Use of upconversion fluorescent nanoparticles for simultaneous imaging, detection and delivery of sirna

185 822 0
Use of upconversion fluorescent nanoparticles for simultaneous imaging, detection and delivery of sirna

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

USE OF UPCONVERSION FLUORESCENT NANOPARTICLES FOR SIMULTANEOUS IMAGING, DETECTION AND DELIVERY OF SIRNA JIANG SHAN (B.Sc., Harbin Institute of Technology) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DIVISION OF BIOENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2010 PREFACE This thesis is hereby submitted for the degree of Doctor of Philosophy in the Division of Bioengineering at the Faculty of Engineering, National University of Singapore. This thesis, either in part or whole, has never been submitted for any other degree or equivalent to another university or institution. This thesis contains all original work, unless specifically mentioned and referenced to other works. Parts of this thesis had been published or presented in the following: Peer Reviewed Journal Publications: 1. Shan Jiang, Yong Zhang, Kian Meng Lim, Eugene K W Sim and Lei Ye. NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA. 2009. Nanotechnology 20(15):9. 2. Shan Jiang, Muthu Kumara Gnanasammandhan, Yong Zhang. Optical Imaging Guided Cancer Therapy with Fluorescent Nanoparticles. 2010. Journal of the Royal Society Interface 7(42): 3-18. (Review paper) 3. Shan Jiang, Yong Zhang. Upconversion nanoparticle based FRET system for study of siRNA in live cells. 2010. Langmuir. In press ii 4. Wee Beng Tan, Shan Jiang, Yong Zhang. Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. 2007. Biomaterials 28: 1565–1571. 5. Zhengquan Li, Yong Zhang, Shan Jiang. Multicolor Core/Shell-Structured Upconversion fluorescent Nanoparticles. 2008. Advanced materials 20: 4765 – 4769. International Conferences Presentations: 1. Shan Jiang, Yong Zhang, Kian Meng Lim. Fluorescence resonance Energy transfer (FRET) of oppositely charged upconversion nanoparticles and quantum dots. 4th World Congress on Bioengineering (WACBE), 26-29 Jul, 2009, Hong Kong Polytechnic University, Hong Kong, China. Poster Presentation 2. Shan Jiang, Yong Zhang. IR-to-visible Upconversion Nanoparticles for in Vitro Fluorescent Imaging. 4th Kuala Lumpur International Conference on Biomedical Engineering, 25-28 June 2008, Malaysia, Kuala Lumpur. IFMBE Proceedings 21, 330-332. Oral Presentation. 3. Shan Jiang, Yong Zhang. Use of IR-to-Visible Upconversion Fluorescent Nanoparticles for Tracking of siRNA Delivery. The Sixth IASTED International Conference on Biomedical Engineering, 13-15 Feb 2008, Innsbruck, Austria. iii Proceeding 368-371. Oral Presentation. 4. Shan Jiang, Yong Zhang. Effective Delivery of Small Interference RNA to Cancer Cells by Using Up-converting Nanoparticles. The 3rd WACBE World Congress on Bioengineering, 9-11 July 2007, Bangkok, Thailand. Proceeding. Oral Presentation. 5. Shan Jiang, Wee Beng Tan, Yong Zhang. Imaging Assisted siRNA Delivery Using Multifunctional Nanoparticles. Materials Processing for Properties and Performance. 11-15 Dec 2006, Singapore. Proceeding 46-48. Oral Presentation. 6. Shan Jiang, Wee Beng Tan and Yong Zhang. Multifunctional Nanoparticles-mediated siRNA Delivery for Breast Cancer Therapy. The 2nd Tohoku-NUS Joint Symposium on the Future Nano-medicine and Bioengineering in the East Asian Region, 4-5 Dec 2006, National University of Singapore, Singapore. Proceeding 15-16. Oral Presentation. iv ACKNOWLEDGEMENTS I would like to express my sincere gratitude to each and everyone who has contributed towards the completion of my thesis. First and foremost, I would like to acknowledge the contributions of my supervisor A/P Zhang Yong for his constant encouragement, support and patience throughout the entire course of work. Especially, he offered me immense guidance and advice on the research design and article writing. I am also grateful to my co-supervisors, A/P Lim Kian Meng and A/P Eugene KW Sim for their support and assistance. I am thankful to my colleagues in Cellular and Molecular Bioenigneering lab for their help. Mr. Tan Wee Beng taught me the basic research skills and how to research when I just begin my project. Dr. Li Zhengquan and Dr. Qian Haisheng supplied the nanoparticles and discussed some chemistry questions with me. Dr. Dev Kumar Chatterjee, Miss Muhammad Idris Niagara, Mr. Muthu Kumara Gnanasammandhan and Mr. Shashi Ranjan helped me revise my writing. Dr. Guo Huichen discussed some biological questions with me. I would also like to extend my thanks to the undergraduates including Mr. Ng Weiguang, Ms Sandra Ho Pei Rong and Ms Ho Lay Hoon who have put in a long time and challenged me with their questions. Finally, I express my deep thanks to my parents, Mr. Jiang Yongcheng and Ms. Sun Hongyun, for their constant love and support to help me through the toughest time. A v special acknowledgment goes to my lover, Mr. Dong Hongliang who brought me many happiness and joy. Jiang Shan September, 2009 vi TABLE OF CONTENTS PREFACE ii ACKNOWLEDGEMENTS v TABLE OF CONTENTS vii SUMMARY x LIST OF TABLES .xi LIST OF FIGURES xii ABBREVIATIONS . xvii CHAPTER LITERATURE REVIEW 1.1 Fluorescent nanoparticles . 1.1.1 Organic dye doped nanoparticles . 1.1.2 Quantum dots . 1.1.3 Upconversion nanoparticles . 1.2 Molecular cancer diagnosis 16 1.2.1 In vitro imaging of cancer 16 1.2.2 In vivo detection of cancer . 19 1.3 Multifunctional nanoparticles 27 1.3.1 Integration of imaging and therapy 28 1.3.2 siRNA imaging and delivery 32 1.3.3 FRET based biosensing 36 1.4 Thesis overview . 41 CHAPTER CHITOSAN/QDS NANOPARTICLES FOR SIRNA DELIVERY46 2.1 Introduction 47 2.2 Materials and Methods . 49 2.2.1 Materials 49 2.2.2 Cell Culture 49 2.2.3 Targeted siRNA conjugated Chitosan/QDs nanoparticles . 50 2.2.4 Determination of conjugation efficiency and release profile of siRNA from chitosan/QDs NPs 51 2.2.5 Cell viability . 52 2.2.6 Flow cytometry analysis 53 2.2.7 Imaging 53 2.2.8 siRNA-mediated luciferase gene silencing 54 vii 2.3 Results and Discussion 55 2.3.1 Properties of targeted siRNA-conjugated chitosan/QDs nanoparticles 55 2.3.2 Ligand mediated cellular uptake 59 2.3.3 siRNA-mediated inhibition of gene expression . 62 2.4 Conclusion . 63 CHAPTER PROPERTIES OF UPCONVERSION NANOPARTICLES .64 3.1 Introduction 65 3.2 Materials and Methods . 68 3.2.1 Synthesis of silica coated NaYF4 nanoparticles . 68 3.2.2 Physical characterization of UCNs 69 3.2.3 Optical characterization of UCNs 69 3.2.4 Cell viability . 69 3.2.5 Imaging 70 3.3 Results and Discussion 71 3.3.1 Physical properties of UCNs 71 3.3.2 Optical properties of UCNs . 72 3.3.3 Cytotoxicity of UCNs 75 3.3.4 Cellular uptake of UCNs 76 3.4 Conclusion . 78 CHAPTER UPCONVERSION NANOPARTICLES FOR FLUORESCENT IMAGING .80 4.1 Introduction 81 4.2 Materials and Methods . 83 4.2.1 Materials 83 4.2.2 Amino/Carboxyl group modification of UCNs 83 4.2.3 Anti-HER2 antibody/Folic acid/Streptavidin conjugation to UCNs 84 4.2.4 Imaging 86 4.3 Results and Discussion 87 4.3.1 Detection of HER2 receptors with UCNs 87 4.3.2 Detection of folate receptor with UCNs 90 4.3.3 Detection of Actin Filaments of 3T3 cells . 93 4.4 Conclusion . 96 CHAPTER UPCONVERSION NANOPARTICLES FOR DETECTION OF SIRNA .98 5.1 Introduction 99 5.2 Materials and Methods . 102 5.2.1 Materials 102 5.2.2 Complexing of BOBO-3 stained siRNA with UCNs (UCN/siRNA-BOBO3) . 102 viii 5.2.3 Release and biostability of siRNA attached on UCNs . 103 5.2.4 Intracellular release of siRNA . 104 5.2.5 Imaging 104 5.3 Results and discussion . 105 5.3.1 Synthesis of UCN/siRNA-BOBO3 complex . 105 5.3.2 Characterization of UCN/siRNA-BOBO3 complex 109 5.3.3 Release of siRNA from UCNs 111 5.3.4 Biostability of siRNA attached on UCNs .113 5.3.5 Intracellular release of siRNA 116 5.4 Conclusion 118 CHAPTER UPCONVERSION NANOPARTICLES FOR TARGETED SIRNA DELIVERY .120 6.1 Introduction 121 6.2 Materials and Methods . 124 6.2.1 Materials 124 6.2.2 Anti-HER2 antibody conjugated UCNs with attachment of siRNA 124 6.2.3 Imaging 125 6.2.4 Inductively coupled plasma (ICP) analysis 126 6.2.5 Luciferase assay . 126 6.3 Results and Discussion 127 6.3.1 Anti-HER2 antibody conjugated UCNs with attachment of siRNA 127 6.3.2 Ligand mediated cellular uptake 130 6.3.3 Long-term tracking of siRNA delivery 132 6.3.4 siRNA-mediated inhibition of gene expression . 136 6.4 Conclusion . 138 CHAPTER CONCLUSION AND FUTURE WORK 139 7.1 Conclusion . 140 7.2 Future work 142 REFERENCES .145 ix SUMMARY Recent advancements in the synthesis of fluorescent nanoparticles have made them a promising material for cancer detection. Furthermore, combining different modalities on one particle has sparked great research interest and efforts have been made to develop multifunctional nanoparticles. In this thesis, near-infrared (NIR)-to-visible upconversion fluorescent nanoparticles with unique properties such as low autofluorescence, high tissue penetration depth, low cytotoxicity, good photostability, and minimum photodamage to biological tissues are developed and used for imaging, detection and delivery of siRNA. Silica coated NaYF4 upconversion nanoparticles co-doped with lanthanide ions (Yb/Er) are synthesized with strong NIR-to-visible upconversion fluorescence. These nanoparticles were conjugated to ligands which can specifically bind to cell membrane receptors and cytoskeleton for a high sensitivity of detection with strong signal-to-background ratio for imaging of cells. In addition, the nanoparticles were also used for targeted delivery of siRNA into cells. Besides monitoring its intracellular delivery process, the release and biostability of siRNA were also demonstrated based on FRET. Taken together, this study gave evidence on the use of upconversion fluorescent nanoparticles as a multifunctional platform for simultaneous imaging, detection and delivery of siRNA. x Kikuchi, K., H. Takakusa and T. Nagano. 2004. Recent advances in the design of small molecule-based FRET sensors for cell biology. Trac-Trends in Analytical Chemistry 23(6): 407-415. Kim, D., E. S. Lee, K. T. Oh, Z. G. Gao and Y. H. Bae. 2008a. Doxorubicin-Loaded Polymeric Micelle Overcomes Multidrug Resistance of Cancer by Double-Targeting Folate Receptor and Early Endosomal pH. Small 4(11): 2043-2050. Kim, J., H. S. Kim, N. Lee, T. Kim, H. Kim, T. Yu, I. C. Song, W. K. Moon and T. Hyeon. 2008b. Multifunctional Uniform Nanoparticles Composed of a Magnetite Nanocrystal Core and a Mesoporous Silica Shell for Magnetic Resonance and Fluorescence Imaging and for Drug Delivery. Angewandte Chemie-International Edition 47(44): 8438-8441. Kim, J., J. E. Lee, S. H. Lee, J. H. Yu, J. H. Lee, T. G. Park and T. Hyeon. 2008c. Designed fabrication of a multifunctional polymer nanomedical platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery. Advanced Materials 20(3): 478-+. Kim, J. H., Y. S. Kim, K. Park, S. Lee, H. Y. Nam, K. H. Min, H. G. Jo, J. H. Park, K. Choi, S. Y. Jeong, R. W. Park, I. S. Kim, K. Kim and I. C. Kwon. 2008d. Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice. Journal of Controlled Release 127(1): 41-49. Kim, S. and M. G. Bawendi. 2003. Oligomeric Ligands for luminescent and stable nanocrystal quantum dots. Journal of the American Chemical Society 125(48): 14652-14653. Kim, S., Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi and J. V. Frangioni. 2004. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nature Biotechnology 22(1): 93-97. Kirpotin, D. B., D. C. Drummond, Y. Shao, M. R. Shalaby, K. L. Hong, U. B. Nielsen, J. D. Marks, C. C. Benz and J. W. Park. 2006. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Research 66(13): 6732-6740. Kneuer, C., M. Sameti, E. G. Haltner, T. Schiestel, H. Schirra, H. Schmidt and C. M. Lehr 1999. Silica nanoparticles modified with aminosilanes as carriers for plasmid DNA. 4th Expert Meeting on Colloidal Drug Carriers, Berlin, Germany, Elsevier Science Bv. Kramer, K. W., D. Biner, G. Frei, H. U. Gudel, M. P. Hehlen and S. R. Luthi. 2004. Hexagonal sodium yttrium fluoride based green and blue emitting 152 upconversion phosphors. Chemistry of Materials 16(7): 1244-1251. Kronke, J., R. Kittler, F. Buchholz, M. P. Windisch, T. Pietschmann, R. Bartenschlager and M. Frese. 2004. Alternative approaches for efficient inhibition of hepatitis C virus RNA replication by small interfering RNAs. Journal Of Virology 78(7): 3436-3446. Kumar, R., D. S. Conklin and V. Mittal. 2003. High-throughput selection of effective RNAi probes for gene silencing. Genome Research 13(10): 2333-2340. Kuningas, K., H. Pakkila, T. Ukonaho, T. Rantanen, T. Lovgren and T. Soukka. 2007. Upconversion fluorescence enables homogeneous immunoassay in whole blood. Clinical Chemistry 53(1): 145-146. Kuningas, K., T. Ukonaho, H. Pakkila, T. Rantanen, J. Rosenberg, T. Lovgren and T. Soukka. 2006. Upconversion fluorescence resonance energy transfer in a homogeneous immunoassay for estradiol. Analytical Chemistry 78(13): 4690-4696. Kurreck, J. 2009. RNA Interference: From Basic Research to Therapeutic Applications. Angewandte Chemie-International Edition 48(8): 1378-1398. Lagerholm, B. C., M. M. Wang, L. A. Ernst, D. H. Ly, H. J. Liu, M. P. Bruchez and A. S. Waggoner. 2004. Multicolor coding of cells with cationic peptide coated quantum dots. Nano Letters 4(10): 2019-2022. Lai, C. Y., B. G. Trewyn, D. M. Jeftinija, K. Jeftinija, S. Xu, S. Jeftinija and V. S. Y. Lin. 2003. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. Journal of the American Chemical Society 125(15): 4451-4459. Lakowicz, J. R., I. Gryczynski, Z. Gryczynski, K. Nowaczyk and C. J. Murphy. 2000. Time-resolved spectral observations of cadmium-enriched cadmium sulfide nanoparticles and the effects of DNA oligomer binding. Analytical Biochemistry 280(1): 128-136. Landen, C. N., A. Chavez-Reyes, C. Bucana, R. Schmandt, M. T. Deavers, G. Lopez-Berestein and A. K. Sood. 2005. Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Research 65(15): 6910-6918. Lee, C. H., S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang and L. W. Lo. 2009. Near-Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and In Vivo Biodistribution. Advanced Functional Materials 19(2): 215-222. 153 Lee, H., M. K. Yu, S. Park, S. Moon, J. J. Min, Y. Y. Jeong, H. W. Kang and S. Jon. 2007. Thermally cross-linked superparamagnetic iron oxide nanoparticles: Synthesis and application as a dual Imaging probe for cancer in vivo. Journal of the American Chemical Society 129(42): 12739-12745. Li, Z. Q. and Y. Zhang. 2006. Monodisperse silica-coated polyvinylpyrrolidone/NaYF4 nanocrystals with multicolor upconversion fluorescence emission. Angewandte Chemie-International Edition 45(46): 7732-7735. Licha, K. and C. Olbrich. 2005. Optical imaging in drug discovery and diagnostic applications. Advanced Drug Delivery Reviews 57(8): 1087-1108. Lidke, D. S., P. Nagy, R. Heintzmann, D. J. Arndt-Jovin, J. N. Post, H. E. Grecco, E. A. Jares-Erijman and T. M. Jovin. 2004. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nature Biotechnology 22(2): 198-203. Lieleg, O., M. Lopez-Garcia, C. Semmrich, J. Auernheimer, H. Kessler and A. R. Bausch. 2007. Specific integrin Labeling in living Celts using functionalized nanocrystals. Small 3(9): 1560-1565. Lillo, M. P., B. K. Szpikowska, M. T. Mas, J. D. Sutin and J. M. Beechem. 1997. Real-time measurement of multiple intramolecular distances during protein folding reactions: A multisite stopped-flow fluorescence energy-transfer study of yeast phosphoglycerate kinase. Biochemistry 36(37): 11273-11281. Lim, S. F., R. Riehn, W. S. Ryu, N. Khanarian, C. K. Tung, D. Tank and R. H. Austin. 2006. In vivo and scanning electron microscopy imaging of upconverting nanophosphors in Caenorhabditis elegans. Nano Letters 6(2): 169-174. Lin, Y. S., S. H. Wu, Y. Hung, Y. H. Chou, C. Chang, M. L. Lin, C. P. Tsai and C. Y. Mou. 2006. Multifunctional composite nanoparticles: Magnetic, luminescent, and mesoporous. Chemistry of Materials 18(22): 5170-5172. Liotta, L. and E. Petricoin. 2000. Molecular profiling of human cancer. Nature Reviews Genetics 1(1): 48-56. Lisiecki, R., W. Ryba-Romanowski, A. Speghini and M. Bettinelli. 2009. Luminescence spectroscopy of Er3+-doped and Er3+, Yb3+-codoped LaPO4 single crystals. Journal of Luminescence 129(5): 521-525. Liu, T. C., H. L. Zhang, J. H. Wang, H. Q. Wang, Z. H. Zhang, X. F. Hua, Y. C. Cao, Q. M. Luo and Y. D. Zhao. 2008. Study on molecular interactions between proteins on live cell membranes using quantum dot-based fluorescence resonance energy transfer. Analytical and Bioanalytical Chemistry 391(8): 2819-2824. 154 Liu, Y. Y., H. Miyoshi and M. Nakamura. 2007a. Nanomedicine for drug delivery and imaging: A promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. International Journal of Cancer 120(12): 2527-2537. Liu, Z., M. Winters, M. Holodniy and H. J. Dai. 2007b. siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angewandte Chemie-International Edition 46(12): 2023-2027. Liu, Z. Y., M. Liu, W. L. Song, K. Pan, J. H. Li, Y. B. Bai and T. J. Li. 2006. Multi-fluorescent dye-doped SiO2/lanthanide complexes hybrid particles. Materials Letters 60(13-14): 1629-1633. Lovric, J., H. S. Bazzi, Y. Cuie, G. R. A. Fortin, F. M. Winnik and D. Maysinger. 2005. Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. Journal of Molecular Medicine-Jmm 83(5): 377-385. Lu, J., M. Liong, J. I. Zink and F. Tamanoi. 2007. Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small 3(8): 1341-1346. Mamedova, N. N., N. A. Kotov, A. L. Rogach and J. Studer. 2001. Albumin-CdTe nanoparticle bioconjugates: Preparation, structure, and interunit energy transfer with antenna effect. Nano Letters 1(6): 281-286. Manoharan, M. 2004. RNA interference and chemically modified small interfering RNAs. Current Opinion in Chemical Biology 8(6): 570-579. Martinez, J., A. Patkaniowska, H. Urlaub, R. Luhrmann and T. Tuschl. 2002. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110(5): 563-574. Massoud, T. F. and S. S. Gambhir. 2003. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes & Development 17(5): 545-580. Mattoussi, H., J. M. Mauro, E. R. Goldman, T. M. Green, G. P. Anderson, V. C. Sundar and M. G. Bawendi 2000. Bioconjugation of highly luminescent colloidal CdSe-ZnS quantum dots with an engineered two-domain recombinant protein. International Conference on Semiconductor Quantum Dots (QD2000), Munich, Germany, Wiley-V C H Verlag Gmbh. Maurel, D., J. Kniazeff, G. Mathis, E. Trinquet, J. P. Pin and H. Ansanay. 2004. Cell surface detection of membrane protein interaction with homogeneous time-resolved fluorescence resonance energy transfer technology. Analytical Biochemistry 329(2): 253-262. McCaffrey, A. P., L. Meuse, T. T. T. Pham, D. S. Conklin, G. J. Hannon and M. A. Kay. 2002. Gene expression - RNA interference in adult mice. Nature 418(6893): 155 38-39. McNamara, J. O., E. R. Andrechek, Y. Wang, K. D Viles, R. E. Rempel, E. Gilboa, B. A. Sullenger and P. H. Giangrande. 2006. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nature Biotechnology 24(8): 1005-1015. Medarova, Z., W. Pham, C. Farrar, V. Petkova and A. Moore. 2007. In vivo imaging of siRNA delivery and silencing in tumors. Nature Medicine 13(3): 372-377. Medarova, Z., W. Pham, Y. Kim, G. P. Dai and A. Moore. 2006. In vivo imaging of tumor response to therapy using a dual-modality imaging strategy. International Journal of Cancer 118(11): 2796-2802. Medarova, Z., L. Rashkovetsky, P. Pantazopoulos and A. Moore. 2009. Multiparametric Monitoring of Tumor Response to Chemotherapy by Noninvasive Imaging. Cancer Research 69(3): 1182-1189. Medintz, I. L., A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher and J. M. Mauro. 2003. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nature Materials 2(9): 630-638. Medintz, I. L., J. H. Konnert, A. R. Clapp, I. Stanish, M. E. Twigg, H. Mattoussi, J. M. Mauro and J. R. Deschamps. 2004. A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly. Proceedings of the National Academy of Sciences of the United States of America 101(26): 9612-9617. Michalet, X., F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir and S. Weiss. 2005. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709): 538-544. Miki, K., Y. Kuramochi, K. Oride, S. Inoue, H. Harada, M. Hiraoka and K. Ohe. 2009. Ring-Opening Metathesis Polymerization-Based Synthesis of ICG-Containing Amphiphilic Triblock Copolymers for in Vivo Tumor Imaging. Bioconjugate Chemistry 20(3): 511-517. Moore, A., Z. Medarova, A. Potthast and G. P. Dai. 2004. In vivo targeting of underglycosylated MUC-1 tumor antigen using a multimodal imaging probe. Cancer Research 64(5): 1821-1827. Muratovska, A. and M. R. Eccles. 2004. Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. Febs Letters 558(1-3): 63-68. Murphy, C. J. 2002. Optical sensing with quantum dots. Analytical Chemistry 74(19): 520A-526A. Nakanishi, T., S. Fukushima, K. Okamoto, M. Suzuki, Y. Matsumura, M. Yokoyama, T. 156 Okano, Y. Sakurai and K. Kataoka 2000. Development of the polymer micelle carrier system for doxorubicin. International Symposium on Tumor Targeted Delivery Systems, Bethesda, Maryland, Elsevier Science Bv. Nann, T. and P. Mulvaney. 2004. Single quantum dots in spherical silica particles. Angewandte Chemie-International Edition 43(40): 5393-5396. Netzel, T. L., K. Nafisi, M. Zhao, J. R. Lenhard and I. Johnson. 1995. Base-content dependence of emission enhancements, quantum yields, and lifetimes for cyanine dyes bound to double-strand DNA: Photophysical properties of monomeric and bichromophoric DNA stains. Journal of Physical Chemistry 99(51): 17936-17947. Niedbala, R. S., H. Feindt, K. Kardos, T. Vail, J. Burton, B. Bielska, S. Li, D. Milunic, P. Bourdelle and R. Vallejo. 2001. Detection of analytes by immunoassay using up-converting phosphor technology. Analytical Biochemistry 293(1): 22-30. Oh, E., M. Y. Hong, D. Lee, S. H. Nam, H. C. Yoon and H. S. Kim. 2005. Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. Journal of the American Chemical Society 127(10): 3270-3271. Okuda, T., S. Kawakami, N. Akimoto, T. Niidome, F. Yamashita and M. Hashida. 2006. PEGylated lysine dendrimers for tumor-selective targeting after intravenous injection in tumor-bearing mice. Journal of Controlled Release 116(3): 330-336. Parak, W. J., D. Gerion, D. Zanchet, A. S. Woerz, T. Pellegrino, C. Micheel, S. C. Williams, M. Seitz, R. E. Bruehl, Z. Bryant, C. Bustamante, C. R. Bertozzi and A. P. Alivisatos. 2002. Conjugation of DNA to silanized colloidal semiconductor nanocrystalline quantum dots. Chemistry of Materials 14(5): 2113-2119. Parungo, C. P., S. Ohnishi, S. W. Kim, S. Kim, R. G. Laurence, E. G. Soltesz, F. Y. Chen, Y. L. Colson, L. H. Cohn, M. G. Bawendi and J. V. Frangioni. 2005. Intraoperative identification of esophageal sentinel lymph nodes with near-infrared fluorescence imaging. Journal of Thoracic and Cardiovascular Surgery 129(4): 844-850. Pathak, S., S. K. Choi, N. Arnheim and M. E. Thompson. 2001. Hydroxylated quantum dots as luminescent probes for in situ hybridization. Journal of the American Chemical Society 123(17): 4103-4104. Perk, L. R., M. S. V. Walsum, G. W. M. Visser, R. W. Kloet, M. Vosjan, C. R. Leemans, G. Giaccone, R. Albano, P. M. Comoglio and G. van Dongen. 2008. Quantitative PET imaging of Met-expressing human cancer xenografts with Zr-89-labelled monoclonal antibody DN30. European Journal of Nuclear 157 Medicine and Molecular Imaging 35(10): 1857-1867. Pirollo, K. F. and E. H. Chang. 2008. Does a targeting ligand influence nanoparticle tumor localization or uptake? Trends in Biotechnology 26(10): 552-558. Qian, H. S., Z. Q. Li and Y. Zhang 2008a. A Facile Synthesis of Multicolor Polystyrene Microspheres Encapsulating Upconversion Fluorescent Nanoparticles. 4th Kuala Lumpur International Conference on Biomedical Engineering, Kuala Lumpur, MALAYSIA, Springer. Qian, J., X. Li, M. Wei, X. W. Gao, Z. P. Xu and S. L. He. 2008b. Bio-molecule-conjugated fluorescent organically modified silica nanoparticles as optical probes for cancer cell imaging. Optics Express 16(24): 19568-19578. Qian, J., K. T. Yong, I. Roy, T. Y. Ohulchanskyy, E. J. Bergey, H. H. Lee, K. M. Tramposch, S. L. He, A. Maitra and P. N. Prasad. 2007. Imaging pancreatic cancer using surface-functionalized quantum dots. Journal of Physical Chemistry B 111(25): 6969-6972. Qin, X. F., D. S. An, I. S. Y. Chen and D. Baltimore. 2003. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proceedings Of The National Academy Of Sciences Of The United States Of America 100(1): 183-188. Raemdonck, K., K. Remaut, B. Lucas, N. N. Sanders, J. Demeester and S. C. De Smedt. 2006. In situ analysis of single-stranded and duplex siRNA integrity in living cells. Biochemistry 45(35): 10614-10623. Rana, T. M. 2007. Illuminating the silence: understanding the structure and function of small RNAs. Nature Reviews Molecular Cell Biology 8(1): 23-36. Rao, J. H., A. Dragulescu-Andrasi, H. Q. Yao and H. Q. Yao. 2007. Fluorescence imaging in vivo: recent advances. Current Opinion in Biotechnology 18(1): 17-25. Reiss, P., J. Bleuse and A. Pron. 2002. Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion. Nano Letters 2(7): 781-784. Riehemann, K., S. W. Schneider, T. A. Luger, B. Godin, M. Ferrari and H. Fuchs. 2009. Nanomedicine-Challenge and Perspectives. Angewandte Chemie-International Edition 48(5): 872-897. Ross, J. S. and J. A. Fletcher. 1999. The HER-2/neu oncogene: prognostic factor, predictive factor and target for therapy. Seminars in Cancer Biology 9(2): 125-138. Ruan, G., A. Agrawal, A. I. Marcus and S. Nie. 2007. Imaging and tracking of tat 158 peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding. Journal of the American Chemical Society 129(47): 14759-14766. Rye, H. S., S. Yue, D. E. Wemmer, M. A. Quesada, R. P. Haugland, R. A. Mathies and A. N. Glazer. 1992. Stable Fluorescent Complexes of Double-Stranded DNA with Bis-Intercalating Asymmetric Cyanine Dyes - Properties and Applications. Nucleic Acids Research 20(11): 2803-2812. Santra, S., D. Dutta, G. A. Walter and B. M. Moudgil. 2005. Fluorescent nanoparticle probes for cancer imaging. Technology in Cancer Research & Treatment 4(6): 593-602. Santra, S., P. Zhang, K. M. Wang, R. Tapec and W. H. Tan. 2001. Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Analytical Chemistry 73(20): 4988-4993. Sanvicens, N. and M. P. Marco. 2008. Multifunctional nanoparticles - properties and prospects for their use in human medicine. Trends in Biotechnology 26(8): 425-433. Sapsford, K. E., L. Berti and I. L. Medintz. 2006. Materials for fluorescence resonance energy transfer analysis: Beyond traditional donor-acceptor combinations. Angewandte Chemie-International Edition 45(28): 4562-4588. Satchi-Fainaro, R., M. Puder, J. W. Davies, H. T. Tran, D. A. Sampson, A. K. Greene, G. Corfas and J. Folkman. 2004. Targeting angiogenesis with a conjugate of HPMA copolymer and TNP-470. Nature Medicine 10(3): 255-261. Schafer, H., P. Ptacek, K. Kompe and M. Haase. 2007. Lanthanide-doped NaYF4 nanocrystals in aqueous solution displaying strong up-conversion emission. Chemistry of Materials 19(6): 1396-1400. Schenke-Layland, K., I. Riemann, O. Damour, U. A. Stock and K. Konig. 2006. Two-photon microscopes and in vivo multiphoton tomographs - Powerful dicagnostic tools for tissue engineering and drug delivery. Advanced Drug Delivery Reviews 58(7): 878-896. Schiffelers, R. M., A. J. Mixson, A. M. Ansari, M. Fens, Q. Q. Tang, Q. Zhou, J. Xu, G. Molema, P. Y. Lu, P. V. Scaria, G. Storm and M. C. Woodle. 2005. Transporting silence: Design of carriers for siRNA to angiogenic endothelium. Journal Of Controlled Release 109(1-3): 5-14. Schobel, U., H. J. Egelhaaf, A. Brecht, D. Oelkrug and G. Gauglitz. 1999. New-donor-acceptor pair for fluorescent immunoassays by energy transfer. Bioconjugate Chemistry 10(6): 1107-1114. 159 Shah, K., A. Jacobs, X. O. Breakefield and R. Weissleder. 2004. Molecular imaging of gene therapy for cancer. Gene Therapy 11(15): 1175-1187. Shah, N., A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung and B. Tromberg. 2001. Noninvasive functional optical spectroscopy of human breast tissue. Proceedings of the National Academy of Sciences of the United States of America 98(8): 4420-4425. Shi, D. L., Y. Guo, Z. Y. Dong, J. Lian, W. Wang, G. K. Liu, L. M. Wang and R. C. Ewing. 2007a. Quantum-dot-activated luminescent carbon nanotubes via a nano scale surface functionalization for in vivo imaging. Advanced Materials 19(22): 4033-+. Shi, H., X. X. He, K. M. Wang, Y. Yuan, K. Deng, J. Y. Chen and W. H. Tan. 2007b. Rhodamine B isothiocyanate doped silica-coated fluorescent nanoparticles (RBITC-DSFNPs)-based bioprobes conjugated to Annexin V for apoptosis detection and imaging. Nanomedicine-Nanotechnology Biology and Medicine 3(4): 266-272. Shi, J. Y., B. Jia, Z. F. Liu, Z. Yang, Z. L. Yu, K. Chen, X. Y. Chen, S. Liu and F. Wang. 2008. Tc-99m-labeled bombesin(7-14)NH2 with favorable properties for SPECT imaging of colon cancer. Bioconjugate Chemistry 19(6): 1170-1178. Shiohara, A., A. Hoshino, K. Hanaki, K. Suzuki and K. Yamamoto. 2004. On the cyto-toxicity caused by quantum dots. Microbiology and Immunology 48(9): 669-675. Simberg, D., T. Duza, J. H. Park, M. Essler, J. Pilch, L. L. Zhang, A. M. Derfus, M. Yang, R. M. Hoffman, S. Bhatia, M. J. Sailor and E. Ruoslahti. 2007. Biomimetic amplification of nanoparticle homing to tumors. Proceedings of the National Academy of Sciences of the United States of America 104(3): 932-936. Sinha, R., G. J. Kim, S. M. Nie and D. M. Shin. 2006. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Molecular Cancer Therapeutics 5(8): 1909-1917. Sioud, M. and D. R. Sorensen. 2003. Cationic liposome-mediated delivery of siRNAs in adult mice. Biochemical And Biophysical Research Communications 312(4): 1220-1225. Slamon, D. J., W. Godolphin, L. A. Jones, J. A. Holt, S. G. Wong, D. E. Keith, W. J. Levin, S. G. Stuart, J. Udove, A. Ullrich and M. F. Press. 1989. Studies of the Her-2/Neu Proto-Oncogene in Human-Breast and Ovarian-Cancer. Science 244(4905): 707-712. Slowing, II, B. G. Trewyn, S. Giri and V. S. Y. Lin. 2007. Mesoporous silica 160 nanoparticles for drug delivery and biosensing applications. Advanced Functional Materials 17(8): 1225-1236. Smith, B. R., Z. Cheng, A. De, A. L. Koh, R. Sinclair and S. S. Gambhir. 2008. Real-time intravital imaging of RGD-quantum dot binding to luminal endothelium in mouse tumor neovasculature. Nano Letters 8(9): 2599-2606. Soltesz, E. G., S. Kim, R. G. Laurence, A. M. DeGrand, C. P. Parungo, D. M. Dor, L. H. Cohn, M. G. Bawendi, J. V. Frangioni and T. Mihaljevic 2004. Intraoperative sentinel lymph node mapping of the lung using near-infrared fluorescent quantum dots. 40th Annual Meeting of the Society-of-Thoracic-Surgeons, San Antonio, TX, Elsevier Science Inc. Song, E. W., P. C. Zhu, S. K. Lee, D. Chowdhury, S. Kussman, D. M. Dykxhoorn, Y. Feng, D. Palliser, D. B. Weiner, P. Shankar, W. A. Marasco and J. Lieberman. 2005. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nature Biotechnology 23(6): 709-717. Sonoke, S., T. Ueda, K. Fujiwara, Y. Sato, K. Takagaki, K. Hirabayashi, T. Ohgi and J. Yano. 2008. Tumor Regression in Mice by Delivery of Bcl-2 Small Interfering RNA with Pegylated Cationic Liposomes. Cancer Research 68(21): 8843-8851. Sorensen, D. R., M. Leirdal and M. Sioud. 2003. Gene silencing by systemic delivery of synthetic siRNAs in adult mice. Journal Of Molecular Biology 327(4): 761-766. Soutschek, J., A. Akinc, B. Bramlage, K. Charisse, R. Constien, M. Donoghue, S. Elbashir, A. Geick, P. Hadwiger, J. Harborth, M. John, V. Kesavan, G. Lavine, R. K. Pandey, T. Racie, K. G. Rajeev, I. Rohl, I. Toudjarska, G. Wang, S. Wuschko, D. Bumcrot, V. Koteliansky, S. Limmer, M. Manoharan and H. P. Vornlocher. 2004. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432(7014): 173-178. Stewart, S. A., D. M. Dykxhoorn, D. Palliser, H. Mizuno, E. Y. Yu, D. S. An, D. M. Sabatini, I. S. Y. Chen, W. C. Hahn, P. A. Sharp, R. A. Weinberg and C. D. Novina. 2003. Lentivirus-delivered stable gene silencing by RNAi in primary cells. Rna-A Publication Of The Rna Society 9(4): 493-501. Stryer, L. 1978. Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem 47: 819-46. Suh, W. H., Y. H. Suh and G. D. Stucky. 2009. Multifunctional nanosystems at the interface of physical and life sciences. Nano Today 4(1): 27-36. Sundaresan, G., P. J. Yazaki, J. E. Shively, R. D. Finn, S. M. Larson, A. A. Raubitschek, L. E. Williams, A. F. Chatziioannou, S. S. Gambhir and A. M. Wu. 2003. I-124-labeled engineered Anti-CEA minibodies and diabodies allow 161 high-contrast, antigen-specific small-animal PET imaging of xenografts in athymic mice. Journal of Nuclear Medicine 44(12): 1962-1969. Suyver, J. F., J. Grimm, K. W. Kramer and H. U. Gudel. 2005. Highly efficient near-infrared to visible up-conversion process in NaYF4 : Er,3+Yb3+. Journal of Luminescence 114(1): 53-59. Suyver, J. F., J. Grimm, M. K. van Veen, D. Biner, K. W. Kramer and H. U. Gudel. 2006. Upconversion spectroscopy and properties of NaYF4 doped with Er (3+), Tm3+ and/or Yb3+. Journal of Luminescence 117(1): 1-12. Suzuki, H., I. Y. S. Lee and N. Maeda. 2008. Laser-induced emission from dye-doped nanoparticle aggregates of poly (DL-lactide-co-glycolide). International Journal of Physical Sciences 3(1): 42-44. Takeshita, F., Y. Minakuchi, S. Nagahara, K. Honma, H. Sasaki, K. Hirai, T. Teratani, N. Namatame, Y. Yamamoto, K. Hanai, T. Kato, A. Sano and T. Ochiya. 2005. Efficient delivery of small interfering RNA to bone-metastatic tumors by using atelocollagen in vivo. Proceedings of the National Academy of Sciences of the United States of America 102(34): 12177-12182. Talapin, D. V., A. L. Rogach, A. Kornowski, M. Haase and H. Weller. 2001. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. Nano Letters 1(4): 207-211. Tanisaka, H., S. Kizaka-Kondoh, A. Makino, S. Tanaka, M. Hiraoka and S. Kimura. 2008. Near-infrared fluorescent labeled peptosome for application to cancer imaging. Bioconjugate Chemistry 19(1): 109-117. Tapec, R., X. J. J. Zhao and W. H. Tan. 2002. Development of organic dye-doped silica nanoparticles for bioanalysis and biosensors. Journal of Nanoscience and Nanotechnology 2(3-4): 405-409. Thomas, M., J. J. Lu, Q. Ge, C. C. Zhang, J. Z. Chen and A. M. Klibanov. 2005. Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung. Proceedings Of The National Academy Of Sciences Of The United States Of America 102(16): 5679-5684. Tiscornia, G., O. Singer, M. Ikawa and I. M. Verma. 2003. A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proceedings Of The National Academy Of Sciences Of The United States Of America 100(4): 1844-1848. Toffoli, G., C. Cernigoi, A. Russo, A. Gallo, M. Bagnoli and M. Boiocchi. 1997. Overexpression of folate binding protein in ovarian cancers. International Journal of Cancer 74(2): 193-198. 162 Tomar, R. S., H. Matta and P. M. Chaudhary. 2003. Use of adeno-associated viral vector for delivery of small interfering RNA. Oncogene 22(36): 5712-5715. Torchilin, V. P. 2006. Multifunctional nanocarriers. Advanced Drug Delivery Reviews 58(14): 1532-1555. Tsuji, A., H. Koshimoto, Y. Sato, M. Hirano, Y. Sei-Iida, S. Kondo and K. Ishibashi. 2000. Direct observation of specific messenger RNA in a single living cell under a fluorescence microscope. Biophysical Journal 78(6): 3260-3274. Tsuji, A., Y. Sato, M. Hirano, T. Suga, H. Koshimoto, T. Taguchi and S. Ohsuka. 2001. Development of a time-resolved fluorometric method for observing hybridization in living cells using fluorescence resonance energy transfer. Biophysical Journal 81(1): 501-515. Ulbrich, K., T. Etrych, P. Chytil, M. Jelinkova and B. Rihova. 2004. Antibody-targeted polymer-doxorubicin conjugates with pH-controlled activation. Journal of Drug Targeting 12(8): 477-489. Umemura, S. and R. Y. Osamura. 2004. Utility of immunohistochemistry in breast cancer practice. Breast Cancer 11(4): 334-8. Urban-Klein, B., S. Werth, S. Abuharbeid, F. Czubayko and A. Aigner. 2005. RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Therapy 12(5): 461-466. van de Rijke, F., H. Zijlmans, S. Li, T. Vail, A. K. Raap, R. S. Niedbala and H. J. Tanke. 2001. Up-converting phosphor reporters for nucleic acid microarrays. Nature Biotechnology 19(3): 273-276. Villares, G. J., M. Zigler, H. Wang, V. O. Melnikova, H. Wu, R. Friedman, M. C. Leslie, P. E. Vivas-Mejia, G. Lopez-Berestein, A. K. Sood and M. Bar-Eli. 2008. Targeting Melanoma Growth and Metastasis with Systemic Delivery of Liposome-Incorporated Protease-Activated Receptor-1 Small Interfering RNA. Cancer Research 68(21): 9078-9086. Vogel, A. and V. Venugopalan. 2003. Mechanisms of pulsed laser ablation of biological tissues. Chemical Reviews 103(2): 577-644. Wang, F., D. K. Chatterjee, Z. Q. Li, Y. Zhang, X. P. Fan and M. Q. Wang. 2006. Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence. Nanotechnology 17(23): 5786-5791. Wang, H. F., T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei and J. X. Cheng. 2005a. In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proceedings of the National Academy of Sciences of the United 163 States of America 102(44): 15752-15756. Wang, L., C. Y. Yang and W. H. Tan. 2005b. Dual-luminophore-doped silica nanoparticles for multiplexed signaling. Nano Letters 5(1): 37-43. Wang, L. Y., R. X. Yan, Z. Y. Hao, L. Wang, J. H. Zeng, H. Bao, X. Wang, Q. Peng and Y. D. Li. 2005c. Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angewandte Chemie-International Edition 44(37): 6054-6057. Wang, X., L. L. Yang, Z. Chen and D. M. Shin. 2008. Application of nanotechnology in cancer therapy and imaging. Ca-a Cancer Journal for Clinicians 58(2): 97-110. Wartlick, H., K. Michaelis, S. Balthasar, K. Strebhardt, J. Kreuter and K. Langer. 2004. Highly specific HER2-mediated cellular uptake of antibody-modified nanoparticles in tumour cells. Journal of Drug Targeting 12(7): 461-471. Weissleder, R. 2006. Molecular imaging in cancer. Science 312(5777): 1168-1171. Weitman, S. D., R. H. Lark, L. R. Coney, D. W. Fort, V. Frasca, V. R. Zurawski and B. A. Kamen. 1992. Distribution of the Folate Receptor Gp38 in Normal and Malignant-Cell Lines and Tissues. Cancer Research 52(12): 3396-3401. Weng, K. C., C. O. Noble, B. Papahadjopoulos-Sternberg, F. F. Chen, D. C. Drummond, D. B. Kirpotin, D. H. Wang, Y. K. Hom, B. Hann and J. W. Park. 2008. Targeted tumor cell internalization and imaging of multifunctional quantum dot-conjugated immunoliposomes in vitro and in vivo. Nano Letters 8(9): 2851-2857. Whitehead, K. A., R. Langer and D. G. Anderson. 2009. Knocking down barriers: advances in siRNA delivery. Nature Reviews Drug Discovery 8(2): 129-138. Willard, D. M., L. L. Carillo, J. Jung and A. Van Orden. 2001. CdSe-ZnS quantum dots as resonance energy transfer donors in a model protein-protein binding assay. Nano Letters 1(9): 469-474. Winter, J. O., T. Y. Liu, B. A. Korgel and C. E. Schmidt. 2001. Recognition molecule directed interfacing between semiconductor quantum dots and nerve cells. Advanced Materials 13(22): 1673-1677. Wu, A. M., P. J. Yazaki, S. W. Tsai, K. Nguyen, A. L. Anderson, D. W. McCarthy, M. J. Welch, J. E. Shively, L. E. Williams, A. A. Raubitschek, J. Y. C. Wong, T. Toyokuni, M. E. Phelps and S. S. Gambhir. 2000. High-resolution microPET imaging of carcino-embryonic antigen-positive xenografts by using a copper-64-labeled engineered antibody fragment. Proceedings of the National Academy of Sciences of the United States of America 97(15): 8495-8500. 164 Wu, S. H., Y. S. Lin, Y. Hung, Y. H. Chou, Y. H. Hsu, C. Chang and C. Y. Mou. 2008. Multifunctional mesoporous silica nanoparticles for intracellular labeling and animal magnetic resonance imaging studies. Chembiochem 9(1): 53-57. Wu, X. Y., H. J. Liu, J. Q. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. F. Ge, F. Peale and M. P. Bruchez. 2003. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotechnology 21(1): 41-46. Xing, Y., Q. Chaudry, C. Shen, K. Y. Kong, H. E. Zhau, L. Wchung, J. A. Petros, R. M. O'Regan, M. V. Yezhelyev, J. W. Simons, M. D. Wang and S. Nie. 2007. Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nature Protocols 2(5): 1152-1165. Xing, Y. and J. H. Rao. 2008. Quantum dot bioconjugates for in vitro diagnostics & in vivo imaging. Cancer Biomarkers 4(6): 307-319. Xiong, X. B., H. Uludag and A. Lavasanifar. 2009. Biodegradable amphiphilic poly(ethylene oxide)-block-polyesters with grafted polyamines as supramolecular nanocarriers for efficient siRNA delivery. Biomaterials 30(2): 242-253. Xu, D., D. McCarty, A. Fernandes, M. Fisher, R. J. Samulski and R. L. Juliano. 2005a. Delivery of MDR1 small interfering RNA by self-complementary recombinant adeno-associated virus vector. Molecular Therapy 11(4): 523-530. Xu, Z. H., W. W. Gu, J. Huang, H. Sui, Z. H. Zhou, Y. X. Yang, Z. Yan and Y. P. Li. 2005b. In vitro and in vivo evaluation of actively targetable nanoparticles for paclitaxel delivery. International Journal of Pharmaceutics 288(2): 361-368. Yang, G., J. A. Thompson, B. L. Fang and J. S. Liu. 2003. Silencing of H-ras gene expression by retrovirus-mediated siRNA decreases transformation efficiency and tumorgrowth in a model of human ovarian cancer. Oncogene 22(36): 5694-5701. Yang, X. T. and Y. Zhang. 2004. Encapsulation of quantum nanodots in polystyrene and silica micro-/nanoparticles. Langmuir 20(14): 6071-6073. Yang, Z., S. Y. Zheng, W. J. Harrison, J. Harder, X. X. Wen, J. G. Gelovani, A. Qiao and C. Li. 2007. Long-circulating near-infrared fluorescence core-cross-linked polymeric micelles: Synthesis, characterization, and dual nuclear/optical imaging. Biomacromolecules 8(11): 3422-3428. Yezhelyev, M. V., A. Al-Hajj, C. Morris, A. I. Marcus, T. Liu, M. Lewis, C. Cohen, P. Zrazhevskiy, J. W. Simons, A. Rogatko, S. Nie, X. Gao and R. M. O'Regan. 2007. In situ molecular profiling of breast cancer biomarkers with multicolor quantum dots. Advanced Materials 19(20): 3146-+. 165 Yezhelyev, M. V., L. F. Qi, R. M. O'Regan, S. Nie and X. H. Gao. 2008. Proton-sponge coated quantum dots for siRNA delivery and intracellular imaging. Journal of the American Chemical Society 130(28): 9006-9012. Yong, K. T. 2009. Mn-doped near-infrared quantum dots as multimodal targeted probes for pancreatic cancer imaging. Nanotechnology 20(1): 10. Yong, K. T., J. Qian, I. Roy, H. H. Lee, E. J. Bergey, K. M. Tramposch, S. L. He, M. T. Swihart, A. Maitra and P. N. Prasad. 2007. Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells. Nano Letters 7(3): 761-765. Yu, X. F., L. D. Chen, Y. L. Deng, K. Y. Li, Q. Q. Wang, Y. Li, S. Xiao, L. Zhou, X. Luo, J. Liu and D. W. Pang. 2007. Fluorescence analysis with quantum dot probes for hepatoma under one- and two-photon excitation. Journal of Fluorescence 17(2): 243-247. Zhang, P., S. Rogelj, K. Nguyen and D. Wheeler. 2006. Design of a highly sensitive and specific nucleotide sensor based on photon upconverting particles. Journal of the American Chemical Society 128(38): 12410-12411. Zhang, P., W. Steelant, M. Kumar and M. Scholfield. 2007. Versatile photosensitizers for photodynamic therapy at infrared excitation. Journal of the American Chemical Society 129(15): 4526-+. Zhang, Y. and N. Huang. 2006. Intracellular uptake of CdSe-ZnS/polystyrene nanobeads. Journal of Biomedical Materials Research Part B-Applied Biomaterials 76B(1): 161-168. Zhou, X. C. and J. Z. Zhou. 2004. Improving the signal sensitivity and photostability of DNA hybridizations on microarrays by using dye-doped core-shell silica nanoparticles. Analytical Chemistry 76(18): 5302-5312. Zijlmans, H., J. Bonnet, J. Burton, K. Kardos, T. Vail, R. S. Niedbala and H. J. Tanke. 1999. Detection of cell and tissue surface antigens using up-converting phosphors: A new reporter technology. Analytical Biochemistry 267(1): 30-36. Zimmer, J. P., S. W. Kim, S. Ohnishi, E. Tanaka, J. V. Frangioni and M. G. Bawendi. 2006. Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging. Journal of the American Chemical Society 128(8): 2526-2527. Zuiderwijk, M., H. J. Tanke, R. S. Niedbala and P. Corstjens. 2003. An amplification-free hybridization-based DNA assay to detect Streptococcus pneumoniae utilizing the up-converting phosphor technology. Clinical Biochemistry 36(5): 401-403. 166 167 [...]... Characterization of UCN /siRNA- BOBO3 complex (A) FRET efficiency in UCN /siRNA- BOBO3 complex at siRNA/ UCN ratios of 0, 31.25, 62.5, 125 and 250 (B) FRET efficiency in UCN /siRNA- BOBO3 complex at dye/bp ratios of 0, 0.025, 0.05, 0.1 and 0.2 111 Figure 5.5 Release of siRNA from nanoparticles (A) Photoluminescence spectra of free UCN nanoparticles, UCN /siRNA- BOBO3 complex and UCN /siRNA- BOBO3 complex with siRNA. .. realized In this chapter, we review the types and characteristics of fluorescent nanoparticles, in vitro and in vivo imaging of cancer using fluorescent nanoparticles, and 2 multifunctional nanoparticles for simultaneous tumor imaging and treatment 1.1 Fluorescent nanoparticles Optical imaging is the latest trend in imaging guided therapy which involves the detection of light photons transmitted through tissues... image of siRNA Lane1: DNA control; lane2: siRNA control; lane3: free siRNA in UCN /siRNA- BOBO3 complex solution; lane4: free siRNA in the solution of UCN /siRNA- BOBO3 added with NaOH 113 Figure 5.6 Biostability of siRNA attached on nanoparticles (A) Photoluminescence spectra of free UCNs, UCN /siRNA- BOBO3 complex solution, UCN /siRNA- BOBO3 complex digested with RNase A and UCN bound with digested siRNA- BOBO3... applications Upconversion nanoparticles have gained popularity in recent years and have been used for various biological applications summarized in Table 1.3 Upconversion nanoparticles, also known as up-converting phosphors (UCP), upconversion nanophosphors or upconversion nanocrystals, were initially used for the fluorescent detection of biological molecules in the buffer For example, Corstjens and his... of siRNA Lane 1: DNA ladder; lane 2: free siRNA control; lane 3: free siRNA digested with RNase A; lane 4: free siRNA in UCN /siRNA- BOBO3 complex solution; lane 5: siRNA relased from UCN /siRNA- BOBO3 complex; lane 6: siRNA relased from UCN /siRNA- BOBO3 complex digested with RNase A; lane 7: free siRNA in the solution of UCN bound with digested siRNA- BOBO3 115 Figure 5.7 Intracellular release of siRNA. .. feasibility, and meanwhile it would not cause photodamage to the tissues NIR quantum dots have many comparable properties of upconversion nanoparticles like high penetration depth, low autofluroescence and low photodamage, but they are comparatively costlier than upconversion nanoparticles and more toxic The upconversion fluorescence output of upconversion nanoparticles is also higher than that of quantum... green and red colors is shown by yellow arrows, and red color emitted from BOBO-3 is shown by red arrows The bar scale is 20 µm 118 Figure 6.1 Gel electrophoresis image of siRNA Lane 1: UCN-Ab -siRNA nanoparticles, lane 2: first supernatant (S1) of UCN-Ab -siRNA nanoparticles, lane 3: second supernatant (S2) of UCN-Ab -siRNA nanoparticles, lane 4: third supernatant (S3) of UCN-Ab -siRNA nanoparticles, ... 2h 132 Figure 6.5 Images of SK-BR-3 cells incubated with UCN-Ab -siRNA for 1, 3, 6, 12 and 24 h The confocal fluorescent image of UCNs (left) and superimposed xv image of UCNs and DAPi (for nucleus) are shown 135 Figure 6.6 Yttrium concentration as measured by ICP revealed the cellular uptake of UCN-Ab -siRNA nanoparticles in SK-BR-3 cells harvested 1, 3, 6, 12, 18, and 24h incubation ... efficiency of siRNA to chitosan/QDs NPs 57 Figure 2.4 Release profile of siRNA from chitosan/QDs NPs in PBS over a period of 6 days 58 Figure 2.5 Cell viability of HT-29 cells treated with chitosan/QDs nanoparticles and non-encapsulated QDs at different concentration of QDs 59 Figure 2.6 Specific uptake of chitosan/QDs nanoparticles by MCF-7 and SK-BR-3 cells Targeted NPs = siRNA- conjugated... monitor the progression of disease and therapy Conventional fluorophores such as fluorescent dyes, bioluminescent proteins, and fluorescent proteins were used initially But the recent advancements in the development of fluorescent nanoparticles have made them potential candidates for imaging guided therapy and they have a lot of advantages over their predecessors 1.1.1 Organic dye doped nanoparticles Recently . USE OF UPCONVERSION FLUORESCENT NANOPARTICLES FOR SIMULTANEOUS IMAGING, DETECTION AND DELIVERY OF SIRNA JIANG SHAN (B.Sc., Harbin Institute of Technology) . good photostability, and minimum photodamage to biological tissues are developed and used for imaging, detection and delivery of siRNA. Silica coated NaYF 4 upconversion nanoparticles co-doped. 4.3.2 Detection of folate receptor with UCNs 90 4.3.3 Detection of Actin Filaments of 3T3 cells 93 4.4 Conclusion 96 CHAPTER 5 UPCONVERSION NANOPARTICLES FOR DETECTION OF SIRNA 98 5.1 Introduction

Ngày đăng: 14/09/2015, 08:39

Từ khóa liên quan

Mục lục

  • PREFACE

  • ACKNOWLEDGEMENTS

  • TABLE OF CONTENTS

  • SUMMARY

  • LIST OF TABLES

  • LIST OF FIGURES

  • ABBREVIATIONS

  • LITERATURE REVIEW

    • Fluorescent nanoparticles

      • 1.1.1 Organic dye doped nanoparticles

      • 1.1.2 Quantum dots

      • 1.1.3 Upconversion nanoparticles

      • 1.2 Molecular cancer diagnosis

        • 1.2.1 In vitro imaging of cancer

        • 1.2.2 In vivo detection of cancer

        • 1.3 Multifunctional nanoparticles

          • 1.3.1 Integration of imaging and therapy

          • 1.3.2 siRNA imaging and delivery

          • 1.3.3 FRET based biosensing

          • 1.4 Thesis overview

          • CHITOSAN/QDS NANOPARTICLES FOR SIRNA DELIVERY

            • 2.1 Introduction

            • 2.2 Materials and Methods

              • 2.2.1 Materials

              • 2.2.2 Cell Culture

              • 2.2.3 Targeted siRNA conjugated Chitosan/QDs nanoparticles

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan