Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 55 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
55
Dung lượng
237,99 KB
Nội dung
Chapter Chapter Introduction 1.1 General review During the past decade, scientists have developed techniques for synthesizing and characterizing many new materials with at least one of the dimensions in the nanometer scale. Nanoscale materials can also be classified as metal and semiconductor nanoparticles, nanowires, nanocubes, and various types of artificial supramolecular composites. Properties of materials of nanometric dimensions are significantly different from the compositional atoms as well as the corresponding bulk materials. Suitable control of the nanometer scale structures can lead to exciting new electrical and optical properties of nanoscale materials, associated with size and spatial organization. All these findings including positive results in devices made of nanoscale components have attracted growing interest in nanoscience and nanotechnology. Nanoparticles refer to those particles whose size is below 100 nm. Due to quantum confinement effect, nanoparticles have displayed outstanding electrical or optical properties, which lead to numerous potentials and applications in advanced technology. On the other hand, nano-sized particles have been practically utilized to improve the functional and performance quality of bulk material systems in which they are incorporated, e.g. polymer nanocomposites, coatings, ceramic composite Chapter materials, data storage and processing systems, dispersions, sensors and catalytic processes. Detailed study of nanoparticles in various areas has and will continue to become the main research topic in coming years. In general, there are two approaches to nanoparticles production that are commonly referred to as ‘top-down’ and ‘bottom-up’ methods. In ‘top-down’ methods, nanoparticles are generated from the size reduction of bulk materials. They are generally made through physical, or a combination of physical and chemical processing methods. Such methods include high-energy milling, mechano-chemical processing, laser ablation, inert-gas evaporation technique, sputtering and vapor condensation etc. ‘Bottom-up’ approaches generate nanoparticles from atomic or molecular level and thus are predominantly chemical processes. Commonly used techniques are conventional salt crystallization/precipitation method1, precursor decomposition2-4, interfacial polycondensation5, sol-gel method6, 7, chemical vapor deposition (CVD)8, , template-assisted method10, electrochemical method, combination of physical deposition and reaction11, hydrothermal12 etc. 1.2 Chemical synthesis methods of nanoparticles Chemical synthesis of nanoparticles has been reviewed by several authors. Trindade and O’Brien13 have reviewed the arrested precipitation method, synthesis in structured medium, and molecular precursor method. O’Brien14 has further divided Chapter chemical synthesis methods into four categories, i.e. colloidal route, organometallic route, growth-in-confined structure matrices, and gas-phase synthesis of nanoparticles. On the other hand, Park and Hyeon et al15 also reviewed chemical synthesis methods of nanoparticles including the reduction method, thermal decomposition method and nonhydrolytic sol-gel method. In addition, Cushing and O’Connor16 reviewed the preparation of inorganic nanoparticles by coprecipitation, sol-gel process, microemulsions, hydrothermal/solvolthermal process, templated synthesis, biomimetric and surface derivatized synthesis. Although there are numerous methodologies employed in the synthesis of nanoparticles, many improvements and better methods are also being reported continually in the last few years. For example, in order to produce nanoparticles in large scale, microcapillary and integrated microchannel reactors were used. Kilogram scale production of organic compounds has been demonstrated with benchtop microreactors17. Another example is the introduction of supercritical fluids (H2O, CO2), whose density, viscosity and solvation properties are intermediate between those of the vapor and liquid phase. These supercritical fluids are nonflammable, nontoxic, easily accessed materials and have recently gained attention as benign solvents for the synthesis of inorganic nanoparticles18, 19. Others such as ionic liquid, sonochemical synthesis, laser ablation and microwave assisted synthesis also provide alternative routes to synthesize nanomaterials20. In the following sub-sections, we will briefly review the precursor decomposition Chapter method and template-assisted synthesis method as they are employed in this thesis. 