1. Trang chủ
  2. » Ngoại Ngữ

Chiral organometallic complexes promoted cycloaddition and insertion reactions

277 291 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 277
Dung lượng 3,12 MB

Nội dung

CHIRAL ORGANOMETALLIC COMPLEXES PROMOTED CYCLOADDITION AND INSERTION REACTIONS TAN KIEN WEE NATIONAL UNIVERSITY OF SINGAPORE 2005 CHIRAL ORGANOMETALLIC COMPLEXES PROMOTED CYCLOADDITION AND INSERTION REACTIONS TAN KIEN WEE BSc. (Hons) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMISTRY NATIONAL UNIVERSITY OF SINGAPORE 2005 Acknowledgements I would like to express my deepest gratitude to my supervisor, Professor Leung Pak-Hing, for his supervision and encouragement throughout the course of my PhD. research. I am also very grateful to Associate Professor J.J. Vittal, Professor Koh Lip Lin and Ms. Tan Geok Kheng for carrying out the X-ray crystallographic studies. Secondly, I would like to thank Dr. S. Selvaratnam for her guidance in acquiring the proper laboratory skills for my research works. I would also like to thank Sumod and Sreeni for their continual help and encouragements during my candidature period. My appreciation is also extended to Ms. Peggy and Yan Hui from the NMR lab, Mdm. Irene and Mr. Philip from the Honours lab as well as the staffs in the Elemental Analysis lab. I am thankful to National University of Singapore for awarding me a research scholarship to pursue my doctorate degree. Last but not least, my deepest gratitude must be spelt out to my family, especially my parents for their understanding and support during my PhD course. i TABLE OF CONTENTS Acknowledgements i Summary x List of Compounds Synthesized in This Project Nomenclature, X-ray Structural Data, Abbreviations and Symbols xiii xviii Chapter General Introduction Part I 1.1 1.2 Insertion Reactions 1.1.1 Insertions Involving CO 1.1.2 Insertions Involving Alkenes 1.1.3 Other Insertions Enhancing The Insertion Rates The Phenomenon of Chirality Part II 1.3 1.3.1 1.4 Biological Properties of Chiral Molecules 11 Synthetic Strategies for the Preparation of Chiral Compounds 15 1.4.1 Resolution 15 ii 1.5 1.4.2 Naturally Occuring Chiral Synthons 19 1.4.3 Asymmetric Synthesis 19 Preparation of Chiral Phosphines 21 1.5.1 22 Monophosphines with Chiral Carbon Backbones 1.5.2 Diphosphines with Chiral Carbon Backbones 1.5.3 1.5.4 1.6 23 Monophosphines with a Stereogenic Phophorus Center (P-Chiral Phosphines) 25 Diphosphines with at Least One Stereogenic Phosphorus Center 29 Uses of Chiral Phosphine Transition Metal Complexes in Asymmetric Catalysis 31 1.6.1 Asymmetric C=C bond migration 31 1.6.2 Asymmetric Hydrogenation 32 1.6.3 Asymmetric Allylic Substitution 33 1.6.4 Asymmetric Hydroboration 34 1.6.5 Other Catalytic Reactions 34 1.7 Preparation of Arsines Chiral at Arsenic 35 1.8 Resolutions of Tertiary Arsines Chiral at Arsenic 36 1.8.1 Direct Resolutions via Salt-Forming Groups 36 1.8.2 Resolutions via Arsonium Ions 38 1.8.3 Resolutions via Metal Complexes 42 1.9 Applications of Chiral Arsine Transition Metal Complexes in Asymmetric Synthesis 43 1.9.1 43 Catalytic Hydrogenation iii 1.10 1.9.2 Catalytic Hydrosilylation 44 Aims of This Project 45 Chapter 47 Insertions of Alkynylphosphine Into the Pd-C bond of Cyclopalladated Complex 48 2.1 Introduction 48 2.2 Results and Discussion 49 2.2.1 Preparation of Precursor Complex (Rc)-62 49 2.2.1.1 X-ray Structural Analysis of Complex (Rc)-62 50 Formation and Isolation of the 1,2-Insertion Products 53 2.2.2.1 Synthesis of Complex (Rc,Rc)-63 53 2.2.2 2.2.2.1.1 X-ray Structural Analysis of Complex (Rc,Rc)-63 2.2.2.2 Synthesis of Complex (Rc,Rc)-64 2.2.2.2.1 X-ray Structural Analysis of Complex (Rc,Rc)-64 2.2.3 54 56 56 Studies Involving the Insertion Reactions on the Platinum(II) Analogues of the Cyclopalladated Complexes (Rc)-53 and 54 59 2.2.3.1 Synthesis of Complex (Sc,Sc)-65 59 2.2.3.1.1 X-ray Structural Analysis of Complex (Sc,Sc)-65 2.2.3.2 Synthesis of Complex (Sc,Sc)-66 2.2.3.2.1 X-ray Structural Analysis of Complex (Sc,Sc)-66 60 62 63 2.3 Mechanistic Considerations 65 2.4 Reactivity of Metal-Carbon Bonds Toward Insertion Reaction 72 iv 2.5 Conclusions 73 2.6 Experimental Section 74 Chapter Aromatic C-H Bond Activation of an Alkynylphosphine Coordinated Platinum(II) Complex 79 3.1 Introduction 80 3.2 Results and Discussion 82 3.2.1 Synthesis of Ortho-platinated Complex, (Sc)-60 82 3.2.1.1 X-ray Structural Analysis of Complex (Sc)-60 83 3.2.1.2 Interconversion between the Dimeric Platinum(II) Complex, (Sc)-60 85 3.2.2 Preparation of the Precursor Complexes 87 3.2.3 3.2.2.1 X-ray Structural Analysis of Complex (Sc)-69 88 Formation and Isolation of the Phenylic System Coupling Products 92 3.2.3.1 Synthesis of Complex (Sc)-73 92 3.2.3.1.1 X-ray Structural Analysis of Complex (Sc)-73 3.2.3.2 Synthesis of Complex (Sc)-74 3.2.3.2.1 X-ray Structural Analysis of Complex (Sc)-74 3.2.4 93 94 95 Formation and Isolation of the Naphthylic System Coupling Products 97 3.2.4.1 Synthesis of Complex (Sc)-76 3.2.4.1.1 X-ray Structural Analysis of Complex (Sc)-76 97 99 v 3.2.4.2 Synthesis of Complex (Sc)-78 3.2.4.2.1 X-ray Structural Analysis of Complex (Sc)-78 100 102 3.3 Mechanistic Pathway for the C-H Activation and C-C Coupling Reaction 104 3.4 Intramolecular Vs Intermolecular Reaction 111 3.5 Conclusions 112 3.6 Experimental Section 113 Chapter 119 Asymmetric Diels-Alder Reactions of DMPP with Mono- and Bis-(2-Furyl) Substituted Phosphines and their Arsenic Analogues 120 4.1 120 Introduction 4.1.1 4.1.2 4.2 Substituents Effect on Phospholes and Their Coordination with Metals 122 Selected Reactions of Metal Coordinated Phospholes 123 Results and Discussion 125 4.2.1 Stereochemical Considerations 125 4.2.2 Diels-Alder Reaction between DMPP and 2-(Furyl)diphenyl phosphine 128 4.2.2.1 X-ray Structural Analysis of Complex Pt-exo-86a 129 4.2.2.2 Isolation and Structural Analysis of the Dichloro Complex Pt-exo-90 131 4.2.2.2.1 X-ray Structural Analysis of Complex Pt-exo-90 132 vi 4.2.2.2.2 Liberation and Optical Purity Confirmation of (-)-exo-91 4.2.3 The Role of DMPP in The Cycloaddition Reaction with 2-(Furyl)diphenylphosphine 4.2.4 134 139 Diels-Alder Reaction between DMPP and 2-(Furyl)diphenyl arsine 140 4.2.4.1 X-ray Structural Analysis of Complex Pt-exo-94a 141 4.2.4.2 Isolation and Structural Studies of the Dichloro Complex Pt-exo-98 143 4.2.4.2.1 X-ray Structural Analysis of Complex Pt-exo-98 144 4.2.4.2.2 Liberation and Optical Purity Confirmation of (-)-exo-99 146 4.2.5 Stereochemical Considerations 149 4.2.6 Diels-Alder Reaction between DMPP and Bis-(2-furyl)phenyl phosphine 152 4.2.6.1 X-ray Structural Analysis of Complex Pt-exo-102a 153 4.2.6.2 Isolation and Structural Analysis of the Dichloro Complex Pt-exo-110 155 4.2.6.2.1 X-ray Structural Analysis of Complex Pt-exo-110 156 4.2.6.2.2 Liberation and Optical Purity Confirmation of (-)-exo-111 4.2.7 157 Diels-Alder Reaction between DMPP and Bis-(2-furyl)phenyl arsine 161 vii 4.2.7.1 X-ray Structural Analysis of Complex Pt-exo-116a 162 4.2.7.2 Isolation and Structural Analysis of the P-As Coordination Complex Pt-exo-123 162 4.2.7.2.1 X-ray Structural Analysis of Complex Pt-exo-123 165 4.2.7.2.2 Liberation and Optical Purity Confirmation of (-)-exo-124 167 4.3 Conclusions 171 4.4 Experimental Section 172 Chapter 185 Asymmetric Diels-Alder Reactions of 2-(Furyl)-Phosphine / Arsine with Mono- and Di- Substituted Vinylphosphines and their Arsenic Analogue Leading to the Formation of Heterobidentate P-As Ligand 186 5.1 Introduction 186 5.2 Results and Discussion 189 5.2.1 Stereochemical Considerations 189 5.2.2 Diels-Alder Reaction between 2-(Furyl)diphenylphosphine 5.2.3 and Diphenylvinylarsine 191 5.2.2.1 X-ray Structural Analysis of Pt-exo-133a 192 5.2.2.2 Liberation and Re-coordination of Complex Pt-exo-133a 194 Diels-Alder Reaction between 2-(Furyl)diphenylarsine and Diphenylvinylphosphine 197 viii 67. (a) K. Tamao, T. Tohma, N. Inui, O. Nakayama, Y. Ito, Tetrahedron Lett., 1990, 31, 7333. (b) Y. Uozumi, T. Hayashi, J. Am. Chem. Soc., 1991, 113, 9887. (c) Y. Uozumi, S.Y. Lee, T. Hayashi, Tetrahedron Lett., 1992, 33, 7185. (d) S.H. Bergens, P. Noheda, J. Whelan, B. Bosnich, J. Am. Chem. Soc., 1992, 114, 2121. 68. (a) P.S. Elmes, W.R. Jackson, Aust. J. Chem., 1982, 35, 2041. (b) M. Hodgson, D. Parker, J. Organomet. Chem., 1987, 325, C27. (c) T.V. Rajanbabu, A.L. Casalnuovo, J. Am. Chem. Soc., 1992, 114, 6265. 69. 70. M. Sawamura, H. Hamashima, Y. Ito, J. Am. Chem. Soc., 1992, 114, 8295. (a) M. Lautens, J.C. Lautens, A.C. Smith, J. Am. Chem. Soc., 1990, 112, 5627. (b) H. Brunner, M. Muschiol, F. Prester, Angew. Chem., Int. Ed. Engl., 1990, 29, 625. 71. (a) G. Consiglio, C. Botteghi, Helv. Chim. Acta, 1973, 56, 460. (b) Y. Kiso, K. Tamao, N. Miyake, K. Yamamoto, M. Kumada, Tetrahedron Lett., 1974, 3. 72. G. Buono, C. Siv, G. Peiffer, C. Triantaphylide, P. Denis, A. Mortreux, F. Peti, J. Org. Chem., 1985, 50, 1781. 73. S.B. Wild, The Chemistry of Organic Arsenic, Antimony and Bismuth Compounds, (Ed. Saul Patai), Wiley, Chichester, 1994, 89-148. 74. H. Brunner, The Chemistry of the Metal-Carbon Bond, Vol. (Ed. F.R. Hartley), Chap. 4, Wiley, Chichester, 1989, 109. 75. (a) F.G. Mann, Prog. Stereochem., 2, 196, (1957). (b) W.E. McEwen, Topics in Phosphorus Chemistry, Vol. (Ed. M. Grayson and E.J. Griffith), Interscience, New York, 1965, 1. (c) L. Homer, Helv. Chim. Acta (Alfred Werner commemorative volume), 1967, 93. 76. L. Horner, H. Fuchs, Tetrahedron Lett., 1962, 203. 238 77. M.S. Lesslie, E.E. Turner, J. Chem. Soc., 1934, 1170. 78. M.S. Lesslie, E.E. Turner, J. Chem. Soc., 1935, 1268. 79. M.S. Lesslie, E.E. Turner, J. Chem. Soc., 1936, 730. 80. M.S. Lesslie, J. Chem. Soc., 1938, 1001. 81. L. Horner, H. Winkler, Tetrahedron Lett., 1964, 3271. 82. I.G.M. Campbell, J. Chem. Soc., 1947, 4. 83. M.S. Lesslie, J. Chem. Soc., 1949, 1183. 84. K. Mislow, A. Zimmerman and J.L. Melilo, J. Am. Chem. Soc., 1963, 85, 594. 85. Y. Gatilov, G.KF. Kamai, L.B. Ionov, Zh. Obshch. Khim., 1968, 38, 370; J. Gen. Chem. USSR (Engl. Transl.), 1968, 38, 368. 86. Y.F. Gatilov, L.B. Ionov, Zh. Obshch. Khim., 1968, 38, 2561; J. Gen. Chem. USSR (Engl. Transl.), 1968, 38, 2476. 87. Y.F. Gatilov, L.B. Ionov, S.S. Molodtsov, Zh. Obshch. Khim., 1972, 42, 1535; J. Gen. Chem. USSR (Engl. Transl.), 1972, 42, 1527. 88. Y.F. Gatilov, L.B. Ionov, Zh. Obshch. Khim., 1969, 39, 1064; J. Gen. Chem. USSR (Engl. Transl.), 1969, 39, 1036. 89. Y.F. Gatilov, F.D. Yambushev, Zh. Obshch. Khim., 1973, 43,1132; J. Gen. Chem. USSR (Engl. Transl.), 1973, 43, 1123. 90. Y.F. Gatilov, L.B. Ionov, F.D. Yambushev, Zh. Obshch. Khim., 1971, 41, 570; J. Gen. Chem. USSR (Engl. Transl.), 1971, 41, 565. 91. Y.F. Gatilov, F.D. Yambushev, N.K. Tenisheva, Zh. Obshch. Khim., 1973, 43,2273; J. Gen. Chem. USSR (Engl. Transl.), 1973, 43, 2263. 239 92. F.D. Yambushev, Y.F. Gatilov, N.K. Tenisheva, Uch. Zap. Kazan, Gos. Pedagog. Inst., 123, 45 (1973); Chem. Abstr., 1977, 86, 190114m. 93. L.B. Ionov, Y.F. Gatilov, I.P. Mukanov, L.G. Kokorina, Zh. Obshch. Khim., 1974, 44, 1874; J. Gen. Chem. USSR (Engl. Transl.), 1974, 44, 1837. 94. (a) W.E. McEwen, K.F. Kumli, A. Blade-Font, M. Zanger, C.A. VanderWerf, J. Am. Chem. Soc., 1964, 86, 2378. (b) T.J. Katz, C.R. Nicholson, C.A. Reilly, J. Am. Chem. Soc., 1988, 88, 3832. (c) P.D. Henson, K. Naumann, K. Mislow, J. Am. Chem. Soc., 1969, 91, 5645. 95. L.H. Horner, M. Ernst, Chem. Ber., 1970, 103, 2718. 96. L. Horner, H. Fuchs, Tetrahedron Lett., 1963, 1573. 97. L. Horner, H. Fuchs, Tetrahedron Lett., 1962, 203. 98. L.H. Horner, W. Hofer, Tetrahedron Lett., 1966, 3321. 99. D.G. Allen, C.L. Raston, B.W. Skelton, A.H. White, S.B. Wild, Aust. J. Chem., 1984, 37, 1171. 100. (a) D.G. Allen, N.K. Roberts, S.B. Wild, J. Chem. Soc., Chem. Commun., 1978, 346. (b) D.G. Allen, S.B. Wild, Organometallics, 1983, 2, 394. 101. L.B. Ionov, L.A. Kunitskaya, I.P. Mukanov, Y.F. Gatilov, Zh. Obshch. Khim., 1976, 46, 68; J. Gen. Chem. USSR (Engl. Transl.), 1976, 46, 68. 102. (a) A.C. Cope, C.R. Ganelin, H.W. Johnson, T.V. Van Auken, H.S. Winkler, J. Am. Chem. Soc., 1963, 85, 3276. (b) A.C. Cope, K. Banholzer, H. Keller, B.A. Pawson, J.J. Whang, H.J.S. Winkler, J. Am. Chem. Soc., 1965, 87, 3644. 103. A.C. Cope, E.A. Caress, J. Am. Chem. Soc., 1966, 88, 1711. 240 104. (a) S. Otsuka, A. Nakamura, T. Kano, K. Tani, J. Am. Chem. Soc., 1971, 93, 4301. (b) K. Tani, L.D. Brown, J. Ahmed, J.A. Ibers, M. Yokota, A. Nakamura, S. Otsuka, J. Am. Chem. Soc., 1977, 99, 7876. 105. N.K. Roberts, S.B. Wild, J. Chem. Soc., Dalton Trans., 1979, 2015. 106. G. Salem, S.B. Wild, Inorg. Chem., 1983, 22, 4049. 107. J.W.L. Martin, F.S. Stephens, K.D.V. Weerasuria, S.B. Wild, J. Am. Chem. Soc., 1988, 110, 4346. 108. P.-H. Leung, G.M. McLaughlin, J.W.L. Martin, S.B. Wild, Inorg. Chem., 1986, 25, 3392. 109. A.D. Calhoun, W.J. Kobos, T.A. Nile, C.A. Smith, J. Organomet. Chem., 1979, 170, 175. 110. D.G. Allen, S.B. Wild, D.L. Wood, Organometallics, 1976, 5, 1009. 111. N.C. Payne, D.W. Stephan, Inorg. Chem., 1982, 21, 182. 112. (a) S.B. Wild, Coord. Chem. Rev., 1997, 166, 291. (b) N.W. Alcock, D.I. Hulmes and J.M. Brown, J. Chem. Soc., Chem. Commun., 1995, 395. (c) V.V. Dunina, E.B. Golovan, N.S. Gulyukina and A.V. Buyevich, Tetrahedron: Asymmetry, 1995, 6, 2371. (d) J. Spencer and M. Pfeffer, Tetrahedron: Asymmetry, 1995, 6, 419. (e) W. Mcfarlane, J.D. Swarbrick and J.L. Bookham, J. Chem. Soc., Dalton Trans., 1998, 3233. (f) G. Zhao, Q.G. Wang and T.C.W. Mak, J. Organomet. Chem., 1999, 574, 311. (g) Y.C. Song, J.J. Vittal, S.H. Chan and P.H. Leung, Organometallics, 1999, 18, 650. 113. R.F. Heck, J. Am. Chem. Soc., 1968, 90, 313. 241 114. (a) J.M. Thompson, R.F. Heck, J. Org. Chem., 1975, 40, 2667. (b) V.I. Sokolov, Pure Appl. Chem., 1984, 55, 1837. (c) H. Horino, N. Inoue, J. Org. Chem., 1981, 46, 4416. (d) H. Takahashi, J. Tsuji, J. Organomet. Chem., 1967, 10, 511. (e) V.I. Sokolov, L.L. Troitskaya, O.A. Reutov, J. Organomet. Chem., 1979, 182, 537. (f) A.J. Nielson, J. Chem. Soc., Dalton Trans., 1981, 205. (g) T. Izumi, T. Katou, A. Kasahara, K. Manaya, Bull. Chem. Soc. Jpn., 1978, 51, 3407. (h) M.E.K. Cartoon, G.W.H. Cheeseman, J. Organomet. Chem., 1982, 234, 123. (i) D. Medema, R. van Helden, C.F. Kohll, Inorg. Chim. Acta., 1969, 3, 255. 115. H. Ossor, M. Pfeffer, J. Chem. Soc., Chem. Commun., 1985, 1540. 116. (a) F.J. van Baar, J.M. Klerks, P. Overbosch, D.J. Stufkens, K. Vrieze, J. Organomet. Chem., 1976, 112, 95. (b) Y. Yamamoto, H. Yamazaki, Inorg. Chim. Acta., 1980, 41, 229. (c) Y. Yamamoto, H. Yamazaki, Coord. Chem. Rev., 1972, 8, 225; Y. Yamamoto, H. Yamazaki, Synthesis, 1976, 750. 117. (a) R.A. Holton, Tetrahedron Lett., 1977, 355. (b) B.J. Brisdon, P. Nair, S.F. Dyke, Tetrahedron, 1981, 37, 173. (c) I.R. Girling, D.A. Widowson, Tetrahedron Lett., 1982, 23, 4281. (d) J. Tsuji, Acc. Chem. Res., 1969, 2, 144; (e) C.H. Chao, D.W. Hart, R. Bau, R.F. Heck, J. Organomet. Chem., 1979, 179, 301; (f) A.D. Ryabov, V.A. Polyakov, A.K. Yatsimirsky, J. Chem. Soc., Perkins Trans. 2, 1983, 1503. 118. (a) A. Bahsoun, J. Dehand, M. Pfeffer, M. Zinsius, S.-E. Bouaoud, G. Le Borgne, J. Chem. Soc., Dalton Trans., 1979, 547. (b) C. Arlen, M. Pfeffer, O. Bars, D. Grandjean, J. Chem. Soc., Dalton Trans., 1983, 1535. (c) F. Maassarani, M. Pfeffer, G. Le Borgne, J. Chem. Soc., Chem. Commun., 1986, 488. (d) V.N. 242 Kalininy, A.V. Usatov, L.I. Zakharkin, Izv. Akad. Nauk SSSR, Ser. Khim., 1984, 7, 1646. 119. F. Maassarani, M. Pfeffer, G. Le Borgne, Organometallics, 1987, 6, 2029. 120. A.E. Kelly, S.A. Mcgregor, A.C. Willis, J.H. Nelson, E. Wenger, Inorg. Chim. Acta, 2003, 352, 79. 121. J. Spencer, M. Pfeffer, Organometallics, 1995, 14, 2214. 122. M.A. Bennett, J. Castro, A.J. Edwards, M.R. Kopp, E. Wenger, A.C. Willis, Organometallics, 2001, 20, 980. 123. (a) E. Sappa, M. Valle, G. Predieri, A. Tiripicchio, Inorg. Chim. Acta., 1984, 88, 123. (b) Y.S. Wong, S.E. Jacobson, P.C. Chieh, A.J. Carty, Inorg. Chem., 1974, 13, 284. (c) G. Berau, A.J. Carty, P.C. Chieh, H.A. Patel, J. Chem. Soc. Dalton Trans., 1973, 488. (d) E. Louattani, A. Lledós, J. Saudes, A. Alvarez-Larena, J.F. Piniella, Organometallics, 1995, 14, 1053. (e) E. Louattani, J. Saudes, J. Organomet. Chem., 2000, 604, 234. (f) D.K. Johnson, T. Rukachaisirikul, Y. Sun, N.J. Taylor, A.J. Canty, A.J. Canty, Inorg. Chem., 1993, 32, 5544. (g) R.B. King, A. Efraty, Inorg. Chim. Acta., 1970, 4, 319. (h) R.T. Simpson, A.J. Carty, J. Coord. Chem., 1973, 2, 207. (i) E. Louattani, J. Saudes, Inorg. Chim. Acta., 1999, 421, 335. (j) A. Hengefeld, R. Nast, J. Organomet. Chem., 1983, 252, 375. (k) H.D. Hempsall, E.M. Hyde, E. Mentzer, B.L. Saw, J. Chem. Soc., Dalton Trans., 1997, 2285. (l) N.T. Lucas, M.P. Cifuentes, L.T. Nguyen, M.G. Humphrey, J. Clust. Sci., 2001, 12, 201. (m) M. Bardaji, A. Laguna, P.G. Jones, Organometallics, 2001, 20, 3906. 243 124. (a) H.A. Patel, A.J. Carty, N.K. Hota, J. Organomet. Chem., 1973, 50, 247. (b) A.J. Carty, H.N. Paik, T.W. Ng, J. Organomet. Chem., 1974, 74, 279. (c) M.A. Bennett, L. Kwan, A.D. Rae, E. Wenger, A.C. Willis, J. Chem. Soc., Daltons Trans., 2002, 226. 125. (a) A.J. Carty, G. Ferguson, H.N. Paik, R. Restivo, J. Organomet. Chem., 1974, 74, C14. (b) A.J. Carty, W.F. Smith, N.J. Taylor, J. Organomet. Chem., 1978, 146, C1. (c) S. Jacobson, A.J. Carty, M. Mathew, G.J. Palenik, J. Am. Chem. Soc., 1974, 96, 4330. (d) A.J. Carty, H.N. Paik, G.J. Palenik, Inorg. Chem., 1977, 16, 300. (e) E. Sappa, G. Predieri, A. Tiripicchio, M.J. Tiripicchio Camellini, J. Organomet. Chem., 1985, 293, 103. (f) H. Lang, M. Leise, L. Zsolnai, J. Organomet. Chem., 1991, 410, 379. (g) E. Louattani, J. Suades, A. AlvarezLarena, J.F. Piniella, G. Germain, J. Organomet. Chem., 1996, 506, 121. 126. D.K. Johnson, T. Rukachaisirikul, Y. Sun, N.J. Taylor, A.J. Canty, A.J. Carty, Inorg. Chem. 1993, 32, 5544. 127. (a) J. Forníes, A. García, Julio Gomez, E. Lalinde, M.T. Moreno, Organometallics, 2002, 21, 3733 and references therein. (b) M.A. Bennett, C.J. Cobley, A.D. Rae, E. Wenger, A.C. Willis, Organometallics, 2000, 19, 1522. (c) X. Liu, K.F. Mok, P.H. Leung, Organometallics, 2001, 20, 3918. 128. (a) R. Schmid, M. Cereghetti, B. Heiser, P. Schonholzer, H-J. Hansen, Helv. Chim. Acta, 1988, 71, 897. (b) R. Schmid, J. Foricher, M. Cereghetti, P. Schonholzer, Helv. Chim. Acta, 1991, 74, 370. 129. (a) N.W. Alcock, D.I. Hulmes, J.M. Brown, J. Chem. Soc., Chem. Commun., 1995, 395. (b) H. Jendralla, C.H. Li, E. Paulus, Tetrahedron : Asymmetry, 1994, 244 5, 1297. (c) F. Maassarani, M. Pfeffer, G. Le Borgne, J.T.B.H. Jastrzebski, G. van Kotan, Organometallics, 1987, 6, 1111. (d) R.J. Doyle, G. Salem, A.C. Willis, J. Chem. Soc., Dalton Trans., 1995, 1867. (e) M. Pabel, A.C. Willis, S.B. Wild, Tetrahedron : Asymmetry, 1995, 6, 2369. (f) Q. Jiang, H. Ruegger, L.M. Venanzi, J. Organomet. Chem., 1995, 488, 233. 130. I. Ara, J. Forníes, A. García, J. Gómez, E. Lalinde, M.T. Moreno, Chem. Eur. J., 2002, 8, 3698. 131. (a) V.V. Dunina, E.B. Golovan, N.S. Gulyukina, A.V. Buyevich, Tetrahedron: Asymmetry, 1995, 6, 2731. (b) B.H. Aw, T.S.A. Hor, S. Selvaratnam, K.F. Mok, A.J.P. White, D.J. Williams, N.H. Rees, W. McFarlane, P.H. Leung, Inorg. Chem., 1997, 36, 2138. (c) D. C. R. Hockless, P. A. Gugger, P.H. Leung, R. C. Mayadunne, M. Pabel, S. B. Wild, Tetrahedron, 1997, 11, 4083. 132. G.O. Spessard, G.L. Miessler, Organometallic Chemistry, (Ed. P.F. Corey), Prentice-Hall, Inc., 1997, 191-210. 133. Y. Kayaki, H. Tsukamoto, M. Kaneko, I. Shimizu, A. Yamamoto, M. Tachikawa, T. Nakajima, J. Organomet. Chem., 2001, 622, 199. 134. W. Hewertson, I.C. Taylor, S. Tripett, J. Chem. Soc., (C), 1970, 1835. 135. N.K. Roberts, S.B. Wild, J. Chem. Soc., Dalton Trans., 1979, 2105. 136. D.G. Allen, G.M. McLaughlin, G.B. Robertson, W.L. Steffen, G. Salem, S.B. Wild, Inorg. Chem., 1982, 74, 370. 137. S.Y.M. Chooi, J.D. Ranford, P.H. Leung, K.F. Mok, Tetrahedron: Asymmetry, 1994, 5, 1805. 245 138. (a) N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457. (b) E. Negishi, C. Coperet, S. Ma, S.Y. Yee, F. Liu, Chem. Rev. 1996, 96, 365. (c) H. Geissler, Transition Met. Org. Synth. 1998, 1, 158. (d) S. Stanforth, Tetrahedron, 1998, 54, 263. (e) S.R. Chemler, D. Trauner, S.J. Danishefsky, Angew. Chem., Int. Ed. Engl., 2001, 40, 4544. 139. G. Dyker, Angew. Chem., Int. Ed. Engl., 1999, 38, 1698. 140. (a) J.A. Rahn, M.S. Holt, G.A. Gray, N.W. Alcock, J.H. Nelson, Inorg. Chem., 1989, 28, 217. (b) X. Liu, T.K.W. Ong, S. Selvaratnam, J.J. Vittal, A.J.P. White, D.J. Williams, P.H. Leung, J. Organomet. Chem., 2002, 643, 4. 141. (a) E.C. Constable, Polyhedron, 1984, 3, 1037. (b) I. Omae, Organometallic intramolecular-coordination compounds in Journal of Organometallic Chemistry Library, Elsevier, Amsterdam, 1986. (c) O.A. Dunina, V.M. Zalevskaya, V.M. Potapov, Russ. Chem. Rev., 1988, 57, 434. 142. For general review on C-H activation, see: (a) A.E. Shilov, G.B. Shul’pin, Actaivation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Complexes, Kluwer Academic Publishers: Dordrecht, 2000. (b) W.D. Jones, In Activation of Unreactive Bonds and Organic Synthesis, (Ed. S. Murai), Topics in Organometallic Chemistry, Springer: New York, 1999, 9-46. (c) F. Kakiuchi, S. Murai, In Activation of Unreactive Bonds and Organic Synthesis, (Ed. S. Murai), Topics in Organometallic Chemistry, Springer: New York, 1999, 47-80. (d) A.E. Shilov, G.B. Shulpin, Acc. Chem. Res., 1997, 97, 2879. (e) B.A. Arndtsen, R.G. Bergman, T.A. Mobley, T.H. Peterson, Chem. Rev., 1995, 28, 246 154. (f) C.N. Iverson, R.J. Lachicotte, C. Müller, W.D. Jones, Organometallics, 2002, 21, 5320. 143. (a) C. A. Merlic, M. E. Pauly, J. Am. Chem. Soc., 1996, 118, 11319. (b) T. Miura, N. Iwasawa, J. Am. Chem. Soc., 2002, 124, 518. (c) D. Schneider, H. Werner, Angew. Chem., Int. Ed. Engl., 1991, 6, 700. (d) C. Bruneau, P. H. Dixneuf, Acc. Chem. Res., 1999, 32, 311. (e) V. Mamane, P. Hannen, A. Fürstner, Chem. Eur. J., 2004, 10, 4556. (f)T. Miura, H. Murata, K. Kiyota, H. Kusama, N. Iwasawa, J. Mol. Cat. A : Chemical., 2004, 213, 59. 144. W. Chodkiewicz, P. Cadiot, A. Willemart, Compt. Rend., 1960, 250, 866. 145. G. Wittig, G. Geissler, Liebigs Ann. Chem., 1953, 580, 44. 146. (a) E.H. Braye, W. Hübel, Chem. Ind. (London), 1959, 1250. (b) F.C. Leavitt, T.A. Manuel, F. Johnson, J. Am. Chem. Soc., 1959, 81, 3163. 147. L.D. Quin, Phosphorus-Carbon Heterocyclic Chemistry: The Rise of a New Domain, (Ed. F. Mathey), Elsevier Science, Oxford, UK, 2001, 219-305. 148. F. Mathey, F. Mercier, C.R. Acad. Sci. Paris, T. 324, Ser IIb, 1997, 701-706. 149. G.S. He, Phd Dissertation, NUS, Singapore, 2001. 150. S.M. Bachrach, J. Org. Chem., 1993, 58, 5414. stop here 151. C. Charrier, H. Bonnard, G. de Lauzon, S. Holand, F. Mathey, Phosphorus Sulfur, 1983, 18, 51. 152. L.D. Quin, J.G. Bryson, J.F. Engel, Phosphorus, 1973, 2, 205. 153. A. Breque, F. Mathey, P. Savignac, Synthesis, 1981, 983. 247 154. (a) Y.C. Song, Phd Dissertation, NUS, Singapore, 1999. (b) A. Habtemariam, B. Watchman, B.S. Potter, R. Palmer, S.Parsons, A. Parkin, P.J. Sadler, J. Chem. Soc. Dalton Trans., 2001, 1306. 155. J.J. MacDougall, J.H. Nelson, F. Mathey, J. Mayerle, Inorg. Chem., 1980, 19, 709. 156. J.J. MacDougall, J.H. Nelson, F. Mathey, J. Mayerle, Inorg. Chem., 1982, 21, 2145. 157. A. Marinetti, F. Mathey, J. Fischer, A. Mitschler, J. Chem. Soc., Chem. Commun., 1982, 667. 158. C.C. Santini, J. Fischer, F. Mathey, A. Mitschler, J. Am. Chem. Soc., 1980, 102, 5809. 159. (a) B.H. Aw, P.H. Leung, Tetrahedron: Asymmetry, 1994, 5, 1167. (b) B.H. Aw, P.H. Leung, A.J.P. White, D.J. Williams, Organometallics, 1996, 15, 3640. (c) S. Selvaratnam, K.F. Mok, P.H. Leung, A.J.P. White, D.J. Williams, Inorg. Chem., 1996, 35, 4798. (d) A.M. Liu, K.F. Mok, P.H. Leung, J. Chem. Soc., Chem. Commun., 1997, 2397. (e) P.H. Leung, S.K. Loh, J.J. Vittal, A.J.P. White, D.J. Williams, J. Chem. Soc., Chem. Commun., 1997, 1987. (f) P.H. Leung, S.Y. Siah, A.J.P. White, D.J. Williams, J. Chem. Soc., Dalton Trans., 1998, 893. G.S. He, S.K. Loh, J.J. Vittal, K.F. Mok, P.H. Leung, Organometallics, 1998, 17, 3931. (g) Y.C. Song, J.J. Vittal, S.H. Chan, P.H. Leung, Organometallics, 1999, 18, 650. (h) P.H. Leung, A.M. Liu, K.F. Mok, Tetrahedron: Asymmetry, 1999, 10, 1309. (i) P.H. Leung, G. He, H. Lang, A. Liu, S.K. Loh, S. Selvaratnam, K.F. Mok, A.J.P. White, D.J. Williams, Tetrahedron, 2000, 56, 7. (j) P.H. Leung, H. Lang, 248 X. Zhang, S. Selvaratnam, J.J. Vittal, Tetrahedron: Asymmetry, 2000, 11, 2661. (k) P.H. Leung, Acc. Chem. Res., 2004, 37, 169. 160. W.C. Yeo, J.J. Vittal, A.J.P. White, D.J. Williams, P.H. Leung, Oranometallics, 2001, 20, 2167. 161. S.K. Loh, Phd Dissertation, NUS, Singapore, 1997 162. S. Selvaratnam, Phd Dissertation, NUS, Singapore, 1998. 163. (a) R.G. Pearson, Inorg. Chem., 1973, 12, 712. (b) J. Dehand, J. Jordanov, M. Pfeffer, D. Grandjean, G. Le Borgne, Inorg. Chem., 1981, 20, 4426. 164. (a) J. Vicente, M.D. Bermudez, M.P. Carillo, P.G. Jones, J. Chem. Soc., Dalton Trans., 1992, 1975. (b) J. Vicente, A. Arcas, D. Bautista, A. Tiripicchio, M.T. Camellini, New J. Chem., 1996, 20, 345. 165. V. Dufaud, J. Thivolle-Cazat, J.M. Basset, R. Mathieu, J. Jaud, J. Waissermann, Organometallics, 1991, 10, 4005. 166. W.A. Herrmann, C. Brossmer, T. Priermeier, K. Ofele, J. Oganomet. Chem., 1994, 481, 97. 167. J. Leitch, G. Salem, D.C.R. Hockless, J. Chem. Soc., Dalton Trans., 1995, 649. 168. B. Jedlicka, R.E. Rulke, W. Weissensteiner, R. Fernandez-Galan, F.A. Jalon, B.R. Manzano, J. Rodriguez de la Fuente, N. Veldman, H. Kooijman, A.L. Spek, J. Organomet. Chem., 1996, 516, 97. 169. K. Miki, N. Kasai, H. Kurosawa, Acta Crystallogr., 1998, C44, 1135. 170. N. Gabbitas, G. Salem, M. Sterns, A.C. Willis, J. Chem. Soc., Dalton Trans., 1993, 3271. 249 171. B.D. Steffey, A. Miedaner, M.L. Maciejewski-Farmer, P.R. Bernatis, A.M. Herring, V.S. Allured, V. Carperos, D.L. DuBois, Organometallics, 1994, 13, 4844. 172. R.S. Cahn, C.K. Ingold, V. Prelog, Angew. Chem., Int. Ed. Engl., 1966, 5, 385. 173. G.S. He, Y. Qin, K.F. Mok, P.H. Leung, J. Chem. Soc., Chem. Commun., 2000, 167. 174. J.H. Nelson, Coord. Chem. Rev., 1995, 139, 245. 175. (a) V. Ramanathan, R. Levine, J. Org. Chem., 1962, 27, 1216. (b) D.W. Allen, B.G. Hutley, T.C. Rich, J. Chem. Soc., Perkin Trans. 2, 1973, 820. 176. G. Markl, J. Amrhein, T. Stoiber, U. Striebl, P. Kreitmeier, Tetrahedron, 2002, 58, 2551. 177. R.L. Baker, E. Booth, W.E. Jones, A.F. Millidge, F.N. Woodward, J. Soc. Chem., Ind., 1949, 68, 289. 178. (a) A. Wasserman, Diels-Alder Reactions, Elsevier, New York, 1965. (b) E.J. Corey, H.E. Ensley, J. Am. Chem. Soc., 1975, 97, 6908. 179. (a) M. Petrzilka, J.I. Grayson, Synthesis, 1981, 753. (b) W. Oppolzer, Angew. Chem. Int. Ed. Engl., 1984, 23, 876. (c) W. Oppolzer, Comprehensive Organic Synthesis, (Ed. B.M. Trost), 1991, Vol.5, Chapter 4. 180. (a) W. Oppolzer, Synthesis, 1978, 793. (b) G. Brieger, J.N. Bennett, Chem. Rev., 1980, 80, 63. (c) W. Oppolzer, Angew. Chem. Intl. Ed. Engl., 1983, 24, 876. 181. (a) A.G. Fallis, Can. J. Chem., 1984, 62, 183. (b) T.R. Kelley, A. Whiting, N.S. Chandrakumar, J. Am. Chem. Soc., 1986, 108, 3501. 182. D. Craig, Chem. Soc. Rev., 1987, 16, 187. 250 183. (a) M. Bednarski, S. Danishefsky, J. Am. Chem. Soc., 1983, 105, 3716. (b) M. Bednarski, C. Maring, S. Danishefsky, Tetrahedron Lett., 1983, 24, 3451. 184. M. Narisada, M. Ohtani, F. Watanabe, K. Uchida, H. Arita, M. Doteuchi, K.Hanasaki, H. Kakushi, K. Otani, S. Hara, J. Med. Chem., 1988, 31, 1847, and references cited therein. 185. J. Das, T. Vu, D. Harris, M. Ogletree, J. Med. Chem., 1988, 31, 930. 186. S. Hall, W.C. Han, D. Harris, A. Hedbery, M. Ogletree, J. Med. Chem., 1989, 32, 974. 187. (a) M.S. Holt, J.H. Nelson, P. Savignac, N.W. Alcock, J. Am. Chem. Soc., 1985, 107, 6396. (b) J.A. Rahn, M.S. Holt, G.A. Gray, N.W. Alcock, J.H. Nelson, Inorg. Chem., 1989, 28, 217. 188. J.A. Rahn, M.S. Holt, M. O’Niel-Johnson, J.H. Nelson, Inorg. Chem., 1988, 27, 1316. 189. (a) R.L. Green, J.H. Nelson, Organometallics, 1987, 6, 2256. (b) R. Vac, J.H. Nelson, E.B. Milosavljevic, Lj. Solujic, J. Fischer, Inorg. Chem., 1989, 28, 4132. (c) H.-L. Ji, J.H. Nelson, A. DeCian, J. Fischer, Lj. Solujic, E.B. Milosavljevic, Organometallics, 1992, 11, 1840. 190. S. Affandi, J.H. Nelson, J. Fischer, Inorg. Chem., 1989, 28, 4536. 191. (a) D. Bhaduri, J.H. Nelson, C.L. Day, R.A. Jacobsen, Lj. Solujic, E.B. Milosavljevic, Organometallics, 1992, 11, 4069. (b) D. Bhaduri, J.H. Nelson, T. Wang, R.A. Jacobsen, Organometallics, 1994, 13, 2291. 192. (a) Lj. Solujic, E.B. Milosavljevic, J.H. Nelson, N.W. Alcock, J. Fischer, Inorg. Chem., 1989, 28, 3453. (b) J.H. Nelson, Phosphorus-31NMR Spectral Properties 251 in Compound Characterisation and Structural Analysis (Eds. L.D. Quin, J.G. Verkade), VCH, Weinheim, Germany, 1994, 203. 193. J.M. Kessler, J.H. Nelson, J. Fischer, A.D. Cian, W.H. Bearden, N. Fujii, Inorg. Chem., 1994, 33, 4319. 194. W.C. Yeo, J.J. Vittal, L.L. Koh, G.K. Tan, P.H. Leung, Organometallics, 2004, 23, 3474-3482. 195. (a) P.H. Leung, J.W.L. Martin, S.B. Wild, Inorg. Chem., 1986, 25, 3396. (b) S.Y.M. Chooi, T.S.A. Hor, P.-H. Leung, K.F. Mok, Inorg. Chem., 1992, 31, 1494. 196. M.G.B. Drew, A.W. Johans, A.P. Wolters, I.B. Tomkins, J. Chem. Soc., Chem. Commun., 1971, 819. 197. R. Rabinowitz, J. Pellon, J. Org. Chem., 1961, 26, 4623. 198. R.B. King, P.N. Kapoor, J. Am. Chem. Soc., 1971, 93, 4158. 199. V.C. Cook, A.C. Willis, J. Zank, S.B. Wild, Inorg. Chem., 2002, 41, 1897. 252 Appendices The X-ray crystallographic datas of the compounds synthesized in this thesis project are available in the CD-ROM attached. 253 [...]... 1,2 -insertion, in which the M and the X end up on adjacent atoms It could therefore be generalized that η1 ligands tend to give 1,1 -insertion whilst η2 ligands give the 1,2 -insertion Sulfur dioxide is the only common ligand that can give both types of insertion due to its ability to act as a η1 (S) and η2 (S,O) ligands X X 1,1-migratory insertion M A M B A (a) B X X B B 1,2-migratory insertion M M A (b) A... classification These reactions are of great importance as they are deemed as key steps in homogenous catalysis as well as stoichiometric organometallic syntheses In insertion, a coordinated ligand, A=B, can insert itself into an M-X bond to give M-(AB)-X where ABX is a new ligand in which a bond has been formed between AB and both M and X 2 In general, there are two main types of insertion, 1,1- and 1,2- insertions... intermolecular insertion reactions whereas in the case of the asymmetric Diels-Alder reactions, they act as chiral reaction promoters Due to these factors, it is therefore imperative to delineate the general introduction into two parts Part I 1.1 Insertion Reactions1 “Insertions”2-6 comprise of a substantial body of organometallics reactions which is therefore misleading in that both intermolecular additions and. .. Scheme 1.1a and 1.1b respectively.1a The metal (M) and the X ligand end up bounded to the same (1,1) or adjacent (1,2) atoms of the L-type ligand shown as A=B The type of insertion observed in any given case depends on the nature of the inserting ligand For example, CO gives only 1,1 -insertion where both the M and the X group end up attached to the CO carbon Meanwhile ethylene gives only 1,2 -insertion, ... of complex (Rc)-60, did not show to undergo any insertion reaction at the platinum-carbon bond with the same alkynylphosphine ligand, even under vigorous reaction conditions employed On the other hand, the hetero-bimetallic insertion reaction complexes (Sc,Sc)-65 and (Sc,Sc)-66 containing both palladium and platinum metal centers were obtained with the insertion occurring at the palladium-carbon bond... N,Ndimethyl-1-(1-phenyl)ethylamine and its naphthylamine analogue were employed as reagents and chiral reaction promoters for two distinct class of reactions namely (a) insertion of alkynylphosphines into metal-carbon bond and (b) asymmetric Diels-Alder reactions It is noteworthy that these compounds play distinctly different roles in the two aforementioned synthetic scenarios They assume the dual role of reagents and reaction... these reactions and the position of equilibrium depend on the strengths of the metal-carbon bond and of the metal-carbon monoxide bond in the starting alkyl complex.2 1.1.2 Insertions Involving Alkene Insertion of coordinated alkenes into M-H bonds is a very important reaction because it gives alkyls, and constitutes a key step in a variety of catalytic reactions. 1a Alkenes are known as η2 ligands,... Chirality16 Chirality or "handedness" (Greek: cheir = the hand) is a dichotomous and geometrical property This phenomenon is exhibited in a pair of molecules that are nonsuperimposable mirror images of one another and they are called as the enantiomers The definition of enantiomers was originally proposed by Lord Kelvin in 1904 where he 9 quoted "I call any geometrical figure, or group of points, chiral, ... necessary conditions are fulfilled A hand and glove concept best depicts the relationship between a biological receptor and the chiral molecule If the glove is somewhat flexible, it could accommodate either hands, but only one will be able to perform the desired tasks However, when the glove is a steel gauntlet with the well-defined front and back therefore only the correct hand could fit in for an interaction... 1,1-migratory insertion M A M B A (a) B X X B B 1,2-migratory insertion M M A (b) A Scheme 1.1 (a) 1,1-migratory insertion and (b) 1,2-migratory insertion In principle, the insertion reactions are reversible, but only one of the two possible directions is observed in practice for many of the ligands, probably because this direction is strongly favored thermodynamically For example, sulfur dioxide commonly . CHIRAL ORGANOMETALLIC COMPLEXES PROMOTED CYCLOADDITION AND INSERTION REACTIONS TAN KIEN WEE NATIONAL UNIVERSITY OF SINGAPORE 2005 CHIRAL ORGANOMETALLIC COMPLEXES. Abbreviations and Symbols xviii Chapter 1 1 General Introduction 2 Part I 2 1.1 Insertion Reactions 2 1.1.1 Insertions Involving CO 4 1.1.2 Insertions Involving Alkenes 5 1.1.3 Other Insertions. thank Sumod and Sreeni for their continual help and encouragements during my candidature period. My appreciation is also extended to Ms. Peggy and Yan Hui from the NMR lab, Mdm. Irene and Mr.

Ngày đăng: 12/09/2015, 10:17

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN