvement in SAC- mediated cardioprotection. In the next study, sildenafil brought about cardioprotection in MI via a NO-related pathway with the concomitant involvement of H2 S. Sildenafil improved survival and attenuated infarct size. This was via a NOS/NO pathway as protein and gene expressions of eNOS, nNOS and iNOS were drastically upregulated with an associated enhancement in LV and plasma NO levels. Interestingly, sildenafil also stimulated CSE activity by viii increasing H2 S production in the heart without affecting CSE’s protein expression, providing yet another evidence for the interaction between H2 S and NO. The third study examined this crosstalk on a common platform using both donors and inhibitors of H2 S and NO in in vivo MI mode ls. NaHS and molsidomine attenuated infarct enlargement and improved survival whilst inhibitors of CSE and NOS exacerbated these. Crosstalk is evidently present between H2 S and NO. Firstly, NaHS increased LV and plasma NO levels due to an upr egulation of eNOS and iNOS gene and protein expressions. Consistent stimulation of NOS/NO pathway by NaHS may involve HIF as NaHS upregulated HIF-1 protein expression drastically. This will be further examined in the next study. Secondly, blockade of H2 S production with PAG resulted in higher NO levels in both LV and plasma. This may be due to an increment in NOS activities as protein expressions were unaltered. Thirdly, NOS inhibitor L-NAME increased CSE protein expression, which was accompanied by an increase in LV H2 S production. Transcription factor HIF-1 plays a pivotal role in initiating the transcription of hypoxiasensitive genes to improve cellular adaptation to hypoxia. During hypoxia, NaHS enhanced HIF-1 protein expression and transcriptional activity in cardiac cells. Moreover, following NaHS treatment, HIF-1 activation upregulated downstream target iNOS and increased NO production. Additionally, numerous studies have implicated PI3K/Akt participation during hypoxia to mediate HIF-1α activation. Hence, its invo lvement was determined. NaHS-pretreated hypoxic cells had higher Akt and eNOS phosphorylations, which were abrogated when PI3K inhibitors were applied, indicating PI3K/Akt pathway involvement in this mode of cardioprotection. Furthermore, it was determined that this pathway lies upstream of HIF-1α. ix REFERENCES 94. JENNINGS R.B., REIMER K.A. The cell biology of acute myocardial ischemia. Annu Rev Med 1991, 42:225-246. 95. JI X., TAN B.K., ZHU Y.C., LINZ W., ZHU Y.Z. Comparison of cardioprotective effects using ramipril and DanShen for the treatment of acute myocardial infarction in rats. Life Sci 2003, 73:1413-1426. 96. JIANG B.H., SEMENZA G.L., BAUER C., MARTI H.H. Hypoxia-inducible factor levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol 1996, 271:C1172-1180. 97. JIANG B.H., ZHENG J.Z., AOKI M., VOGT P.K. Phosphatidylinositol 3-kinase signaling mediates angiogenesis and expression of vascular endothelial growth factor in endothelial cells. Proc Natl Acad Sci U S A 2000, 97:1749-1753. 98. JIN Y.C., KIM W., HA Y.M., SHIN I.W., SOHN J.T., KIM H.J., SEO H.G., LEE J.H., CHANG K.C. Propofol limits rat myocardial ischemia and reperfusion injury with an associated reduction in apoptotic cell death in vivo. Vascul Pharmacol 2009, 50:71-77. 99. JOBGEN W.S., FRIED S.K., FU W.J., MEININGER C.J., WU G. Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 2006, 17:571-588. 100. JOHANSEN D., YTREHUS K., BAXTER G.F. Exogenous hydrogen sulfide (H2S) protects against regional myocardial ischemia-reperfusion injury--Evidence for a role of K ATP channels. Basic Res Cardiol 2006, 101:53-60. 101. JONES S.P., BOLLI R. The ubiquitous role of nitric oxide in cardioprotection. J Mol Cell Cardiol 2006, 40:16-23. 102. JONES S.P., GIROD W.G., PALAZZO A.J., GRANGER D.N., GRISHAM M.B., JOURD'HEUIL D., HUANG P.L., LEFER D.J. Myocardial ischemia-reperfusion injury is exacerbated in absence of endothelial cell nitric oxide synthase. Am J Physiol 1999, 276:H1567-1573. 103. JUNG F., PALMER L.A., ZHOU N., JOHNS R.A. Hypoxic regulation of inducible nitric oxide synthase via hypoxia inducible factor-1 in cardiac myocytes. Circ Res 2000, 86:319-325. 104. JUNG J.Y., ROH K.H., JEONG Y.J., KIM S.H., LEE E.J., KIM M.S., OH W.M., OH H.K., KIM W.J. Estradiol protects PC12 cells against CoCl2-induced apoptosis. Brain Res Bull 2008, 76:579-585. 105. JURGENSEN J.S., ROSENBERGER C., WIESENER M.S., WARNECKE C., HORSTRUP J.H., GRAFE M., PHILIPP S., GRIETHE W., MAXWELL P.H., FREI U., BACHMANN S., WILLENBROCK R., ECKARDT K.U. Persistent induction of HIF-1alpha and -2alpha in cardiomyocytes and stromal cells of ischemic myocardium. Faseb J 2004, 18:1415-1417. 106. KALLIO P.J., PONGRATZ I., GRADIN K., MCGUIRE J., POELLINGER L. Activation of hypoxiainducible factor 1alpha: posttranscriptional regulation and conformational change by recruitment of the Arnt transcription factor. Proc Natl Acad Sci U S A 1997, 94:56675672. 240 REFERENCES 107. KAMOUN P. Endogenous production of hydrogen sulfide in mammals. Amino Acids 2004, 26:243-254. 108. KANEKO Y., KIMURA Y., KIMURA H., NIKI I. L-cysteine inhibits insulin release from the pancreatic beta-cell: possible involvement of metabolic production of hydrogen sulfide, a novel gasotransmitter. Diabetes 2006, 55:1391-1397. 109. KASPAREK M.S., LINDEN D.R., KREIS M.E., SARR M.G. Gasotransmitters in the gastrointestinal tract. Surgery 2008, 143:455-459. 110. KE Q., COSTA M. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 2006, 70:1469-1480. 111. KELM M. Nitric oxide metabolism and breakdown. Biochim Biophys Acta 1999, 1411:273-289. 112. KIDO M., DU L., SULLIVAN C.C., LI X., DEUTSCH R., JAMIESON S.W., THISTLETHWAITE P.A. Hypoxia-inducible factor 1-alpha reduces infarction and attenuates progression of cardiac dysfunction after myocardial infarction in the mouse. J Am Coll Cardiol 2005, 46:2116-2124. 113. KIM C.H., CHO Y.S., CHUN Y.S., PARK J.W., KIM M.S. Early expression of myocardial HIF1alpha in response to mechanical stresses: regulation by stretch-activated channels and the phosphatidylinositol 3-kinase signaling pathway. Circ Res 2002, 90:E25-33. 114. KIM J.M., CHANG N., KIM W.K., CHUN H.S. Dietary S-allyl-L-cysteine reduces mortality with decreased incidence of stroke and behavioral changes in stroke-prone spontaneously hypertensive rats. Biosci Biotechnol Biochem 2006, 70:1969-1971. 115. KIM K.M., CHUN S.B., KOO M.S., CHOI W.J., KIM T.W., KWON Y.G., CHUNG H.T., BILLIAR T.R., KIM Y.M. Differential regulation of NO availability from macrophages and endothelial cells by the garlic component S-allyl cysteine. Free Radic Biol Med 2001, 30:747-756. 116. KIMURA H. Hydrogen sulfide as a neuromodulator. Mol Neurobiol 2002, 26:13-19. 117. KITAKAZE M., NODE K., KOMAMURA K., MINAMINO T., INOUE M., HORI M., KAMADA T. Evidence for nitric oxide generation in the cardiomyocytes: its augmentation by hypoxia. J Mol Cell Cardiol 1995, 27:2149-2154. 118. KLOCKE R., TIAN W., KUHLMANN M.T., NIKOL S. Surgical animal models of heart failure related to coronary heart disease. Cardiovasc Res 2007, 74:29-38. 119. KODAI S., TAKEMURA S., MINAMIYAMA Y., HAI S., YAMAMOTO S., KUBO S., YOSHIDA Y., NIKI E., OKADA S., HIROHASHI K., SUEHIRO S. S-allyl cysteine prevents CCl(4)-induced acute liver injury in rats. Free Radic Res 2007, 41:489-497. 120. KODERA Y., SUZUKI A., IMADA O., KASUGA S., SUMIOKA I., KANEZAWA A., TARU N., FUJIKAWA M., NAGAE S., MASAMOTO K., MAESHIGE K., ONO K. Physical, chemical, and biological properties of s-allylcysteine, an amino acid derived from garlic. J Agric Food Chem 2002, 50:622-632. 241 REFERENCES 121. KOH M.Y., SPIVAK-KROIZMAN T.R., POWIS G. HIF-1 regulation: not so easy come, easy go. Trends Biochem Sci 2008. 122. KRIJNEN P.A., NIESSEN H.W. The antiapoptotic protein clusterin protects cardiomyocytes against ischemia-induced cell death. Am J Physiol Heart Circ Physiol 2007, 293:H3223; author reply H3224. 123. KUBES P., SUZUKI M., GRANGER D.N. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A 1991, 88:4651-4655. 124. KUBO S., DOE I., KUROKAWA Y., NISHIKAWA H., KAWABATA A. Direct inhibition of endothelial nitric oxide synthase by hydrogen sulfide: contribution to dual modulation of vascular tension. Toxicology 2007a, 232:138-146. 125. KUBO S., KUROKAWA Y., DOE I., MASUKO T., SEKIGUCHI F., KAWABATA A. Hydrogen sulfide inhibits activity of three isoforms of recombinant nitric oxide synthase. Toxicology 2007b, 241:92-97. 126. KUKREJA R.C. Cardiovascular protection with sildenafil following chronic inhibition of nitric oxide synthase. Br J Pharmacol 2007, 150:538-540. 127. KUKREJA R.C. Synergistic effects of atorvastatin and sildenafil in cardioprotection--role of NO. Cardiovasc Drugs Ther 2006, 20:5-8. 128. KUKREJA R.C., OCKAILI R., SALLOUM F., YIN C., HAWKINS J., DAS A., XI L. Cardioprotection with phosphodiesterase-5 inhibition--a novel preconditioning strategy. J Mol Cell Cardiol 2004, 36:165-173. 129. KUKREJA R.C., SALLOUM F., DAS A., OCKAILI R., YIN C., BREMER Y.A., FISHER P.W., WITTKAMP M., HAWKINS J., CHOU E., KUKREJA A.K., WANG X., MARWAHA V.R., XI L. Pharmacological preconditioning with sildenafil: Basic mechanisms and clinical implications. Vascul Pharmacol 2005, 42:219-232. 130. LANDO D., PEET D.J., WHELAN D.A., GORMAN J.J., WHITELAW M.L. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 2002, 295:858-861. 131. LAUGHNER E., TAGHAVI P., CHILES K., MAHON P.C., SEMENZA G.L. HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol 2001, 21:3995-4004. 132. LEE S.H., WOLF P.L., ESCUDERO R., DEUTSCH R., JAMIESON S.W., THISTLETHWAITE P.A. Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N Engl J Med 2000, 342:626-633. 133. LEFER D.J., JONES S.P., GIROD W.G., BAINES A., GRISHAM M.B., COCKRELL A.S., HUANG P.L., SCALIA R. Leukocyte-endothelial cell interactions in nitric oxide synthase-deficient mice. Am J Physiol 1999, 276:H1943-1950. 242 REFERENCES 134. LI D.Y., TAO L., LIU H., CHRISTOPHER T.A., LOPEZ B.L., MA X.L. Role of ERK1/2 in the antiapoptotic and cardioprotective effects of nitric oxide after myocardial ischemia and reperfusion. Apoptosis 2006, 11:923-930. 135. LI J., ZHANG H., WU F., NAN Y., MA H., GUO W., WANG H., REN J., DAS U.N., GAO F. Insulin inhibits tumor necrosis factor-alpha induction in myocardial ischemia/reperfusion: role of Akt and endothelial nitric oxide synthase phosphorylation. Crit Care Med 2008a, 36:1551-1558. 136. LI L., MOORE P.K. An overview of the biological significance of endogenous gases: new roles for old molecules. Biochem Soc Trans 2007a, 35:1138-1141. 137. LI L., MOORE P.K. Putative biological roles of hydrogen sulfide in health and disease: a breath of not so fresh air? Trends Pharmacol Sci 2008b, 29:84-90. 138. LI L., ROSSONI G., SPARATORE A., LEE L.C., DEL SOLDATO P., MOORE P.K. Antiinflammatory and gastrointestinal effects of a novel diclofenac derivative. Free Radic Biol Med 2007b, 42:706-719. 139. LI Q.F., ZHU Y.S., JIANG H. Isoflurane preconditioning activates HIF-1alpha, iNOS and Erk1/2 and protects against oxygen-glucose deprivation neuronal injury. Brain Res 2008c, 1245:26-35. 140. LI X., BAZER F.W., GAO H., JOBGEN W., JOHNSON G.A., LI P., MCKNIGHT J.R., SATTERFIELD M.C., SPENCER T.E., WU G. Amino acids and gaseous signaling. Amino Acids 2009. 141. LI X., DU J., JIN H., TANG X., BU D., TANG C. The regulatory effect of endogenous hydrogen sulfide on pulmonary vascular structure and gasotransmitters in rats with high pulmonary blood flow. Life Sci 2007c, 81:841-849. 142. LI Z.G., WANG J.F., CHENG J.D., LIU Y.W., XING H.W., WANG Y., CHEN Y.C. Regularity of hypoxia inducible factor alpha expression in acute myocardial ischaemia in rats. Chin Med J (Engl) 2007d, 120:162-165. 143. LINZ W., ITTER G., DOBRUCKI L.W., MALINSKI T., WIEMER G. Ramipril improves nitric oxide availability in hypertensive rats with failing hearts after myocardial infarction. J Renin Angiotensin Aldosterone Syst 2003, 4:180-185. 144. LIU A.H., CAO Y.N., LIU H.T., ZHANG W.W., LIU Y., SHI T.W., JIA G.L., WANG X.M. DIDS attenuates staurosporine-induced cardiomyocyte apoptosis by PI3K/Akt signaling pathway: activation of eNOS/NO and inhibition of Bax translocation. Cell Physiol Biochem 2008, 22:177-186. 145. LIU X., WU X., CAI L., TANG C., SU J. Hypoxic preconditioning of cardiomyocytes and cardioprotection: phophorylation of HIF-1alpha induced by p42/p44 mitogen-activated protein kinases is involved. Pathophysiology 2003, 9:201-205. 146. LOOR G., SCHUMACKER P.T. Role of hypoxia-inducible factor in cell survival during myocardial ischemia-reperfusion. Cell Death Differ 2008, 15:686-690. 243 REFERENCES 147. LOWENSTEIN C.J. Nitric oxide regulation of protein trafficking in the cardiovascular system. Cardiovasc Res 2007. 148. LOWICKA E., BELTOWSKI J. Hydrogen sulfide (H(2)S) - the third gas of interest for pharmacologists. Pharmacol Rep 2007, 59:4-24. 149. LU D.Y., LIOU H.C., TANG C.H., FU W.M. Hypoxia-induced iNOS expression in microglia is regulated by the PI3-kinase/Akt/mTOR signaling pathway and activation of hypoxia inducible factor-1alpha. Biochem Pharmacol 2006, 72:992-1000. 150. LYONS J., RAUH-PFEIFFER A., MING-YU Y., LU X.M., ZURAKOWSKI D., CURLEY M., COLLIER S., DUGGAN C., NURKO S., THOMPSON J., AJAMI A., BORGONHA S., YOUNG V.R., CASTILLO L. Cysteine metabolism and whole blood glutathione synthesis in septic pediatric patients. Crit Care Med 2001, 29:870-877. 151. MAKINO Y., KANOPKA A., WILSON W.J., TANAKA H., POELLINGER L. Inhibitory PAS domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible factor-3alpha locus. J Biol Chem 2002, 277:32405-32408. 152. MANCARDI D., PENNA C., MERLINO A., DEL SOLDATO P., WINK D.A., PAGLIARO P. Physiological and pharmacological features of the novel gasotransmitter: Hydrogen sulfide. Biochim Biophys Acta 2009. 153. MARSH N., MARSH A. A short history of nitroglycerine and nitric oxide in pharmacology and physiology. Clin Exp Pharmacol Physiol 2000, 27:313-319. 154. MARTI H.H., JUNG H.H., PFEILSCHIFTER J., BAUER C. Hypoxia and cobalt stimulate lactate dehydrogenase (LDH) activity in vascular smooth muscle cells. Pflugers Arch 1994, 429:216-222. 155. MARTIN T.F. Phosphoinositide lipids as signaling molecules: common themes for signal transduction, cytoskeletal regulation, and membrane trafficking. Annu Rev Cell Dev Biol 1998, 14:231-264. 156. MARTINEZ-RUIZ A., LAMAS S. Two decades of new concepts in nitric oxide signaling: from the discovery of a gas messenger to the mediation of nonenzymatic posttranslational modifications. IUBMB Life 2009, 61:91-98. 157. MASLIN D.J., BROWN C.A., DAS I., ZHANG X.H. Nitric oxide--a mediator of the effects of garlic? Biochem Soc Trans 1997, 25:408S. 158. MASSION P.B., FERON O., DESSY C., BALLIGAND J.L. Nitric oxide and cardiac function: ten years after, and continuing. Circ Res 2003, 93:388-398. 159. MEDVEDEV O.S., GORODETSKAYA E.A. Systemic and regional hemodynamic effects of perindopril in experimental heart failure. Am Heart J 1993, 126:764-769. 160. MEINERTZ T., BRANDSTATTER A., TRENK D., JAHNCHEN E., OSTROWSKI J., GARTNER W. Relationship between pharmacokinetics and pharmacodynamics of molsidomine and its metabolites in humans. Am Heart J 1985, 109:644-648. 244 REFERENCES 161. MELILLO G., MUSSO T., SICA A., TAYLOR L.S., COX G.W., VARESIO L. A hypoxiaresponsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. J Exp Med 1995, 182:1683-1693. 162. MICHIELS C., ARNOULD T., REMACLE J. Endothelial cell responses to hypoxia: initiation of a cascade of cellular interactions. Biochim Biophys Acta 2000, 1497:1-10. 163. MILOSEVIC J., ADLER I., MANAENKO A., SCHWARZ S.C., WALKINSHAW G., AREND M., FLIPPIN L.A., STORCH A., SCHWARZ J. Non-hypoxic Stabilization of Hypoxia-Inducible Factor Alpha (HIF-alpha): Relevance in Neural Progenitor/Stem Cells. Neurotox Res 2009, 15:367-380. 164. MINISTRY OF HEALTH S. Ministry of Health, Singapore http://wwwmohgovsg/mohcorp/statisticsaspx?id=5526 2009, last accessed on 10 June 2009. 165. MIZUGUCHI S., TAKEMURA S., MINAMIYAMA Y., KODAI S., TSUKIOKA T., INOUE K., OKADA S., SUEHIRO S. S-allyl cysteine attenuated CCl4-induced oxidative stress and pulmonary fibrosis in rats. Biofactors 2006, 26:81-92. 166. MOK Y.Y., ATAN M.S., YOKE PING C., ZHONG JING W., BHATIA M., MOOCHHALA S., MOORE P.K. Role of hydrogen sulphide in haemorrhagic shock in the rat: protective effect of inhibitors of hydrogen sulphide biosynthesis. Br J Pharmacol 2004, 143:881-889. 167. MONTOPOLI M., FROLDI G., COMELLI M.C., PROSDOCIMI M., CAPARROTTA L. Aescin protection of human vascular endothelial cells exposed to cobalt chloride mimicked hypoxia and inflammatory stimuli. Planta Med 2007, 73:285-288. 168. MORELAND R.B., GOLDSTEIN I., TRAISH A. Sildenafil, a novel inhibitor of phosphodiesterase type in human corpus cavernosum smooth muscle cells. Life Sci 1998, 62:PL 309-318. 169. MURPHY M.E., BRAYDEN J.E. Nitric oxide hyperpolarizes rabbit mesenteric arteries via ATP-sensitive potassium channels. J Physiol 1995, 486 ( Pt 1):47-58. 170. MYERS R., PEARLMAN A., HYMAN R., GOLDSTEIN R., KENT K., GOLDSTEIN R., EPSTEIN S. Beneficial effects of vagal stimulation and bradycardia during experimental acute myocardial ischemia. Circulation 1974, 49:943-947. 171. NAGAE S., USHIJIMA M., HATONO S., IMAI J., KASUGA S., MATSUURA H., ITAKURA Y., HIGASHI Y. Pharmacokinetics of the garlic compound S-allylcysteine. Planta Med 1994, 60:214-217. 172. NAKANISHI K., VINTEN-JOHANSEN J., LEFER D.J., ZHAO Z., FOWLER W.C., 3RD, MCGEE D.S., JOHNSTON W.E. Intracoronary L-arginine during reperfusion improves endothelial function and reduces infarct size. Am J Physiol 1992, 263:H1650-1658. 173. NAKAO A., SUGIMOTO R., BILLIAR T.R., MCCURRY K.R. Therapeutic antioxidant medical gas. J Clin Biochem Nutr 2009, 44:1-13. 245 REFERENCES 174. NAMIKI A., BROGI E., KEARNEY M., KIM E.A., WU T., COUFFINHAL T., VARTICOVSKI L., ISNER J.M. Hypoxia induces vascular endothelial growth factor in cultured human endothelial cells. J Biol Chem 1995, 270:31189-31195. 175. NAMKOONG S., KIM C.K., CHO Y.L., KIM J.H., LEE H., HA K.S., CHOE J., KIM P.H., WON M.H., KWON Y.G., SHIM E.B., KIM Y.M. Forskolin increases angiogenesis through the coordinated cross-talk of PKA-dependent VEGF expression and Epac-mediated PI3K/Akt/eNOS signaling. Cell Signal 2009, 21:906-915. 176. NAPOLI C., DE NIGRIS F., WILLIAMS-IGNARRO S., PIGNALOSA O., SICA V., IGNARRO L.J. Nitric oxide and atherosclerosis: an update. Nitric Oxide 2006, 15:265-279. 177. NATARAJAN R., SALLOUM F.N., FISHER B.J., KUKREJA R.C., FOWLER A.A., 3RD. Hypoxia inducible factor-1 activation by prolyl 4-hydroxylase-2 gene silencing attenuates myocardial ischemia reperfusion injury. Circ Res 2006, 98:133-140. 178. NEIL A., SILAGY C. Garlic: its cardio-protective properties. Curr Opin Lipidol 1994, 5:6-10. 179. NITZ R.E., MARTORANA P.A. The activity of molsidomine in experimental models of ischemic cardiac disease. Am Heart J 1985, 109:631-636. 180. NIZIOLEK M., KORYTOWSKI W., GIROTTI A.W. Nitric oxide inhibition of free radicalmediated lipid peroxidation in photodynamically treated membranes and cells. Free Radic Biol Med 2003, 34:997-1005. 181. NUMAGAMI Y., OHNISHI S.T. S-allylcysteine inhibits free radical production, lipid peroxidation and neuronal damage in rat brain ischemia. J Nutr 2001, 131:1100S-1105S. 182. O'SULLIVAN S E. What is the significance of vascular hydrogen sulphide (H(2)S)? Br J Pharmacol 2006. 183. OCKAILI R., SALLOUM F., HAWKINS J., KUKREJA R.C. Sildenafil (Viagra) induces powerful cardioprotective effect via opening of mitochondrial K(ATP) channels in rabbits. Am J Physiol Heart Circ Physiol 2002, 283:H1263-1269. 184. OTTERBEIN L.E., CHOI A.M. Heme oxygenase: colors of defense against cellular stress. Am J Physiol Lung Cell Mol Physiol 2000, 279:L1029-1037. 185. OUDIT G.Y., SUN H., KERFANT B.G., CRACKOWER M.A., PENNINGER J.M., BACKX P.H. The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. J Mol Cell Cardiol 2004, 37:449-471. 186. PABLA R., BUDA A.J., FLYNN D.M., BLESSE S.A., SHIN A.M., CURTIS M.J., LEFER D.J. Nitric oxide attenuates neutrophil-mediated myocardial contractile dysfunction after ischemia and reperfusion. Circ Res 1996, 78:65-72. 187. PADMANABHAN M., MAINZEN PRINCE P.S. S-allylcysteine ameliorates isoproterenolinduced cardiac toxicity in rats by stabilizing cardiac mitochondrial and lysosomal enzymes. Life Sci 2007, 80:972-978. 246 REFERENCES 188. PADMANABHAN M., PRINCE P.S. Preventive effect of S-allylcysteine on lipid peroxides and antioxidants in normal and isoproterenol-induced cardiotoxicity in rats: a histopathological study. Toxicology 2006, 224:128-137. 189. PADMANABHAN M., RAJADURAI M., PRINCE P.S. Preventive effect of S-allylcysteine on membrane-bound enzymes and glycoproteins in normal and isoproterenol-induced cardiac toxicity in male Wistar rats. Basic Clin Pharmacol Toxicol 2008, 103:507-513. 190. PALMER L.A., SEMENZA G.L., STOLER M.H., JOHNS R.A. Hypoxia induces type II NOS gene expression in pulmonary artery endothelial cells via HIF-1. Am J Physiol 1998, 274:L212219. 191. PAN T.T., FENG Z.N., LEE S.W., MOORE P.K., BIAN J.S. Endogenous hydrogen sulfide contributes to the cardioprotection by metabolic inhibition preconditioning in the rat ventricular myocytes. J Mol Cell Cardiol 2006, 40:119-130. 192. PASCERI V., PRISTIPINO C., PELLICCIA F., GRANATELLI A., SPECIALE G., RONCELLA A., PIRONI B., CAPASSO M., RICHICHI G. Effects of the nitric oxide donor nitroprusside on no-reflow phenomenon during coronary interventions for acute myocardial infarction. Am J Cardiol 2005, 95:1358-1361. 193. PEREZ-SEVERIANO F., RODRIGUEZ-PEREZ M., PEDRAZA-CHAVERRI J., MALDONADO P.D., MEDINA-CAMPOS O.N., ORTIZ-PLATA A., SANCHEZ-GARCIA A., VILLEDA-HERNANDEZ J., GALVAN-ARZATE S., AGUILERA P., SANTAMARIA A. S-Allylcysteine, a garlic-derived antioxidant, ameliorates quinolinic acid-induced neurotoxicity and oxidative damage in rats. Neurochem Int 2004, 45:1175-1183. 194. PHILLIPS R.J., MESTAS J., GHARAEE-KERMANI M., BURDICK M.D., SICA A., BELPERIO J.A., KEANE M.P., STRIETER R.M. Epidermal growth factor and hypoxia-induced expression of CXC chemokine receptor on non-small cell lung cancer cells is regulated by the phosphatidylinositol 3-kinase/PTEN/AKT/mammalian target of rapamycin signaling pathway and activation of hypoxia inducible factor-1alpha. J Biol Chem 2005, 280:22473-22481. 195. PIPER H.M., ABDALLAH Y., SCHAFER C. The first minutes of reperfusion: a window of opportunity for cardioprotection. Cardiovasc Res 2004, 61:365-371. 196. PONG W.W., ELDRED W.D. Interactions of the gaseous neuromodulators nitric oxide, carbon monoxide, and hydrogen sulfide in the salamander retina. J Neurosci Res 2009. 197. PRYOR W.A., HOUK K.N., FOOTE C.S., FUKUTO J.M., IGNARRO L.J., SQUADRITO G.L., DAVIES K.J. Free radical biology and medicine: it's a gas, man! Am J Physiol Regul Integr Comp Physiol 2006, 291:R491-511. 198. PURANIK M., WEEKS C.L., LAHAYE D., KABIL O., TAOKA S., NIELSEN S.B., GROVES J.T., BANERJEE R., SPIRO T.G. Dynamics of carbon monoxide binding to cystathionine betasynthase. J Biol Chem 2006, 281:13433-13438. 199. PYO J.O., NAH J., KIM H.J., CHANG J.W., SONG Y.W., YANG D.K., JO D.G., KIM H.R., CHAE H.J., CHAE S.W., HWANG S.Y., KIM S.J., KIM H.J., CHO C., OH C.G., PARK W.J., JUNG Y.K. 247 REFERENCES Protection of cardiomyocytes from ischemic/hypoxic cell death via Drbp1 and pMe2GlyDH in cardio-specific ARC transgenic mice. J Biol Chem 2008, 283:30707-30714. 200. QU K., CHEN C.P., HALLIWELL B., MOORE P.K., WONG P.T. Hydrogen sulfide is a mediator of cerebral ischemic damage. Stroke 2006, 37:889-893. 201. RADOMSKI M.W., MONCADA S. Regulation of vascular homeostasis by nitric oxide. Thromb Haemost 1993, 70:36-41. 202. RAHMAN K., LOWE G.M. Garlic and cardiovascular disease: a critical review. J Nutr 2006, 136:736S-740S. 203. RAJA S.G. Cardioprotection with sildenafil: implications for clinical practice. Curr Med Chem 2006, 13:3155-3164. 204. RAMIREZ-BERGERON D.L., SIMON M.C. Hypoxia-inducible factor and the development of stem cells of the cardiovascular system. Stem Cells 2001, 19:279-286. 205. RAPHAEL J., ZUO Z., ABEDAT S., BEERI R., GOZAL Y. Isoflurane preconditioning decreases myocardial infarction in rabbits via up-regulation of hypoxia inducible factor that is mediated by mammalian target of rapamycin. Anesthesiology 2008, 108:415-425. 206. REFFELMANN T., KLONER R.A. Effects of sildenafil on myocardial infarct size, microvascular function, and acute ischemic left ventricular dilation. Cardiovasc Res 2003, 59:441-449. 207. REIFFENSTEIN R.J., HULBERT W.C., ROTH S.H. Toxicology of hydrogen sulfide. Annu Rev Pharmacol Toxicol 1992, 32:109-134. 208. RIBEIRO M.O., ANTUNES E., DE NUCCI G., LOVISOLO S.M., ZATZ R. Chronic inhibition of nitric oxide synthesis. A new model of arterial hypertension. Hypertension 1992, 20:298303. 209. ROSANIO S., YE Y., ATAR S., RAHMAN A.M., FREEBERG S.Y., HUANG M.H., URETSKY B.F., BIRNBAUM Y. Enhanced cardioprotection against ischemia-reperfusion injury with combining sildenafil with low-dose atorvastatin. Cardiovasc Drugs Ther 2006, 20:27-36. 210. ROSE P., WHITEMAN M., MOORE P.K., ZHU Y.Z. Bioactive S-alk(en)yl cysteine sulfoxide metabolites in the genus Allium: the chemistry of potential therapeutic agents. Nat Prod Rep 2005, 22:351-368. 211. ROSSONI G., MANFREDI B., DE GENNARO COLONNA V., BERTI M., GUAZZI M., BERTI F. Sildenafil reduces L-NAME-induced severe hypertension and worsening of myocardial ischaemia-reperfusion damage in the rat. Br J Pharmacol 2007, 150:567-576. 212. ROSSONI G., MANFREDI B., DE GENNARO COLONNA V., BRINI A.T., POLVANI G., CLEMENT M.G., BERTI F. Nitric oxide and prostacyclin pathways: an integrated mechanism that limits myocardial infarction progression in anaesthetized rats. Pharmacol Res 2006, 53:359-366. 248 REFERENCES 213. RUBBO H. Nitric oxide and peroxynitrite in lipid peroxidation. Medicina (B Aires) 1998, 58:361-366. 214. RUBBO H., RADI R., ANSELMI D., KIRK M., BARNES S., BUTLER J., EISERICH J.P., FREEMAN B.A. Nitric oxide reaction with lipid peroxyl radicals spares alpha-tocopherol during lipid peroxidation. Greater oxidant protection from the pair nitric oxide/alpha-tocopherol than alpha-tocopherol/ascorbate. J Biol Chem 2000, 275:10812-10818. 215. RUBIO M., AVITABILE D., FISCHER K., EMMANUEL G., GUDE N., MIYAMOTO S., MISHRA S., SCHAEFER E.M., BROWN J.H., SUSSMAN M.A. Cardioprotective stimuli mediate phosphoinositide 3-kinase and phosphoinositide dependent kinase nuclear accumulation in cardiomyocytes. J Mol Cell Cardiol 2009. 216. RYTER S.W., OTTERBEIN L.E., MORSE D., CHOI A.M. Heme oxygenase/carbon monoxide signaling pathways: regulation and functional significance. Mol Cell Biochem 2002, 234235:249-263. 217. SALCEDA S., CARO J. Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 1997, 272:22642-22647. 218. SALLOUM F., YIN C., XI L., KUKREJA C. Sildenafil induces delayed preconditioning through inducible nitric oxide synthase-dependent pathway in the mouse heart. Circ Res 2003a, 92:595-597. 219. SALLOUM F., YIN C., XI L., KUKREJA R.C. Sildenafil induces delayed preconditioning through inducible nitric oxide synthase-dependent pathway in mouse heart. Circ Res 2003b, 92:595-597. 220. SALLOUM F.N., ABBATE A., DAS A., HOUSER J.E., MUDRICK C.A., QURESHI I.Z., HOKE N.N., ROY S.K., BROWN W.R., PRABHAKAR S., KUKREJA R.C. Sildenafil (Viagra) attenuates ischemic cardiomyopathy and improves left ventricular function in mice. Am J Physiol Heart Circ Physiol 2008, 294:H1398-1406. 221. SALLOUM F.N., DAS A., THOMAS C.S., YIN C., KUKREJA R.C. Adenosine A(1) receptor mediates delayed cardioprotective effect of sildenafil in mouse. J Mol Cell Cardiol 2007a, 43:545-551. 222. SALLOUM F.N., TAKENOSHITA Y., OCKAILI R.A., DAOUD V.P., CHOU E., YOSHIDA K., KUKREJA R.C. Sildenafil and vardenafil but not nitroglycerin limit myocardial infarction through opening of mitochondrial K(ATP) channels when administered at reperfusion following ischemia in rabbits. J Mol Cell Cardiol 2007b, 42:453-458. 223. SARAVANAN G., PRAKASH J. Effect of garlic (Allium sativum) on lipid peroxidation in experimental myocardial infarction in rats. J Ethnopharmacol 2004, 94:155-158. 224. SATAKE A., TAKAOKA M., NISHIKAWA M., YUBA M., SHIBATA Y., OKUMURA K., KITANO K., TSUTSUI H., FUJII K., KOBUCHI S., OHKITA M., MATSUMURA Y. Protective effect of 17beta-estradiol on ischemic acute renal failure through the PI3K/Akt/eNOS pathway. Kidney Int 2008, 73:308-317. 249 REFERENCES 225. SCHOFIELD C.J., RATCLIFFE P.J. Signalling hypoxia by HIF hydroxylases. Biochem Biophys Res Commun 2005, 338:617-626. 226. SEKINE H., SHIMIZU T., HOBO K., SEKIYA S., YANG J., YAMATO M., KUROSAWA H., KOBAYASHI E., OKANO T. Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts. Circulation 2008, 118:S145-152. 227. SEMENZA G.L. Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr Opin Genet Dev 1998, 8:588-594. 228. SEMENZA G.L. Regulation of physiological responses to continuous and intermittent hypoxia by hypoxia-inducible factor 1. Exp Physiol 2006, 91:803-806. 229. SEMENZA G.L., JIANG B.H., LEUNG S.W., PASSANTINO R., CONCORDET J.P., MAIRE P., GIALLONGO A. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem 1996, 271:32529-32537. 230. SEMENZA G.L., SHIMODA L.A., PRABHAKAR N.R. Regulation of gene expression by HIF-1. Novartis Found Symp 2006, 272:2-8; discussion 8-14, 33-16. 231. SEMENZA G.L., WANG G.L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 1992, 12:5447-5454. 232. SENZAKI H., SMITH C.J., JUANG G.J., ISODA T., MAYER S.P., OHLER A., PAOLOCCI N., TOMASELLI G.F., HARE J.M., KASS D.A. Cardiac phosphodiesterase (cGMP-specific) modulates beta-adrenergic signaling in vivo and is down-regulated in heart failure. Faseb J 2001, 15:1718-1726. 233. SHIRAISHI I., MELENDEZ J., AHN Y., SKAVDAHL M., MURPHY E., WELCH S., SCHAEFER E., WALSH K., ROSENZWEIG A., TORELLA D., NURZYNSKA D., KAJSTURA J., LERI A., ANVERSA P., SUSSMAN M.A. Nuclear targeting of Akt enhances kinase activity and survival of cardiomyocytes. Circ Res 2004, 94:884-891. 234. SHU B., YANG W.W., YANG H.T. Expression pattern of E2F6 in physical and chemical hypoxia-induced apoptosis. Sheng Li Xue Bao 2008, 60:1-10. 235. SHUKLA N., ROSSONI G., HOTSTON M., SPARATORE A., DEL SOLDATO P., TAZZARI V., PERSAD R., ANGELINI G.D., JEREMY J.Y. Effect of hydrogen sulphide-donating sildenafil (ACS6) on erectile function and oxidative stress in rabbit isolated corpus cavernosum and in hypertensive rats. BJU Int 2009. 236. SHYU K.G., WANG M.T., WANG B.W., CHANG C.C., LEU J.G., KUAN P., CHANG H. Intramyocardial injection of naked DNA encoding HIF-1alpha/VP16 hybrid to enhance angiogenesis in an acute myocardial infarction model in the rat. Cardiovasc Res 2002, 54:576-583. 250 REFERENCES 237. SINGLA D.K., SINGLA R.D., MCDONALD D.E. Factors released from embryonic stem cells inhibit apoptosis in H9c2 cells through PI3K/Akt but not ERK pathway. Am J Physiol Heart Circ Physiol 2008, 295:H907-913. 238. SIVARAJAH A., MCDONALD M.C., THIEMERMANN C. The production of hydrogen sulfide limits myocardial ischemia and reperfusion injury and contributes to the cardioprotective effects of preconditioning with endotoxin, but not ischemia in the rat. Shock 2006, 26:154-161. 239. SLUITER E. The production of hydrogen sulphide by animal tissues. Biochem J 1930, 24:549-563. 240. SMUL T.M., LANGE M., REDEL A., BURKHARD N., ROEWER N., KEHL F. Desfluraneinduced preconditioning against myocardial infarction is mediated by nitric oxide. Anesthesiology 2006, 105:719-725. 241. SRILATHA B., ADAIKAN P.G., LI L., MOORE P.K. Hydrogen sulphide: a novel endogenous gasotransmitter facilitates erectile function. J Sex Med 2007, 4:1304-1311. 242. SRILATHA B., ADAIKAN P.G., MOORE P.K. Possible role for the novel gasotransmitter hydrogen sulphide in erectile dysfunction--a pilot study. Eur J Pharmacol 2006, 535:280282. 243. STAUSS H.M., ZHU Y.C., REDLICH T., ADAMIAK D., MOTT A., KREGEL K.C., UNGER T. Angiotensin-converting enzyme inhibition in infarct-induced heart failure in rats: bradykinin versus angiotensin II. J Cardiovasc Risk 1994, 1:255-262. 244. STIPANUK M.H., BECK P.W. Characterization of the enzymic capacity for cysteine desulphhydration in liver and kidney of the rat. Biochem J 1982, 206:267-277. 245. SZABO C. Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov 2007, 6:917-935. 246. SZEWCZYK A. The ATP-regulated K+ channel in mitochondria: five years after its discovery. Acta Biochim Pol 1996, 43:713-719. 247. TAKANO H., MANCHIKALAPUDI S., TANG X.L., QIU Y., RIZVI A., JADOON A.K., ZHANG Q., BOLLI R. Nitric oxide synthase is the mediator of late preconditioning against myocardial infarction in conscious rabbits. Circulation 1998, 98:441-449. 248. TAKIMOTO Y., AOYAMA T., KEYAMURA R., SHINODA E., HATTORI R., YUI Y., SASAYAMA S. Differential expression of three types of nitric oxide synthase in both infarcted and noninfarcted left ventricles after myocardial infarction in the rat. Int J Cardiol 2000, 76:135145. 249. TAN-NO K., NAKAJIMA T., SHOJI T., NAKAGAWASAI O., NIIJIMA F., ISHIKAWA M., ENDO Y., SATO T., SATOH S., TADANO T. Anti-inflammatory effect of propolis through inhibition of nitric oxide production on carrageenin-induced mouse paw edema. Biol Pharm Bull 2006, 29:96-99. 251 REFERENCES 250. TANG G., WU L., LIANG W., WANG R. Direct stimulation of K(ATP) channels by exogenous and endogenous hydrogen sulfide in vascular smooth muscle cells. Mol Pharmacol 2005, 68:1757-1764. 251. TANG X.Q., YU H.M., ZHI J.L., CUI Y., TANG E.H., FENG J.Q., CHEN P.X. Inducible nitric oxide synthase and cyclooxgenase-2 mediate protection of hydrogen peroxide preconditioning against apoptosis induced by oxidative stress in PC12 cells. Life Sci 2006, 79:870-876. 252. TOKER A., NEWTON A.C. Cellular signaling: pivoting around PDK-1. Cell 2000, 103:185188. 253. TREINS C., GIORGETTI-PERALDI S., MURDACA J., SEMENZA G.L., VAN OBBERGHEN E. Insulin stimulates hypoxia-inducible factor through a phosphatidylinositol 3kinase/target of rapamycin-dependent signaling pathway. J Biol Chem 2002, 277:2797527981. 254. TRIANTAFYLLOU A., LIAKOS P., TSAKALOF A., GEORGATSOU E., SIMOS G., BONANOU S. Cobalt induces hypoxia-inducible factor-1alpha (HIF-1alpha) in HeLa cells by an ironindependent, but ROS-, PI-3K- and MAPK-dependent mechanism. Free Radic Res 2006, 40:847-856. 255. TSUJITA Y., MURASKI J., SHIRAISHI I., KATO T., KAJSTURA J., ANVERSA P., SUSSMAN M.A. Nuclear targeting of Akt antagonizes aspects of cardiomyocyte hypertrophy. Proc Natl Acad Sci U S A 2006, 103:11946-11951. 256. VAN DER KOOIJ M.A., GROENENDAAL F., KAVELAARS A., HEIJNEN C.J., VAN BEL F. Combination of deferoxamine and erythropoietin: therapy for hypoxia-ischemia-induced brain injury in the neonatal rat? Neurosci Lett 2009, 451:109-113. 257. VASSILOPOULOS A., PAPAZAFIRI P. Attenuation of oxidative stress in HL-1 cardiomyocytes improves mitochondrial function and stabilizes Hif-1alpha. Free Radic Res 2005, 39:1273-1284. 258. VEERAVALLI K.K., AKULA A. Involvement of nitric oxide and prostaglandin pathways in the cardioprotective actions of bradykinin in rats with experimental myocardial infarction. Pharmacol Res 2004, 49:23-29. 259. WANG G.L., SEMENZA G.L. Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor DNA-binding activity: implications for models of hypoxia signal transduction. Blood 1993a, 82:3610-3615. 260. WANG G.L., SEMENZA G.L. General involvement of hypoxia-inducible factor in transcriptional response to hypoxia. Proc Natl Acad Sci U S A 1993b, 90:4304-4308. 261. WANG H., LONG C., DUAN Z., SHI C., JIA G., ZHANG Y. A new ATP-sensitive potassium channel opener protects endothelial function in cultured aortic endothelial cells. Cardiovasc Res 2007, 73:497-503. 262. WANG R. Resurgence of carbon monoxide: an endogenous gaseous vasorelaxing factor. Can J Physiol Pharmacol 1998, 76:1-15. 252 REFERENCES 263. WANG R. Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter? Faseb J 2002, 16:1792-1798. 264. WANG Y., KUDO M., XU M., AYUB A., ASHRAF M. Mitochondrial K(ATP) channel as an end effector of cardioprotection during late preconditioning: triggering role of nitric oxide. J Mol Cell Cardiol 2001, 33:2037-2046. 265. WELCH C., WUARIN L., SIDELL N. Antiproliferative effect of the garlic compound S-allyl cysteine on human neuroblastoma cells in vitro. Cancer Lett 1992, 63:211-219. 266. WHITE H.D., CHEW D.P. Acute myocardial infarction. Lancet 2008, 372:570-584. 267. WHITEMAN M., ALI M., LI L., CHEONG Y.P., MOK Y.-Y.P., KOSTETSKI I., CHU S.H., SIAU J.L., BHATIA M., MOORE P.K. P073. Hydrogen sulfide regulates the availability of nitric oxide through the formation of a novel nitrosothiol: Implications for cardiovascular function and human disease. Nitric Oxide 2006a, 14:40. 268. WHITEMAN M., ARMSTRONG J.S., CHU S.H., JIA-LING S., WONG B.S., CHEUNG N.S., HALLIWELL B., MOORE P.K. The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite 'scavenger'? J Neurochem 2004, 90:765-768. 269. WHITEMAN M., LI L., KOSTETSKI I., CHU S.H., SIAU J.L., BHATIA M., MOORE P.K. Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide. Biochem Biophys Res Commun 2006b, 343:303-310. 270. WHO. Cardiovascular Diseases. http://wwwwhoint/cardiovascular_diseases/en/ 2009, last accessed on 05 May 2009. 271. WILDHIRT S.M., DUDEK R.R., SUZUKI H., BING R.J. Involvement of inducible nitric oxide synthase in the inflammatory process of myocardial infarction. Int J Cardiol 1995, 50:253-261. 272. WILLIAMS M.W., TAFT C.S., RAMNAUTH S., ZHAO Z.Q., VINTEN-JOHANSEN J. Endogenous nitric oxide (NO) protects against ischaemia-reperfusion injury in the rabbit. Cardiovasc Res 1995, 30:79-86. 273. WU L., WANG R. Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol Rev 2005, 57:585-630. 274. XI L., JARRETT N.C., HESS M.L., KUKREJA R.C. Essential role of inducible nitric oxide synthase in monophosphoryl lipid A-induced late cardioprotection: evidence from pharmacological inhibition and gene knockout mice. Circulation 1999, 99:2157-2163. 275. XI L., KUKREJA R.C. Pivotal role of nitric oxide in delayed pharmacological preconditioning against myocardial infarction. Toxicology 2000, 155:37-44. 276. XI L., TAHER M., YIN C., SALLOUM F., KUKREJA R.C. Cobalt chloride induces delayed cardiac preconditioning in mice through selective activation of HIF-1alpha and AP-1 and iNOS signaling. Am J Physiol Heart Circ Physiol 2004, 287:H2369-2375. 253 REFERENCES 277. XIAOHUI L., JUNBAO D., LIN S., JIAN L., XIUYING T., JIANGUANG Q., BING W., HONGFANG J., CHAOSHU T. Down-regulation of endogenous hydrogen sulfide pathway in pulmonary hypertension and pulmonary vascular structural remodeling induced by high pulmonary blood flow in rats. Circ J 2005, 69:1418-1424. 278. XU X., SHAN X., CAO Z., WU M., CHEN Q., LI Y. Nonhematopoietic erythropoietin derivative protects cardiomyocytes from hypoxia/reoxygenation-induced apoptosis. Journal of Nanjing Medical University 2008, 22:71-74. 279. YAMAMOTO T., BING R.J. Nitric oxide donors. Proc Soc Exp Biol Med 2000, 225:200-206. 280. YAN H., DU J., TANG C. The possible role of hydrogen sulfide on the pathogenesis of spontaneous hypertension in rats. Biochem Biophys Res Commun 2004, 313:22-27. 281. YANFEI W., LIN S., JUNBAO D., CHAOSHU T. Impact of L-arginine on hydrogen sulfide/cystathionine-gamma-lyase pathway in rats with high blood flow-induced pulmonary hypertension. Biochem Biophys Res Commun 2006, 345:851-857. 282. YANG G., WU L., JIANG B., YANG W., QI J., CAO K., MENG Q., MUSTAFA A.K., MU W., ZHANG S., SNYDER S.H., WANG R. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 2008, 322:587-590. 283. YANO N., IANUS V., ZHAO T.C., TSENG A., PADBURY J.F., TSENG Y.T. A novel signaling pathway for beta-adrenergic receptor-mediated activation of phosphoinositide 3-kinase in H9c2 cardiomyocytes. Am J Physiol Heart Circ Physiol 2007, 293:H385-393. 284. ZHANG J., LIU A., HOU R., ZHANG J., JIA X., JIANG W., CHEN J. Salidroside protects cardiomyocyte against hypoxia-induced death: A HIF-1a-activated and VEGF-mediated pathway. Eur J Pharmacol 2009. 285. ZHAO W., NDISANG J.F., WANG R. Modulation of endogenous production of H2S in rat tissues. Can J Physiol Pharmacol 2003, 81:848-853. 286. ZHAO W., WANG R. H(2)S-induced vasorelaxation and underlying cellular and molecular mechanisms. Am J Physiol Heart Circ Physiol 2002, 283:H474-480. 287. ZHAO W., ZHANG J., LU Y., WANG R. The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. Embo J 2001, 20:6008-6016. 288. ZHENG H., DAI T., ZHOU B., ZHU J., HUANG H., WANG M., FU G. SDF-1alpha/CXCR4 decreases endothelial progenitor cells apoptosis under serum deprivation by PI3K/Akt/eNOS pathway. Atherosclerosis 2008. 289. ZHOU X.H., HUANG X.L., WEI P., TIAN F.J., LING Y.L. Role of hydrogen sulfide/cystathionine-gamma-lyase system in acute lung injury induced by lipopolysaccharide in rats. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 2009, 21:199-202. 290. ZHU Y., ZHANG L., GIDDAY J.M. Deferroxamine preconditioning promotes long-lasting retinal ischemic tolerance. J Ocul Pharmacol Ther 2008, 24:527-535. 254 REFERENCES 291. ZHU Y.Z., CHONG C.L., CHUAH S.C., HUANG S.H., NAI H.S., TONG H.T., WHITEMAN M., MOORE P.K. Cardioprotective effects of nitroparacetamol and paracetamol in acute phase of myocardial infarction in experimental rats. Am J Physiol Heart Circ Physiol 2006, 290:H517-524. 292. ZHU Y.Z., WANG Z.J., HO P., LOKE Y.Y., ZHU Y.C., HUANG S.H., TAN C.S., WHITEMAN M., LU J., MOORE P.K. Hydrogen sulfide and its possible roles in myocardial ischemia in experimental rats. J Appl Physiol 2007, 102:261-268. 293. ZHU Y.Z., ZHU Y.C., LI J., SCHAFER H., SCHMIDT W., YAO T., UNGER T. Effects of losartan on haemodynamic parameters and angiotensin receptor mRNA levels in rat heart after myocardial infarction. J Renin Angiotensin Aldosterone Syst 2000, 1:257-262. 294. ZICHA J., PECHANOVA O., DOBESOVA Z., KUNES J. Hypertensive response to chronic NGnitro-L-arginine methyl ester (L-NAME) treatment is similar in immature and adult Wistar rats. Clin Sci (Lond) 2003, 105:483-489. 295. ZIOLO M.T., KOHR M.J., WANG H. Nitric oxide signaling and the regulation of myocardial function. J Mol Cell Cardiol 2008, 45:625-632. 296. ZUNDEL W., SCHINDLER C., HAAS-KOGAN D., KOONG A., KAPER F., CHEN E., GOTTSCHALK A.R., RYAN H.E., JOHNSON R.S., JEFFERSON A.B., STOKOE D., GIACCIA A.J. Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev 2000, 14:391-396. 255 [...]... (WHO, 2006) In the local context, ischemic heart disease is the second leading cause of all mortalities in Singapore, accounting for 20% of all deaths in 2007 (Ministry of Health, 2009) 2 INTRODUCTION 1.2 MYOCARDIAL INFARCTION (MI) 1.2.1 Pathophysiology and Management of Myocardial Infarction Myocardial infarction, otherwise more commonly known as heart attack is the most prevalent form of cardiovascular... L-NAME Figure 4.12 CSE protein expression in MI-operated rats in saline, sildenafil and LNAME treated groups xiii Figure 5.1 Infarct sizes and hypertrophy indices of rats in saline, NaHS, molsidomine, PAG and L-NAME-treated groups Figure 5.2 Blood pressure (mmHg) of rats in saline, NaHS, molsidomine, PAG and L-NAME treated groups Figure 5.3 ECGs of saline, NaHS, molsidomine, PAG and L-NAME-treated rats... Survival rate of the animals in saline, sildenafil and L-NAME-treated groups following MI Table 4.2 Heart rates for saline, sildenafil and L-NAME treated rats Table 5.1 Survival rates of rats 48h after induction of myocardial infarction in saline, NaHS, molsidomine, PAG and L-NAME treated groups Table 5.2 Heart rates for saline, NaHS, molsidomine, PAG and L-NAME treated rats xi LIST OF FIGURES Figure... levels in the left ventricles of MI and sham-operated rats in saline, sildenafil and L-NAME treated groups Figure 4.5 NOx concentration in plasma samples of MI and sham-operated rats in saline, sildenafil and L-NAME treated groups Figure 4.6 eNOS protein expression in MI-operated rats in saline, sildenafil and LNAME treated groups Figure 4.7 nNOS protein expression in MI-operated rats in saline, sildenafil... cell signaling pathways and the underlying mechanisms involved such that a better understanding of the disease can be achieved to allow for the development of a novel, more superior, therapeutic intervention in the treatment of MI 1.2.2 Animal Models of Acute Myocardial Infarction (AMI) Several animal models of AMI have contributed to our understanding of the disease AMI can be initiated using several... Zhu Y.Z Hydrogen sulphide exerts cardioprotection by enhancing hypoxia-inducible factor 1 (HIF-1) activation and iNOS expression through regulation of PI3K/Akt signaling pathway during ischemia Oral presentation at The First International Conference of Hydrogen Sulfide in Biology and Medicine 2009, 26-28th June, Shanghai, China Recipient of the Young Investigator Award xx INTRODUCTION CHAPTER 1 INTRODUCTION... atheromatous plaques build up in coronary vessels supplying the myocardium, limiting oxygen and nutrients to result in myocardial damage Of all cardiovascular deaths in Europe and in the United States, CHD is the single largest killer, accounting for more than 1 in 5 deaths (Klocke et al., 2007) The number of CHD is escalating in both developed and developing countries and is claiming more lives than cancer... xv Figure 6.16 Binding o f HIF-1α protein from myocytes to HRE in iNOS gene promoter region Figure 6.17 iNOS gene expression in NC, HC, N300 and H300 groups of h9c2 Figure 6.18 iNOS gene expression in NC, HC, N100 and H100 groups of cardiomyocytes Figure 6.19 iNOS protein expression in NC, HC, N100 and H100 groups of cardiomyocytes Figure 6.20 NO production in various treatment groups of h9c2 Figure... protein kinase MI myocardial infarction mitoK ATP mitochondrial ATP-sensitive potassium channel MTT 3-(4,5-Dimethylthiazol- 2-yl)-2,5-dip henyltetrazolium bromide NAD nicotinamide adenine dinucleotide NADH reduced nicotinamide adenine dinucleotide NaHS sodium hydrosulfide NC normoxic control nNOS neuronal nitric oxide synthase NO nitric oxide NOS nitric oxide synthase NOx nitrate and nitrite O2 - superoxide... sulfhemoglobin Hemoglobin is also a common sink for both NO and CO in forming nitrosyl hemoglobin and scarlet carboxyhemoglobin respectively (Wang, 1998) As such, the binding of one gas will reduce the binding potential of the other gases to hemoglobin, and this will then alter the bioavailability of these gases to act on their targeted cells (Wang, 2002) 13 INTRODUCTION Figure 1.3 Metabolism of H2S in the body . ROLES AND RELATIONSHIP OF GASOTRANSMITTERS HYDROGEN SULFIDE AND NITRIC OXIDE IN MYOCARDIAL INFARCTION CHUAH SHIN CHET B.Sc. (Hons), National University of Singapore . AND RELATIONSHIP OF HYDROGEN SULFIDE AND NITRIC OXIDE IN A RAT MODEL OF ACUTE MYOCARDIAL INFARCTION. ……………………… 137 5.1 RESULTS …… 138 5.1.1 Survival Rate after Acute Myocardial Infarction … …………. platform using both donors and inhibitors of H 2 S and NO in in vivo MI models. NaHS and molsidomine attenuated infarct enlargement and improved survival whilst inhibitors of CSE and NOS exacerbated