1.2.1 Precursor decomposition method Precursor decomposition method is one of the main routes of chemical synthesis for nanoparticles. This approach became increasingly popular after Murray et al21 reported the synthesis of monodispersed CdE nanoparticles (E = S, Se, Te) from (CH3)2Cd and E(Si(CH3)3)3 (where E = TOPSe or TOPTe; TOP is tri-noctylphosphine). One of the limitations of the TOPO method is the use of hazardous compounds such as dimethylcadmium ((CH3)2Cd) at high temperatures. One of the approaches for overcoming this problem is the use of single molecular precursors, i.e. a single compound containing all elements required within the nanocrystallite, such as alkyldiseleno- or alkyldithiocarbamato complexes. They were initially used by O’Brien’s group to produce thin films by metal organic chemical vapor deposition (MOCVD)22, 23. TOPO capped CdS/CdSe materials were later reported by Trindade and O’Brien as the first semiconductor nanoparticles prepared through single molecular precursor decomposition method24, 25. General procedure of nanoparticles synthesis through molecular precursor involves the dispersion of the precursor in TOP, followed by its injection into hot TOPO (250°C). The decomposition of the precursor drives the formation of the nanoparticles with termination of growth occurring when the precursor supply is depleted. After the initial injection there is a rapid burst of nucleation, which is followed by controlled Chapter growth of the nuclei by Ostwald ripening. The resultant nanoparticles are passivated by TOPO, which prevents agglomeration. The nanoparticles are isolated by a process using a non-solvent (e.g. methanol), which is added to the reaction mixture to increase the average polarity of the solution and consequently decrease the energy barriers to flocculation. The flocculent precipitate obtained is separated by centrifugation and redispersed in toluene to give an optically clear solution of TOPOcapped nanoparticles. O’Brien’s group explored the decomposition of various other single molecular precursors26-31 and the effect of different organic ligands such as TOPO, octylamine32 and hexadecylamine33 in the synthesis of CdS, CdSe, PbS34, PbSe35, Cu2S36, InS30, InSe30, CdP37, ZnO32, InAs38, GaAs33, ZnS39, ZnSe40 nanoparticles. Further investigations of single source precursors by O’Brien’s group have shown that nanoparticles with different shapes and structures (InS nanorod9, CdS nanorod41, Sb2Te3 nanoplate42, CdSe/CdS and CdSe/ZnSe core/shell, and CdSe/CdS alloy43 etc) can be successfully prepared by this methods. Inspired by their work, various metal chalcogenide/oxide/phosphide/ nanomaterials such as Ag nanoparticles44, Ag2S nanopartilcles45, PdS nanoparticles46, FePt nanoparticles47, MnO, Mn3O4, Mn2O3 nanoparticles48, AlN, GaN, InN nanowires49, CuS nanowires50, B4C nanofiber51, FeP nanorod/nanowires52, Fe2P nanorod53 CuInS2 and CuInSe2 nanoparticles54, AgInSe nanorod55 etc have been synthesized using single molecular precursor method. Chapter The utilization of such precursors offers various advantages over the usual metathesis synthetic routes. Essentially these precursors are less toxic and hygroscopic, if compared to the earlier used hydrogen chalcogenides and pyrophoric alkylmetals. In addition, the stoichiometric control of the final product becomes easier to manage3. Several conventional and nonconventional routes including solution phase thermal decomposition56, 57, chemical vapor deposition, reverse micelle method48, microwave irradiation58, hydrothermal method50, template-assisted method59 and deposition at the interface of water-toluene31 can be used with single molecular precursors to prepare nanoparticles. This led to the development of wide variety of materials ranging from metals to semiconductors and insulators. 1.2.2 Templates-assisted method to prepare nanomaterials The trend in nanomaterial synthesis has been the development of smaller, highly uniform, lower dimensionality materials (quantum dots) where the quantum confinement effects are large. As interest in these materials shifts from fundamental studies to the use of these materials in device applications, the focus has shifted to the development of a reliable and reproducible method for large scale synthesis (e.g. greater than g) of nanomaterials exhibiting mono-dispersity in shape and size. As templates such as polymer, silica etc play an important role in controlling the size and dispersity of nanoparticles, the study of template-assisted method attract more and Chapter more attention. Template directed synthesis is a straightforward method where the template simply serves as a scaffold within (or around) which a different material is generated in situ and shaped into a nanostructure with its morphology complementary to that of a template. Composite materials synthesized by template-assisted method have synergetic or complementary behaviors between the nanoparticles and templates. It is much easier to explore the application of these materials because of the improved properties. Additional advantages are the possibility of controlling the shape, morphology and topology of domains or pore structure, from the macroscopic to the nanometer-size. Unique properties of composites become more pronounced when one of the fractions occurs at the nanometric scale. In brief, this approach offers great modularity and versatility in the design, synthesis, and characterization of the respective components, while providing a fundamental insight into the self-assembly process. 1.3 Templates used in the preparation of nanoparticles The idea to use templates is an old idea of mankind to produce reliably and reproducibly household goods and artworks needed (e.g. pottery) in everyday life. The general procedure to prepare nanoparticles is summarized as following: First, a template is filled or covered with a soft precursor material to bring the material into Chapter the desired form. Then, through a chemical reaction or a physical process the products are formed within the template. Later, the template can be removed to obtain the desired product. The template method has the advantage that its size and shape can be reproducibly controlled in larger scale. Templates can be as small as single molecules, e.g. DNA, or large such as anodized alumina oxide or mesoporous silica with micron-size pores. They can be classified into two groups: hard templates and soft templates, and these will be discussed in the following paragraphs. 1.3.1 Hard templates Common examples of hard templates include gold disk, porous anodic alumina membrane (AAO)60-63, zeolite64, mesoporous silica65, 66 , carbon nanotubes67-69, facetted alumina template70, indium-tin oxide glass71 etc. These templates are rigid on the surface and in principle the placement and dimensions of different components can be controlled during synthesis. In most cases, these materials must be modified by making use of specific chemical and physical interactions in order to increase the affinity to drive the precursor materials into the desired place72, 73. Hard template can be divided into two main groups. One group is planar substrates such as gold plate, indium-tin oxide glass, block copolymer films, and silicon wafer, which are usually employed as supporting platform. These substrates are modified by organic ligands or deposition74. The other group is micro-nanoporous or tubular Chapter templates such as anodic aluminum oxide (AAO), porous metal oxide thin film75, zeolite, mesoporous silica, and carbon nanotubes which are commonly being used as templates for the fabrication of nanowires and nanorods. Among these hard templates, AAO with satisfying physical stability and chemical inertness is one of the most popularly used porous templates. It has cylindrical pores of 30-200 nm diameter depending on the anodizing parameters and almost parallel porous structures.76 Thus it offers efficient method for the synthesis of welldistributed tubular and fibrillar nanostructures within the pores of an alumina membrane.77 Hurst et al reviewed the multi-segmented one-dimensional nanorods prepared by hard template synthetic method78. They have summarized the synthesis and applications of multi-segmented one-dimensional nanorods and nanowires with metal, semiconductor, and polymer using ion-track-etched or AAO templates. Carbon nanotubes (CNTs) have also been intensively studied as template because of their outstanding properties. Detailed review on the preparation of CNT nanocomposites will be separately given in Section 1.6. 1.3.2 Soft templates Soft templates include polymer beads79, micelles82, 83 monolayer90, DNA99, 100 , polymer gel84, 91 85 80 , conducting polymer81, polymer , vesicles86, Langmuir-Blodget films87-89, Langmuir , self-assembly monolayer92, 93 , surfactant94, clay95, dendrimer96-98, , virus101 etc. Polymeric templates are the major component of soft Chapter templates. One of the functions of soft template is to constrict the size and distribution of nanoparticles. The properties of the designed nanocomposites will depend both on the characteristics of the nanoparticles and on the nature of the soft templates. There has been considerate progress in the use of polymer as template for the controlled synthesis of nanoparticles. Versatile synthetic routes have been developed to produce nanoparticles in polymer microdomains. Many reviews and feature articles covering different aspects of this field have already appeared. For example, Liu et al102 reviewed the polymer-assisted fabrication of nanomaterials with emphasis on ordered polymeric nanostructures. Examples have been demonstrated including selfassembled amphiphilic block co-polymers/surfactants, cross-linkable polymers, dendrimers, microemulsions, latex particles, biomacromolecules, electric- or shearinduced structures as templates to fabricate inorganic, organic/inorganic composites and polymeric materials with nanoscale modifications. Föster103 also presented developments in using block copolymers as templates for the synthesis of metal, semiconductor and ceramic nanoparticles while Zhang85 reported approaches employing polymer microgels as templates. Another commonly used polymeric soft template is dendrimer. This subject has been reviewed by many authors.104-107 Esumi108 gave a detailed description on the synthesis and characterization of dendrimer/metal (Au, Pt, Ag) as well as dendrimer/semiconductor (CdS, CuS) nanoparticles. Goodson et al96 also reviewed 10 Chapter Science 2001, 239, (1), 78-86. 134. Deng, J. G.; He, C. L.; Peng, Y. X.; Wang, J. H.; Long, X. P.; Li, P.; Chan, A. S. C. Synthetic Metals 2003, 139, (2), 295-301. 135. Qiu, Y.; Gao, L. Journal of Physical Chemistry B 2005, 109, (42), 1973219740. 136. Pomogailo, A. D. Inorganic Materials 2005, 41, S47-S74. 137. Bruce, D. W.; O'Hare, D., Inorganic materials. John Wiley & Sons: 1997. 138. Gao, F. Materials Today 2004, 7, (11), 50-55. 139. Nemeth, J.; Rodriguez-Gattorno, G.; Diaz, D.; Vazquez-Olmos, A. R.; Dekany, I. Langmuir 2004, 20, (7), 2855-2860. 140. Mogyorosi, K.; Dekany, I.; Fendler, J. H. Langmuir 2003, 19, (7), 2938-2946. 141. Han, Z. H.; Zhu, H. Y.; Bulcock, S. R.; Ringer, S. P. Journal of Physical Chemistry B 2005, 109, (7), 2673-2678. 142. Hur, S. G.; Kim, T. W.; Hwang, S. J.; Hwang, S. H.; Yang, J. H.; Choy, J. H. Journal of Physical Chemistry B 2006, 110, (4), 1599-1604. 143. Han, Z. H.; Zhu, H. Y.; Bulcock, S. R.; Ringer, S. P. Journal of Physical Chemistry B 2005, 109, (7), 2673-2678. 144. Korosi, L.; Nemeth, J.; Dekany, I. Applied Clay Science 2004, 27, (1-2), 2940. 145. Bourlinos, A. B.; Karakassides, M. A.; Simopoulos, A.; Petridis, D. Chemistry of Materials 2000, 12, (9), 2640-2645. 40 Chapter 146. Szabo, T.; Bakandritsos, A.; Tzitzios, V.; Papp, S.; Korosi, L.; Galbacs, G.; Musabekov, K.; Bolatova, D.; Petridis, D.; Dekany, I. Nanotechnology 2007, 18, (28), 285602. 147. Soares, V. L. P.; Batista, L. N.; Gil, R. Journal of Thermal Analysis and Calorimetry 2007, 87, (3), 805-809. 148. Mamedov, A.; Ostrander, J.; Aliev, F.; Kotov, N. A. Langmuir 2000, 16, (8), 3941-3949. 149. Galindo-Gonzalez, C.; de Vicente, J.; Ramos-Tejada, M. M.; Lopez-Lopez, M. T.; Gonzalez-Caballero, F.; Duran, J. D. G. Langmuir 2005, 21, (10), 44104419. 150. Horch, R. A.; Golden, T. D.; D'Souza, N. A.; Riester, L. Chemistry of Materials 2002, 14, (8), 3531-3538. 151. Usuki, A.; Kawasumi, M.; Kojima, Y.; Okada, A.; Kurauchi, T.; Kamigaito, O. Journal of Materials Research 1993, 8, (5), 1174-1178. 152. Carrado, K. A. Applied Clay Science 2000, 17, (1-2), 1-23. 153. Xie, W.; Gao, Z. M.; Pan, W. P.; Hunter, D.; Singh, A.; Vaia, R. Chemistry of Materials 2001, 13, (9), 2979-2990. 154. Dekany, I.; Turi, L.; Tombacz, E.; Fendler, J. H. Langmuir 1995, 11, (6), 2285-2292. 155. Dekany, I.; Turi, L.; Kiraly, Z. Applied Clay Science 1999, 15, (1-2), 221-239. 156. Kiraly, Z.; Veisz, B.; Mastalir, A.; Razga, Z.; Dekany, I. Chemical 41 Chapter Communications 1999, (19), 1925-1926. 157. Kroto, H. W.; Heath, J. R.; Obrien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, (6042), 162-163. 158. Iijima, S. Nature 1991, 354, (6348), 56-58. 159. Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A. Science 2002, 297, (5582), 787-792. 160. Planeix, J. M.; Coustel, N.; Coq, B.; Brotons, V.; Kumbhar, P. S.; Dutartre, R.; Geneste, P.; Bernier, P.; Ajayan, P. M. Journal of the American Chemical Society 1994, 116, (17), 7935-7936. 161. Yoo, E.; Gao, L.; Komatsu, T.; Yagai, N.; Arai, K.; Yamazaki, T.; Matsuishi, K.; Matsumoto, T.; Nakamura, J. Journal of Physical Chemistry B 2004, 108, (49), 18903-18907. 162. Guo, D. J.; Li, H. L. Journal of Colloid and Interface Science 2005, 286, (1), 274-279. 163. Yoon, B.; Wai, C. M. Journal of the American Chemical Society 2005, 127, (49), 17174-17175. 164. Quinn, B. M.; Dekker, C.; Lemay, S. G. Journal of the American Chemical Society 2005, 127, (17), 6146-6147. 165. Kong, J.; Chapline, M. G.; Dai, H. J. Advanced Materials 2001, 13, (18), 1384-1386. 166. Xue, B.; Chen, P.; Hong, Q.; Lin, J. Y.; Tan, K. L. Journal of Materials 42 Chapter Chemistry 2001, 11, (9), 2378-2381. 167. Qu, L. T.; Dai, L. M. Journal of the American Chemical Society 2005, 127, (31), 10806-10807. 168. Li, X. L.; Liu, Y. Q.; Fu, L.; Cao, L. C.; Wei, D. C.; Wang, Y. Advanced Functional Materials 2006, 16, (18), 2431-2437. 169. Day, T. M.; Unwin, P. R.; Wilson, N. R.; Macpherson, J. V. Journal of the American Chemical Society 2005, 127, (30), 10639-10647. 170. Kim, Y. T.; Ohshima, K.; Higashimine, K.; Uruga, T.; Takata, M.; Suematsu, H.; Mitani, T. Angewandte Chemie-International Edition 2006, 45, (3), 407411. 171. Xu, C. L.; Chen, J. F.; Cui, Y.; Han, Q. Y.; Choo, H.; Liaw, P. K.; Wu, D. H. Advanced Engineering Materials 2006, 8, (1-2), 73-77. 172. Hrapovic, S.; Majid, E.; Liu, Y.; Male, K.; Luong, J. H. T. Analytical Chemistry 2006, 78, (15), 5504-5512. 173. Lordi, V.; Yao, N.; Wei, J. Chemistry of Materials 2001, 13, (3), 733-737. 174. Lin, Y. H.; Cui, X. L.; Yen, C.; Wai, C. M. Journal of Physical Chemistry B 2005, 109, (30), 14410-14415. 175. Chen, J. H.; Wang, M. Y.; Liu, B.; Fan, Z.; Cui, K. Z.; Kuang, Y. Journal of Physical Chemistry B 2006, 110, (24), 11775-11779. 176. Yu, R. Q.; Chen, L. W.; Liu, Q. P.; Lin, J. Y.; Tan, K. L.; Ng, S. C.; Chan, H. S. O.; Xu, G. Q.; Hor, T. S. A. Chemistry of Materials 1998, 10, (3), 718-722. 43 Chapter 177. Li, W. Z.; Liang, C. H.; Zhou, W. J.; Qiu, J. S.; Zhou, Z. H.; Sun, G. Q.; Xin, Q. Journal of Physical Chemistry B 2003, 107, (26), 6292-6299. 178. Liu, Z. L.; Lin, X. H.; Lee, J. Y.; Zhang, W.; Han, M.; Gan, L. M. Langmuir 2002, 18, (10), 4054-4060. 179. Wang, C.; Waje, M.; Wang, X.; Tang, J. M.; Haddon, R. C.; Yan, Y. S. Nano Letters 2004, 4, (2), 345-348. 180. Wang, Y.; Xu, X.; Tian, Z. Q.; Zong, Y.; Cheng, H. M.; Lin, C. J. Chemistrya European Journal 2006, 12, (9), 2542-2549. 181. Qu, L. T.; Dai, L. M.; Osawa, E. Journal of the American Chemical Society 2006, 128, (16), 5523-5532. 182. Choi, H. C.; Shim, M.; Bangsaruntip, S.; Dai, H. J. Journal of the American Chemical Society 2002, 124, (31), 9058-9059. 183. Tzitzios, V.; Georgakilas, V.; Oikonomou, E.; Karakassides, M.; Petridis, D. Carbon 2006, 44, (5), 848-853. 184. Tian, Z. Q.; Jiang, S. P.; Liang, Y. M.; Shen, P. K. Journal of Physical Chemistry B 2006, 110, (11), 5343-5350. 185. Xing, Y. C. Journal of Physical Chemistry B 2004, 108, (50), 19255-19259. 186. Satishkumar, B. C.; Vogl, E. M.; Govindaraj, A.; Rao, C. N. R. Journal of Physics D-Applied Physics 1996, 29, (12), 3173-3176. 187. Sun, C. L.; Chen, L. C.; Su, M. C.; Hong, L. S.; Chyan, O.; Hsu, C. Y.; Chen, K. H.; Chang, T. F.; Chang, L. Chemistry of Materials 2005, 17, (14), 374944 Chapter 3753. 188. Giordano, R.; Serp, P.; Kalck, P.; Kihn, Y.; Schreiber, J.; Marhic, C.; Duvail, J. L. European Journal of Inorganic Chemistry 2003, (4), 610-617. 189. Zhang, R. Y.; Wang, X. M. Chemistry of Materials 2007, 19, (5), 976-978. 190. Azamian, B. R.; Coleman, K. S.; Davis, J. J.; Hanson, N.; Green, M. L. H. Chemical Communications 2002, (4), 366-367. 191. Rahman, G. M. A.; Guldi, D. M.; Zambon, E.; Pasquato, L.; Tagmatarchis, N.; Prato, M. Small 2005, 1, (5), 527-530. 192. Hu, J. P.; Shi, J. H.; Li, S. P.; Qin, Y. J.; Guo, Z. X.; Song, Y. L.; Zhu, D. B. Chemical Physics Letters 2005, 401, (4-6), 352-356. 193. Ma, X. C.; Ning, L.; Wen, S. L. Diamond and Related Materials 2005, 14, (1), 68-73. 194. Ou, Y. Y.; Huang, M. H. Journal of Physical Chemistry B 2006, 110, (5), 2031-2036. 195. Ellis, A. V.; Vjayamohanan, K.; Goswaimi, R.; Chakrapani, N.; Ramanathan, L. S.; Ajayan, P. M.; Ramanath, G. Nano Letters 2003, 3, (3), 279-282. 196. Raghuveer, M. S.; Agrawal, S.; Bishop, N.; Ramanath, G. Chemistry of Materials 2006, 18, (6), 1390-1393. 197. Jiang, K. Y.; Eitan, A.; Schadler, L. S.; Ajayan, P. M.; Siegel, R. W.; Grobert, N.; Mayne, M.; Reyes-Reyes, M.; Terrones, H.; Terrones, M. Nano Letters 2003, 3, (3), 275-277. 45 Chapter 198. Ang, L. M.; Hor, T. S. A.; Xu, G. Q.; Tung, C. H.; Zhao, S. P.; Wang, J. L. S. Chemistry of Materials 1999, 11, (8), 2115-2118. 199. Kim, H. S.; Lee, H.; Han, K. S.; Kim, J. H.; Song, M. S.; Park, M. S.; Lee, J. Y.; Kang, J. K. Journal of Physical Chemistry B 2005, 109, (18), 8983-8986. 200. Lee, J. W.; Kim, H. S.; Lee, J. Y.; Kang, J. K. Applied Physics Letters 2006, 88, (14), 143126. 201. Chen, P.; Wu, X.; Lin, J.; Tan, K. L. Journal of Physical Chemistry B 1999, 103, (22), 4559-4561. 202. Liu, B. Y.; Wei, L. W.; Ding, Q. M.; Yao, J. L. Journal of Crystal Growth 2005, 277, (1-4), 293-297. 203. Wu, H. Q.; Cao, Y. J.; Yuan, P. S.; Xu, H. Y.; Wei, X. W. Chemical Physics Letters 2005, 406, (1-3), 148-153. 204. Yang, B. J.; Wu, Y. H.; Zong, B. Y.; Shen, Z. X. Nano Letters 2002, 2, (7), 751-754. 205. Hermans, S.; Sloan, J.; Shephard, D. S.; Johnson, B. F. G.; Green, M. L. H. Chemical Communications 2002, (3), 276-277. 206. Lin, Y. H.; Cui, X. L.; Yen, C. H.; Wai, C. M. Langmuir 2005, 21, (24), 11474-11479. 207. Liao, S. J.; Holmes, K. A.; Tsaprailis, H.; Birss, V. I. Journal of the American Chemical Society 2006, 128, (11), 3504-3505. 208. Yang, M. H.; Yang, Y. H.; Liu, Y. L.; Shen, G. L.; Yu, R. Q. Biosensors & 46 Chapter Bioelectronics 2006, 21, (7), 1125-1131. 209. Robel, I.; Bunker, B. A.; Kamat, P. V. Advanced Materials 2005, 17, (20), 2458-2463. 210. Wei, X. W.; Song, X. H.; Xu, J.; Ni, Y. H.; Zhang, P. Materials Chemistry and Physics 2005, 92, (1), 159-163. 211. Banerjee, S.; Wong, S. S. Nano Letters 2002, 2, (3), 195-200. 212. Shi, J. H.; Qin, Y. J.; Wu, W.; Li, X. L.; Guo, Z. X.; Zhu, D. B. Carbon 2004, 42, (2), 455-458. 213. Huang, Q.; Gao, L. Nanotechnology 2004, 15, (12), 1855-1860. 214. Haremza, J. M.; Hahn, M. A.; Krauss, T. D. Nano Letters 2002, 2, (11), 12531258. 215. Li, Q. W.; Sun, B. Q.; Kinloch, I. A.; Zhi, D.; Sirringhaus, H.; Windle, A. H. Chemistry of Materials 2006, 18, (1), 164-168. 216. Engtrakul, C.; Kim, Y. H.; Nedeljkovic, J. M.; Ahrenkiel, S. P.; Gilbert, K. E. H.; Alleman, J. L.; Zhang, S. B.; Micic, O. I.; Nozik, A. J.; Heben, M. J. Journal of Physical Chemistry B 2006, 110, (50), 25153-25157. 217. Ravindran, S.; Chaudhary, S.; Colburn, B.; Ozkan, M.; Ozkan, C. S. Nano Letters 2003, 3, (4), 447-453. 218. Olek, M.; Busgen, T.; Hilgendorff, M.; Giersig, M. Journal of Physical Chemistry B 2006, 110, (26), 12901-12904. 219. Banerjee, S.; Wong, S. S. Advanced Materials 2004, 16, (1), 34-37. 47 Chapter 220. Zhao, L. P.; Gao, L. A. Journal of Materials Chemistry 2004, 14, (6), 10011004. 221. Whitby, R. L. D.; Hsu, W. K.; Boothroyd, C. B.; Fearon, P. K.; Kroto, H. W.; Walton, D. R. M. Chemphyschem 2001, 2, (10), 620-623. 222. Yu, Y.; Ma, L. L.; Huang, W. Y.; Li, J. L.; Wong, P. K.; Yu, J. C. Journal of Solid State Chemistry 2005, 178, (5), 1488-1494. 223. Yu, Y.; Ma, L. L.; Huang, W. Y.; Du, F. P.; Yu, J. C.; Yu, J. G.; Wang, J. B.; Wong, P. K. Carbon 2005, 43, (3), 670-673. 224. Fu, L.; Liu, Z. M.; Liu, Y. Q.; Han, B. X.; Hu, P. G.; Cao, L. C.; Zhu, D. B. Advanced Materials 2005, 17, (2), 217-221. 225. Zhao, L. P.; Gao, L. Carbon 2004, 42, (8-9), 1858-1861. 226. Chen, M. H.; Huang, Z. C.; Wu, G. T.; Zhu, G. M.; You, J. K.; Lin, Z. G. Materials Research Bulletin 2003, 38, (5), 831-836. 227. Han, W. Q.; Zettl, A. Nano Letters 2003, 3, (5), 681-683. 228. Shan, Y.; Gao, L. Nanotechnology 2005, 16, (6), 625-630. 229. Sun, J.; Gao, L.; Iwasa, M. Chemical Communications 2004, (7), 832-833. 230. Ye, J. S.; Cui, H. F.; Liu, X.; Lim, T. M.; Zhang, W. D.; Sheu, F. S. Small 2005, 1, (5), 560-565. 231. Sun, Z. Y.; Liu, Z. M.; Han, B. X.; Wang, Y.; Du, J. M.; Xie, Z. L.; Han, G. J. Advanced Materials 2005, 17, (7), 928-932. 232. Lee, S. W.; Sigmund, W. M. Chemical Communications 2003, (6), 780-781. 48 Chapter 233. Courty, A.; Mermet, A.; Albouy, P. A.; Duval, E.; Pileni, M. P. Nature Materials 2005, 4, (5), 395-398. 234. Zheng, W. X.; Maye, M. M.; Leibowitz, F. L.; Zhong, C. J. Analytical Chemistry 2000, 72, (10), 2190-2199. 235. Kanehara, M.; Oumi, Y.; Sano, T.; Teranishi, T. Journal of the American Chemical Society 2003, 125, (29), 8708-8709. 236. Andres, R. P.; Bielefeld, J. D.; Henderson, J. I.; Janes, D. B.; Kolagunta, V. R.; Kubiak, C. P.; Mahoney, W. J.; Osifchin, R. G. Science 1996, 273, (5282), 1690-1693. 237. Musick, M. D.; Pena, D. J.; Botsko, S. L.; McEvoy, T. M.; Richardson, J. N.; Natan, M. J. Langmuir 1999, 15, (3), 844-850. 238. Li, J. P.; Xu, Y.; Wei, W.; Wu, D.; Sun, Y. H. Colloids and Surfaces aPhysicochemical and Engineering Aspects 2006, 287, (1-3), 222-225. 239. Boal, A. K.; Ilhan, F.; DeRouchey, J. E.; Thurn-Albrecht, T.; Russell, T. P.; Rotello, V. M. Nature 2000, 404, (6779), 746-748. 240. Frankamp, B. L.; Uzun, O.; Ilhan, F.; Boal, A. K.; Rotello, V. M. Journal of the American Chemical Society 2002, 124, (6), 892-893. 241. Yin, X. Y.; Ye, C.; Ma, X.; Chen, E. Q.; Qi, X. Y.; Duan, X. F.; Wan, X. H.; Cheng, S. Z. D.; Zhou, Q. F. Journal of the American Chemical Society 2003, 125, (23), 6854-6855. 242. Bhattacharjee, R. R.; Mandal, T. K. Journal of Colloid and Interface Science 49 Chapter 2007, 307, (1), 288-295. 243. Luo, J.; Jones, V. W.; Maye, M. M.; Han, L.; Kariuki, N. N.; Zhong, C. J. Journal of the American Chemical Society 2002, 124, (47), 13988-13989. 244. Yang, W.; Chen, M.; Knoll, W.; Deng, H. L. Langmuir 2002, 18, (10), 41244130. 245. Teranishi, T.; Haga, M.; Shiozawa, Y.; Miyake, M. Journal of the American Chemical Society 2000, 122, (17), 4237-4238. 246. Maye, M. M.; Chun, S. C.; Han, L.; Rabinovich, D.; Zhong, C. J. Journal of the American Chemical Society 2002, 124, (18), 4958-4959. 247. Maye, M. M.; Lim, I. I. S.; Luo, J.; Rab, Z.; Rabinovich, D.; Liu, T. B.; Zhong, C. J. Journal of the American Chemical Society 2005, 127, (5), 1519-1529. 248. Wang, T.; Zheng, R. B.; Hu, X. G.; Zhang, L. X.; Dong, S. J. Journal of Physical Chemistry B 2006, 110, (29), 14179-14185. 249. Nikoobakht, B.; Wang, Z. L.; El-Sayed, M. A. Journal of Physical Chemistry B 2000, 104, (36), 8635-8640. 250. Collier, C. P.; Vossmeyer, T.; Heath, J. R. Annual Review of Physical Chemistry 1998, 49, 371-404. 251. Pileni, M. P. Journal of Physical Chemistry B 2001, 105, (17), 3358-3371. 252. Li, M.; Schnablegger, H.; Mann, S. Nature 1999, 402, (6760), 393-395. 253. Kim, F.; Kwan, S.; Akana, J.; Yang, P. D. Journal of the American Chemical Society 2001, 123, (18), 4360-4361. 50 Chapter 254. Ahmed, S.; Ryan, K. M. Nano Letters 2007, 7, (8), 2480-2485. 255. Ryan, K. M.; Mastroianni, A.; Stancil, K. A.; Liu, H. T.; Alivisatos, A. P. Nano Letters 2006, 6, (7), 1479-1482. 256. Chen, M.; Pica, T.; Jiang, Y. B.; Li, P.; Yano, K.; Liu, J. P.; Datye, A. K.; Fan, H. Y. Journal of the American Chemical Society 2007, 129, (20), 6348-6349. 257. Deng, Z. T.; Chen, D.; Tang, F. Q.; Meng, X. W.; Ren, J.; Zhang, L. Journal of Physical Chemistry C 2007, 111, (14), 5325-5330. 258. Jana, N. R. Angewandte Chemie-International Edition 2004, 43, (12), 15361540. 259. Huang, H.; Anker, J. N.; Wang, K. M.; Kopelman, R. Journal of Physical Chemistry B 2006, 110, (40), 19929-19934. 260. Horiuchi, S.; Nakao, Y. Current Nanoscience 2007, 3, (3), 206-214. 261. Krishna, K. S.; Mansoori, U.; Selvi, N. R.; Eswaramoorthy, M. Angewandte Chemie-International Edition 2007, 46, (31), 5962-5965. 262. Kumar, A.; Whitesides, G. M. Applied Physics Letters 1993, 63, (14), 20022004. 263. Aizenberg, J.; Braun, P. V.; Wiltzius, P. Physical Review Letters 2000, 84, (13), 2997-3000. 264. Ogawa, T.; Takahashi, Y.; Yang, H. T.; Kimura, K.; Sakurai, M.; Takahashi, M. Nanotechnology 2006, 17, (22), 5539-5543. 265. Hamley, I. W. Nanotechnology 2003, 14, (10), R39-R54. 51 Chapter 266. Forster, S.; Plantenberg, T. Angewandte Chemie-International Edition 2002, 41, (5), 689-714. 267. Hermanson, K. D.; Lumsdon, S. O.; Williams, J. P.; Kaler, E. W.; Velev, O. D. Science 2001, 294, (5544), 1082-1086. 268. Chandrasekharan, N.; Kamat, P. V. Nano Letters 2001, 1, (2), 67-70. 269. Dockendorf, C. P. R.; Choi, T. Y.; Poulikakos, D.; Stemmer, A. Applied Physics Letters 2006, 88, (13), 131903. 270. Fan, F. Q.; Stebe, K. J. Langmuir 2004, 20, (8), 3062-3067. 271. An, L. J.; Li, W.; Nie, Y. R.; Xie, B.; Li, Z. Q.; Zhang, J. H.; Yang, B. Journal of Colloid and Interface Science 2005, 288, (2), 503-507. 272. Zhang, H. L.; Bucknall, D. G.; Dupuis, A. Nano Letters 2004, 4, (8), 15131519. 273. Chen, X. D.; Lenhert, S.; Hirtz, M.; Lu, N.; Fuchs, H.; Chi, L. F. Accounts of Chemical Research 2007, 40, (6), 393-401. 274. Sainsbury, T.; Fitzmaurice, D. Chemistry of Materials 2004, 16, (11), 21742179. 275. Sainsbury, T.; Fitzmaurice, D. Chemistry of Materials 2004, 16, (19), 37803790. 276. Alivisatos, A. P.; Johnsson, K. P.; Peng, X. G.; Wilson, T. E.; Loweth, C. J.; Bruchez, M. P.; Schultz, P. G. Nature 1996, 382, (6592), 609-611. 277. Kim, H. J.; Roh, Y.; Hong, B. Journal of Vacuum Science & Technology A 52 Chapter 2006, 24, (4), 1327-1331. 278. Sharma, J.; Chhabra, R.; Liu, Y.; Ke, Y. G.; Yan, H. Angewandte ChemieInternational Edition 2006, 45, (5), 730-735. 279. Tang, S.; Mao, C. B.; Liu, Y. R.; Kelly, D. Q.; Banerjee, S. K. Ieee Transactions on Electron Devices 2007, 54, (3), 433-438. 280. Chaudhary, Y. S.; Ghatak, J.; Bhatta, U. M.; Khushalani, D. Journal of Materials Chemistry 2006, 16, (36), 3619-3623. 281. Wang, W.; Wang, S. Y.; Gao, Y. L.; Wang, K. Y.; Liu, M. Materials Science and Engineering B-Solid State Materials for Advanced Technology 2006, 133, (1-3), 167-171. 282. Lin, W. C.; Wong, S. S.; Huang, P. C.; Wu, C. B.; Xu, B. R.; Chiang, C. T.; Yen, H. Y.; Lin, M. T. Applied Physics Letters 2006, 89, (15), 153111. 283. Xu, J. Z.; Zhao, W. B.; Zhu, J. J.; Li, G. X.; Chen, H. Y. Journal of Colloid and Interface Science 2005, 290, (2), 450-454. 284. Nagle, L.; Fitzmaurice, D. Advanced Materials 2003, 15, (11), 933-935. 285. Zhu, J.; Konya, Z.; Puntes, V. F.; Kiricsi, I.; Miao, C. X.; Ager, J. W.; Alivisatos, A. P.; Somorjai, G. A. Langmuir 2003, 19, (10), 4396-4401. 286. Yoon, B. K.; Hwang, W.; Park, Y. J.; Hwang, J.; Park, C.; Chang, J. Macromolecular Research 2005, 13, (5), 435-440. 287. Mendes, P. M.; Jacke, S.; Critchley, K.; Plaza, J.; Chen, Y.; Nikitin, K.; Palmer, R. E.; Preece, J. A.; Evans, S. D.; Fitzmaurice, D. Langmuir 2004, 20, 53 Chapter (9), 3766-3768. 288. Yang, X. M.; Liu, C.; Ahner, J.; Yu, J.; Klemmer, T.; Johns, E.; Weller, D. Journal of Vacuum Science & Technology B 2004, 22, (1), 31-34. 289. Sugimura, H.; Nakagiri, N. Journal of the American Chemical Society 1997, 119, (39), 9226-9229. 290. Choi, I.; Kang, S. K.; Lee, J.; Kim, Y.; Yi, J. Journal of Nanoscience and Nanotechnology 2007, 7, (11), 4161-4164. 291. Malaquin, L.; Kraus, T.; Schmid, H.; Delamarche, E.; Wolf, H. Langmuir 2007, 23, (23), 11513-11521. 292. Rezende, C. A.; Lee, L. T.; Galembeck, F. Langmuir 2007, 23, (5), 2824-2828. 293. Arduini, M.; Rampazzo, E.; Mancin, F.; Tecilla, P.; Tonellato, U. Inorganica Chimica Acta 2007, 360, (3), 721-727. 294. Abdelrahman, A. I.; Mohammad, A. M.; Okajima, T.; Ohsaka, T. Journal of Physical Chemistry B 2006, 110, (6), 2798-2803. 295. Lidgi-Guigui, N.; Dablemont, C.; Veautier, D.; Viau, G.; Seneor, P.; Van Dau, F. N.; Mangeney, C.; Vaures, A.; Deranlot, C.; Friederich, A. Advanced Materials 2007, 19, (13), 1729-1733. 296. Zhang, Z.; Lim, W. P.; Wong, C. T.; Yin, F.; Chin, W. S. to be submitted. 297. Lim, W. P.; Zhang, Z.; Low, H. Y.; Chin, W. S. Angewandte ChemieInternational Edition 2004, 43, (42), 5685-5689. 298. Lim, W. P.; Wong, C. T.; Ang, S. L.; Low, H. Y.; Chin, W. S. Chemistry of 54 Chapter Materials 2006, 18, (26), 6170-6177. 55 [...]... as a support material for the dispersion and stabilization of metal/semiconductor nanoparticles After the first report on decorating CNTs with Ru nanoparticles1 60, more metal nanoparticles such as Pd1 61- 167, La1 61, Pt164, 16 6 -18 7, Rh183, 18 8 , Ag164, 16 6, 16 7, 18 6, Au163, 16 6, 16 7, 17 2, 18 1 -18 3, 18 6, 18 9 -19 7, Ni198-200, Cu167, 17 2, 2 01, Fe202, including alloy nanoparticles such as FeNi203, CoNiFe204,... supercritical liquid174, 206, 2 31 method and intermittent microwave irradiation184 Semiconductor nanoparticles such as CdS209, 212 , ZnS220 were directly formed on the CNT surface through direct precipitation For precursor decomposition/reduction way, heat166, current162 and reducing chemicals (e.g H 216 6, 17 6, 19 9, 2 01, 203 232, 202 , light, , NaBH 417 0, sodium citrate189, ethylene glycol173, 17 7, 18 5, 18 6, formaldehyde177,... reactions and their properties can be enhanced when CNTs are employed as support materials Applications of these hybrid materials as functional components in supercapacitors204, gas sensors165, biosensors208, and hydrogen storage199 have been reported On the other hand, metal sulfide/selenide (CdS/SWCNT209- 211 , CdS/MWCNT168, 212 , 213 , CdSe/SWCNT 211 , 214 - 216 , CdSe/MWCNT 217 , 218 , CdTe/SWCNT 219 , Ag2S/MWCNT4,... Ionics 2000, 13 0, (1- 2), 11 1 -11 4 2 Lim, W P.; Low, H Y.; Chin, W S Journal of Physical Chemistry B 2004, 10 8, (35), 13 093 -13 099 3 O'brien, P.; Malik, M A.; Chunggaze, M.; Trindade, T.; Walsh, J R.; Jones, A C Journal of Crystal Growth 19 97, 17 0, (1- 4), 23-29 4 Pickett, N L.; O'Brien, P Chemical Record 20 01, 1, (6), 467-479 5 Sawall, D D.; Villahermosa, R M.; Lipeles, R A.; Hopkins, A R Chemistry of Materials... Materials Chemistry and Physics 20 01, 68, (1- 3), 95-97 13 Trindade, T.; O'Brien, P.; Pickett, N L Chemistry of Materials 20 01, 13 , (11 ), 3843-3858 14 Malik, M A.; O'Brien, P.; Revaprasadu, N Phosphorus Sulfur and Silicon and the Related Elements 2005, 18 0, (3-4), 689- 712 15 Park, J.; Joo, J.; Kwon, S G.; Jang, Y.; Hyeon, T Angewandte ChemieInternational Edition 2007, 46, (25), 4630-4660 16 Cushing, B L.;... Chemistry Reviews 2007, 2 51, (13 -14 ), 18 78 -18 88 30 Chapter 1 32 Wang, Y S.; Thomas, P J.; O'Brien, P Journal of Physical Chemistry B 2006, 11 0, (9), 4099- 410 4 33 Malik, M A.; Afzaal, M.; O'Brien, P.; Bangert, U.; Hamilton, B Materials Science and Technology 2004, 20, (8), 959-963 34 Trindade, T.; O'brien, P.; Zhang, X M.; Motevalli, M Journal of Materials Chemistry 19 97, 7, (6), 10 11- 1 016 35 Trindade, T.; Monteiro,... 12 8, (10 ), 312 0- 312 1 31 Chapter 1 43 Malik, M A.; O'Brien, P.; Revaprasadu, N Chemistry of Materials 2002, 14 , (5), 2004-2 010 44 Lin, X Z.; Teng, X W.; Yang, H Langmuir 2003, 19 , (24), 10 0 81- 10085 45 Wang, X B.; Liu, W M.; Hao, J C.; Fu, X G.; Xu, B S Chemistry Letters 2005, 34, (12 ), 16 64 -16 65 46 Yang, Z Q.; Smetana, A B.; Sorensen, C M.; Klabunde, K J Inorganic Chemistry 2007, 46, (7), 2427-24 31 47... Chemistry of Materials 2007, 19 , (10 ), 2483-2488 48 Ahmad, T.; Ramanujachary, K V.; Lofland, S E.; Ganguli, A K Journal of Materials Chemistry 2004, 14 , (23), 3406-3 410 49 Sardar, K.; Dan, M.; Schwenzer, B.; Rao, C N R Journal of Materials Chemistry 2005, 15 , (22), 217 5- 217 7 50 Roy, P.; Srivastava, S K Crystal Growth & Design 2006, 6, (8), 19 21- 1926 51 Pender, M J.; Sneddon, L G Chemistry of Materials... 319 8-32 01 90 Brown, J J.; Porter, J A.; Daghlian, C P.; Gibson, U J Langmuir 20 01, 17 , (26), 7966-7969 91 Lu, L H.; Cui, H N.; Li, W.; Zhang, H J.; Xi, S Q Chemistry of Materials 20 01, 13 , (2), 325-328 92 Chen, C C.; Lin, J J Advanced Materials 20 01, 13 , (2), 13 6 -13 9 93 Hoeppener, S.; Maoz, R.; Cohen, S R.; Chi, L F.; Fuchs, H.; Sagiv, J Advanced Materials 2002, 14 , (15 ), 10 36 -10 41 94 Holmberg, K Journal of. .. Polyhedron 19 99, 18 , (8-9), 11 71- 117 5 36 Revaprasadu, N.; Malik, M A.; O'Brien, P South African Journal of Chemistry-Suid-Afrikaanse Tydskrif Vir Chemie 2004, 57, 40-43 37 Green, M.; O'Brien, P Advanced Materials 19 98, 10 , (7), 527-528 38 Malik, M A.; O'Brien, P.; Helliwell, M Journal of Materials Chemistry 2005, 15 , (14 ), 14 63 -14 67 39 Revaprasadu, N.; Malik, M A.; O'Brien, P.; Wakefield, G Journal of Materials . La 16 1 , Pt 16 4, 16 6 -18 7 , Rh 18 3, 18 8 , Ag 16 4, 16 6, 16 7, 18 6 , Au 16 3, 16 6, 16 7, 17 2, 18 1 -18 3, 18 6, 18 9 -19 7 , Ni 19 8-200 , Cu 16 7, 17 2, 2 01 , Fe 202 , including alloy nanoparticles such as FeNi 203 ,. DNA 99, 10 0 , virus 10 1 etc. Polymeric templates are the major component of soft 9 Chapter 1 templates. One of the functions of soft template is to constrict the size and distribution of nanoparticles. . stabilization of metal/semiconductor nanoparticles. After the first report on decorating CNTs with Ru nanoparticles 16 0 , more metal nanoparticles such as Pd 16 1 -16 7 , La 16 1 , Pt 16 4, 16 6 -18 7 , Rh 18 3,