Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 266 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
266
Dung lượng
4,21 MB
Nội dung
SYNTHESIS, CHARACTERIZATION AND APPLICATIONS OF NANOSTRUCTURED MATERIALS AS NOVEL CATALYST SUPPORTS IN ETHANOL REFORMING FOR HYDROGEN PRODUCTION WU XUSHENG NATIONAL UNIVERSITY OF SINGAPORE 2010 SYNTHESIS, CHARACTERIZATION AND APPLICATIONS OF NANOSTRUCTURED MATERIALS AS NOVEL CATALYST SUPPORTS IN ETHANOL REFORMING FOR HYDROGEN PRODUCTION WU XUSHENG (B. Eng., Xiamen University) A THESIS SUBMITTED FOR THE DEGREE OF Ph.D. OF ENGINEERING DEPARTMENT OF CHEMICAL & BIOMOLECULAR ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2010 Acknowledgements Acknowledgements First of all, I would like to greatly thank to Professor Sibudjing Kawi, my supervisor, who suggested the excellent research directions and who spent a lot of time in revising paper for publication. I also deeply appreciate for his invaluable guidance, patience, and constant encouragement. I have benefited immensely from his brilliant thoughts and profuse knowledge and can’t sufficiently express my thanks for his thoughtful kindness. I am also grateful to Professor Hidajat Kus for his help and support. I also extend my appreciation to Prof. Chung Tai Shung, Prof. Hong Liang, Prof. Kang En Tang, Prof. Tan Thiam Chye, and Prof. Song Lianfa for their instructive teachings. Sincere appreciation goes to Dr. Sun Gebiao and Dr. Yang Jun, my seniors whose patient assistance and help have provided emotional support to me. Special thanks also go to Dr. Song Shiwei, Dr. Yong Siekting, and Dr. Li Peng, whose friendship has given shape to my own intellectual and personal pursuits. Thanks also to Ms. Kesada, Ms. Warrinton, Mr. Usman, Mr. Noom, Ms. Yaso, Mr. Saw, my fellow classmates in Department of CHBE, to Ms Ng Ai Mei and Ms How Yoke Leng, for their patience and professional dedication. Moreover, I appreciate NUS and Department of Chemical & Biomolecular Engineering of NUS for awarding me the research scholarship. Finally, I deeply appreciate my family for their encouragement and support. Especially, I offer my deepest gratitude to my wife, Liu Zengjiao, for her boundless love, wholehearted care and making every effort to help. Without her, it would have been impossible for me to continue my Ph.D. studies. In her inimitable ways, over the last several years, she continues to enrich my efforts with her endless affection. i Table of Contents Table of Contents Acknowledgements i Table of Contents ii Summary vi Nomenclature .ix List of Figures .x List of Tables xiv List of Schemes .xv Chapter 1. Introduction .1 1.1. Research background .1 1.2. Research objectives 1.3. Organizations of thesis Chapter 2. Literature Review 2.1. Development of nanotechnology .9 2.2. Nanotechnology applied in catalysis . 11 2.3. Nanostructured materials .16 2.3.1. Mesoporous materials .17 2.3.1.1. SBA-15 18 2.3.1.2. M-SBA-15 (M=Al, Ce etc.) 19 2.3.1.3. Applications of SBA-15 and M-SBA-15 (M=Al and Ce etc.) .22 2.3.2. Nanotubes .24 2.3.2.1. Properties of nanotubes .25 2.3.2.1.1. Symmetry properties 26 2.3.2.1.2. Electronic properties .26 2.3.2.1.3. Thermodynamic properties .27 2.3.2.1.4. Mechanical properties 28 2.3.2.2. Carbon nanotubes 29 2.3.2.3. Oxide nanotubes 32 2.3.2.3.1 Synthesis methods of oxide nanotubes 32 2.3.2.3.2. Formation mechanism of oxide nanotubes .35 2.3.2.3.3. Applications of oxide nanotubes .37 2.4. Reviews of CO2 reforming (CRE) and steam reforming of ethanol (SRE) .38 2.4.1. Reactions of CRE and thermodynamic study .39 2.4.2. Reactions of SRE and thermodynamic study .40 2.4.3. Catalysts for CRE and SRE 42 2.4.3.1. Oxide-supported metal catalysts for CRE and SRE 43 2.4.3.1.1. Non-noble metal catalysts 43 2.4.3.1.2. Noble-metal catalysts .45 Chapter 3. Experimental .49 ii Table of Contents 3.1. Reaction system .49 3.2. Product analysis .50 3.3. Characterization of nanomaterials and catalysts .51 Chapter 4. Steam Reforming of Ethanol to H2 over Rh/Y2O3: Crucial Roles of Y2O3 Oxidising Ability, Space Velocity and H2/C 55 4. 1. Introduction 56 4.2. Experimental .58 4.2.1. Catalyst preparation 58 4.2.2. Reaction system of SRE .59 4.3. Results and discussion .59 4.3.1. Ethanol conversion over Rh-based Catalysts .59 4.3.2. Surface area and dispersion analysis 60 4.3.3. XRD analysis 61 4.3.4. TPR-H2 analysis .62 4.3.5. XPS Analysis 65 4.3.6. Activity test 67 4.3.7. Effect of gas hourly space velocity (GHSV) on product distribution 70 4.3.8. Optimal GHSV over Rh/Y2O3 for steam reforming of ethanol (SRE) .74 4.3.9. A new indicator: H2/C for study of efficiency of converted ethanol 76 4.3.9.1. Effect of Rh loading and temperature on H2/C 78 4.3.9.2. Effect of water/ethanol molar ratio 80 4.4. Conclusions .81 Chapter 5. A Novel Rh/Y2O3-Nanotube Catalyst for Steam Reforming of Ethanol to H2: Effects of Anti-Sintering of Rh Species and Ultra-Low Rh Loading on Catalyst Performance 82 5.1.Introduction .82 5.2. Experimental .85 5.2.1. Catalyst preparation 85 5.2.2. Reaction system of SRE .86 5.3. Results and discussion .86 5.3.1. TEM, Surface area and dispersion analysis 87 5.3.2. TPR analysis .89 5.3.3. XRD analysis 90 5.3.4. XPS analysis .92 5.3.5. Evaluation of Rh-based catalysts .94 5.3.5.1. Effect of catalyst support on ethanol conversion .94 5.3.5.2. Effect of catalyst support on product selectivity .97 5.3.6. Activity test 106 5.3.7. Ultra-low Rh loading over Rh/Y2O3 nanotubes for SRE .111 5.4. Conclusions . 113 Chapter 6. Rh/Ce-SBA-15: Active and Stable Catalyst for CO2 Reforming of Ethanol to H2 . 115 6.1. Introduction . 116 iii Table of Contents 6.2. Experimental .121 6.2.1. Preparation of catalysts 121 6.3. Results and discussion .122 6.3.1. Effect of active metals over SBA-15 supports on hydrogen production rate for CO2 reforming of ethanol .122 6.3.2. Morphology of Ce-SBA-15 supports and 1%Rh/Ce-SBA-15 125 6.3.3. XRD patterns of 1%Rh/Ce-SBA-15 based catalysts 128 6.3.4. Properties of 1%Rh/Ce-SBA-15 catalysts 129 6.3.5. H2-TPR profiles of 1% Rh/Ce-SBA-15 series catalysts .131 6.3.6. XPS analysis of 1%Rh/Ce-SBA-15 based catalysts .134 6.3.7. Activity test 136 6.3.8. Stability test 140 6.4. Conclusions .142 Chapter 7. Synthesis, Growth Mechanism and Properties of Open-Hexagonal and Nanoporous-Wall Ceria Nanotubes Fabricated Via Alkaline Hydrothermal Route 144 7.1. Introduction .145 7.2. Experimental .150 7.3. Results and discussion .151 7.4. Conclusions .171 Chapter 8. A Crucial Role of Oxidation State And Reducibility of Rh Species Over A Novel Rh/CeO2-Nanotube Catalyst for CO2 Reforming of Ethanol to H2 172 8.1. Introduction .173 8.2. Experimental .178 8.2.1. Preparation of catalysts 178 8.2.2. Characterization of catalysts 179 8.2.3. Activity test 180 8.3. Results and discussion .180 8.3.1. Morphology of CeO2 nanotubes and 1% Rh/CeO2 nanotubes .180 8.3.2. XRD patterns of Rh-based catalysts .183 8.3.3. Surface area and dispersion analysis 184 8.3.4. XPS analysis of Rh-based catalysts 185 8.3.5. The reducibility of well-dispersed Rh species on catalyst surface by H2-TPR analysis .189 8.3.6. The mobility of lattice oxygen over Rh-based catalysts by H2-TPR analysis192 8.3.7. Formation process of enhanced lattice oxygen density at crystalline defect sites .194 8.3.8. Activity test 196 8.3.9. Reaction mechanism via redox properties and oxygen vacancies 200 8.4. Conclusions .205 Chapter 9. Conclusions and Recommendations 206 9.1. Conclusions .206 9.1.1. Steam reforming of ethanol (SRE) .207 9.1.1.1. Development of Rh/Y2O3 as SRE catalyst .207 iv Table of Contents 9.1.1.2. Development of Rh/Y2O3-nanotube catalysts as novel SRE catalyst208 9.1.2. CO2 reforming of ethanol (CRE) 208 9.1.2.1. Development of Rh/Ce-SBA-15 as CRE Catalyst 209 9.1.2.2. Synthesis and characterization of Ce(OH)3 and CeO2 nanotubes .209 9.1.2.3. Development of Rh/CeO2-nanotube catalysts for CRE 211 9.2. Future works 211 References .214 Publications .248 v Summary Summary The recent synthesis and applications of oxide nanotubes and mesoporous materials attract intense research interests due to their chemical and physical properties. This thesis reports the synthesis and characterization of Rh supported on nanostructured materials, such as oxide nanotubes and mesoporous materials, and their applications as highly active and stable catalysts for H2 production in steam reforming of ethanol (SRE) and CO2 reforming of ethanol (CRE). A fundamental understanding of the cause of the high activity and the stability of Rh/oxide-nanotube catalysts has also been studied in this work. SRE is regarded as an effective and important method for H2 production since the hydrogen in steam not only could be transformed to H2 gas but also could minimize coke formation. Among the four Rh-based catalysts investigated, Rh/Y2O3 was found to show excellent catalytic performance for H2 production in SRE. Some related factors have also been investigated to determine the key factor causing the different catalytic performance of the four Rh-based catalysts in SRE. Furthermore, a novel Rh/Y2O3-nanotube catalyst has also been developed and found to have even higher H2 production rate than Rh/Y2O3 in SRE due to the anti-sintering of Rh species on Y2O3 nanotubes. vi Summary Some of the significant findings of this research in SRE are as follows: (1) The strong oxidising ability of Y2O3 is found to be the key factor underlying the high activity and stability of Rh/Y2O3, suggesting a strong relationship between the oxidizing ability of the catalyst support and its catalytic performance; (2) A new indicator, H2/C, has been proposed in this study, for the first time, and it was found to have a strong linkage to the optimal H2 production rate under the lowest C emission in SRE; (3) the anti-sintering property of Y2O3 nanotubes was discovered for supported metal catalyst and this has significant influence on the catalyst’s performance. CRE has been considered as one of the important methods to solve the global warming as CRE involves CO2, which is a greenhouse gas, and ethanol, which is a renewable source. A series of Rh supported on Ce-SBA-15 catalysts, which have unique nanopores, have been synthesized and applied as CRE catalysts. Since Ce is found to promote the low catalytic activity of SBA-15 silica support, CeO2 nanotubes are then developed and applied, for the first time, as the novel catalyst support. A novel Rh/CeO2-nanotube catalyst, synthesized in this study, is found to show an excellent H2 production rate and ethanol conversion in CRE due to the versatile and remarkable redox properties of Rh on CeO2 nanotubes. Some of the significant findings of this research in CRE are as follows: (1) The oxygen mobility of SBA-15 can be significantly improved by the vii Summary incorporation of Ce in the framework of SBA-15; (2) The redox properties of Rh play a key factor in the high activity and stability of Rh/CeO2-nanotube catalyst in CRE, suggesting the importance of redox properties to catalytic performance in CRE. (iii) A reaction mechanism for CRE based on the redox properties over Rh/CeO2-nanotube catalyst has been proposed. Keywords: steam reforming, CO2 reforming, ethanol, Y2O3, Y2O3 nanotubes, Ce-SBA-15, Ce(OH)3 open hexagonal, CeO2 nanotubes. viii References Functional Studies of Model Cerium Oxide Nanoparticles, Phys. Chem. Chem. Phys., 10, pp. 5730-5738. 2008. Lou X. W., D. Deng, J. Y. Lee, J. Feng and L. A. Archer, Self-Supported Formation of Needlelike Co3O4 Nanotubes and Their Application as Lithium-Ion Battery Electrodes, Adv. Mater., 20, pp. 258-262. 2008. Love J. C., L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, G. M. Whitesides, Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology, Chem. Rev., 105, pp. 1103-1170. 2005. Luo M., Y. Zhong, X. Yuan and X. Zheng, TPR and TPD Studies of CuO/CeO2 Catalysts for Low Temperature CO Oxidation, Appl. Catal. A, 162, pp. 121-131. 1997. Luo J. Z., Z. L. Yu, C. F. Ng and C. T. Au, CO2/CH4 Reforming over Ni–La2O3/5A: An Investigation on Carbon Deposition and Reaction Steps, J. Catal., 194, pp. 198-210. 2000. Maestri M., D. G. Vlachos, A. Beratta, G. Groppi and E. Tronconi, Steam and Dry Reforming of Methane on Rh: Microkinetic Analysis and Hierarchy of Kinetic Models, J. Catal., 259, pp. 211-222. 2008. Mamontov E., T. Egami, R. Brezny, M. Koranne and S. Tyagi, Lattice Defects and Oxygen Storage Capacity of Nanocrystalline Ceria and Ceria-Zirconia, J. Phys. Chem. B, 104, pp. 11110-11116. 2000. Mariño F. J., E. G. Cerrella, S. Duhalde, M. Jobbagy and M. A. Laborde, Hydrogen from Steam Reforming of Ethanol. Characterization and Performance of Copper-Nickel Supported Catalysts, Int. J. Hydrogen Energy, 23, pp. 1095-1101. 1998. Mariño F., M. Boveri, G. Baronetti and M. Laborde, Hydrogen Production from Steam Reforming of Bioethanol Using Cu/Ni/K/γ-Al2O3 Catalysts. Effect of Ni, Int. J. Hydrogen Energy, 26, pp. 665-668. 2001. Mateo C., J. M. Palomo, G. Fernandez-Lorente, J. M. Guisan and R. Fernandez-Lafuente, Improvement of Enzyme Activity, Stability and Selectivity via Immobilization Techniques, Enzyme Microb. Technol., 40, pp. 1451–1463. 234 References 2007. Mattos T. G. and Reis F. D. A. A., Effects of Diffusion and Particle Size in a Kinetic Model of Catalyzed Reactions, J. Catal., 263, pp. 67-74. 2009. Meier D. C. and D. W. Goodman, The Influence of Metal Cluster Size on Adsorption Energies: CO Adsorbed on Au Clusters Supported on TiO2, J. Am. Chem. Soc., 126, pp. 1892-1899. 2004. Miller G. Q., D. W. Penner, Possibilities and Challenges for a Transition to a Hydrogen Economy, Technical Program, Pisa, Italy, May 16-19, 2004. Milosevic L., T. Vukovic, M. Damnjanovic and B. Nicolic, Symmetry Based Properties of the Transition Metal Dichalcogenide Nanotubes, Eur. Phys. J. B., 17, No. 4, pp. 707-712. 2000. Mitchell D. T., S. B. Lee, L. Trofin, N. C. Li, T. K. Nevanen, H. Soderlund, and C. R. Martin, Smart Nanotubes for Bioseparations and Biocatalysis, J. Am. Chem. Soc., 124, pp. 11864-11865. 2002. Modi A., N. Korathkar, E. Lass, B. Q. Wei and P. M. Ajayan, Miniaturized Gas Ionization Sensors Using Carbon Nanotubes, Nature, 424, pp. 171-174. 2003. Montanez I. P., N. J. Tabor, D. Niemeier, W. A. DiMichele, T. D. Frank, C. R. Fielding, J. L. Isbell, L. P. Biegenheirer and M. C. Rygel, CO2-Forced Climate and Vegetation Instability During Late Paleozoic Deglaciation, Science, 315, pp. 87-91. 2007. Montini T., L. D. Rogatis, V. Gombac, P. Fornasiero and M. Graziani, Rh(1%)@CexZr1−xO2–Al2O3 Nanocomposites: Active and Stable Catalysts for Ethanol Steam Reforming, Appli. Catal. B, 71, pp. 125-134. 2007. Morbidelli M., A. Gravriilidis and A. Varma, Catalyst Design: Optimal Distribution of Catalyst in Pellets, Reactors and Membranes, Cambridge University Press, Cambridge, UK, 2001. Mott D., J. Luo, P. N. Njoki, Y. Lin, L. Wang and C. J. Zhong, Synergistic Activity of Gold-Platinum Alloy Nanoparticle Catalysts, Catalysis Today, 122, pp. 378-385. 2007a. 235 References Mott D., J. Luo, A. Smith, L. Wang, P. N. Njoki and C. J. Zhong, Nanocrystal and Surface Alloy Properties of Bimetallic Gold-Platinum Nanoparticles, Nanoscale Res. Lett., 2, pp. 12-16. 2007b. Mu Z., J. J. Li, H. Tian, Z. P. Hao and S. Z. Qiao, Synthesis of Mesoporous Co/Ce-SBA-15 Materials and Their Catalytic Performance in the Catalytic Oxidation of Benzene, Mater. Res. Bulletin, 43, pp. 2599-2606. 2008. Mukherjee S., K. Kim and S. Nair, Short, Highly Ordered, Single-Walled Mixed-Oxide Nanotubes Assemble from Amorphous Nanoparticles, J. Am. Chem. Soc., 129, pp. 6820-6826. 2007. Munera J. F., S. Irusta, L. M. Cornaglia, E. A. Lombardo, D. V. Cesar and M. Schmal, Kinetics and Reaction Pathway of the CO2 Reforming of Methane on Rh Supported on Lanthanum-Based Solid, J. Catal., 245, pp. 25-34. 2007. Nakamura H. and Y. Matsui, Silica Gel Nanotubes Obtained by the Sol-Gel Method, J. Am. Chem. Soc., 117, pp. 2651-2652. 1995. Navarro R.M., M.C. Álvarez-Galván, M. Cruz Sánchez-Sánchez, F. Rosa and J.L.G. Fierro, Production of Hydrogen by Oxidative Reforming of Ethanol over Pt Catalysts Supported on Al2O3 Modified with Ce and La, Appl. Catal. B, 55, pp.229-241. 2005. Navarro R. M., Sanchez-Sanchez M. C., Alvarez-Galvan M. C., Del Valle F. and Fierro J. L. G., Hydrogen Production from Renewable Sources: Biomass and Photocatalytic Opportunities, Energy Environ. Sci., 2, pp. 35-54. 2009. Nishiguchi T., T. Matsumoto, H. Kanai, K. Utani, Y. Matsumura, W.J. Shen and S. Imamura, Catalytic Steam Reforming of Ethanol to Produce Hydrogen and Acetone, Appl. Catal. A, 279, pp.273-277. 2005. Nishizawa M., V. P. Menon and C. R. Martin, Metal Nanotubule Membranes with Electrochemically Switchable Ion-Transport Selectivity, Science, 268, pp. 700-702. 1995. Ojeda M., M. L. Granados, S. Rojas, P. Terreros, F. J. Garcia-Garcia and J. L. G. 236 References Fierro, Manganese-Promoted Rh/Al2O3 for C2-Oxygenates Synthesis from Syngas: Effect of Manganese Loading, Appl. Catal. A, 261, pp. 47-55. 2004. Okamoto N. L., B. W. Reed, S. Mehraeen, A. Kulkarni, D. G. Morgan, B. C. Gates and N. D. Browning, Determination of Nanocluster Sizes from Dark-Field Scanning Transmission Electron Microscopy Images, J. Phys. Chem. C, 112, pp. 1759-1763. 2008. On D. T., D. Desplantier-Giscard, C. Danumah and S. Kaliaguine, Perspectives in Catalytic Applications of Mesostructured Materials, Appl. Catal. A, 222, pp. 299-357. 2001. Orikasa H., N. Inokuma, S. Okubo, O. Kitakami and T. Kyotani, Template Synthesis of Water-Dispersible Carbon Nano “Test Tubes” without Any Post-treatment, Chem. Mater., 18, pp. 1036-1040. 2006. Park K. H., J. Choi, H. J. Kim, J. B. Lee and S. U. Son, Synthesis of Antimony Sulfide Nanotubes with Ultrathin Walls via Gradual Aspect Ratio Control of Nanoribbons, Chem. Mater., 19, pp. 3861-3863. 2007. Passos F. B., Oliveria E. R., Mattos L. V. and Noronhe F. B., Effect of the Support on the Mechanism of Partial Oxidation of Methane on Platinum Catalysts, Catal. Lett., 110, pp. 261-267. 2006. Peng J. and S. Wang, Performance and Characterization of Supported Metal Catalysts for Complete Oxidation of Formaldehyde at Low Temperatures, Appl. Catal. B, 73, pp. 282-291. 2007. Planeix J.M., N. Coustel, B. Coq, V. Brotons, P.S. Kumbhar, R. Dutartre, P. Geneste, P. Bernier, P.M. Ajayan, Application of Carbon Nanotubes as Supports inHeterogeneous Catalysis, J. Am. Chem. Soc., 116, pp. 7935-7936. 1994. Pokropivny V. V., V. V. Skorokhod, G. S. Oleinik, et al., Boron nitride analogues of fullerenes (the fulborenes), nanotubes and fullerites (the fulborentes), J. Solid St. Chem., 154, pp. 214-222. 2000. Polychronopoulou K., J. L. G. Fierro and A. M. Efstathiou, The Phenol Steam Reforming Reaction over MgO-Based Supported Rh Catalysts, J. Catal., 228, pp. 237 References 417-432. 2004. Ponec V. and G. C. Bond, Catalysis by Metals and Alloys, Elsevier, 1995. Poudel B., W.Z. Wang, C. Dames, J.Y. Huang, S. Kunwar, D.Z. Wang, D. Banerjee, G. Chen and Z.F. Ren, Formaiton of Crystallized Titania Nanotubes and Their Transformation into Nanowires, Nanotechnology, 16, pp. 1935–1940. 2005. Praline G., Koel B. E., Hance R. L., Lee H. I. And White J. M., X-Ray Photoelectron Study of the Reaction of Oxygen with Cerium, J. Electron Spectrosc. Relat. Phenom., 21, pp. 17-30. 1980. Puolakka K. J. and A. O. I. Krause, Combined CO2 Reforming and Partial Oxidation of Fuel Compounds, Catal. Lett., 116, pp. 87-93. 2007. Qiu S. L., Lin C. L., Chen J. and Strongin M., Photoemission Studies of the Low-Temperature Reaction of Metals and Oxygen, Phys. Rev. B, 41, pp. 7467-7473. 1990. Rapoport L., Yu. Bilile, Y. Feldman, et al., Hollow Nanoparticles of WS2 as Potential Solid-State Lubricants, Nature, 387, pp. 781-783. 1997. Rasko J., A. Hancz and A. Erdohelyi, Surface Species and Gas Phase Products in Steam Reforming of Ethanol on TiO2 and Rh/TiO2, Appl. Catal. A: General, 269, pp.13-25. 2004. Regan B. C., S. Aloni, R. O. Ritchie, U. Dahmen and A. Zettl, Carbon Nanotubes as Nanoscale Mass Conveyors, Nature, 428, pp. 924-927. 2004. Riebesell U., I. Zondervan, B. Rost, P. D. Tortell, R. E. Zeebe and F. M. M. Morel, Reduced Calcification of Marine Plankton in Response to Increased Atmospheric CO2, Nature, 407, pp. 364-367. 2000. Rothschild A., S. R. Cohen and R. Tenne, WS2 Nanotubes as Tips in Scanning Probe Microscopy, Appl. Phys. Lett., 75, No. 25, pp. 4025-4027. 1999. Rothschild A., J. Sloan and R. Tenne, Growth of WS2 Nanotubes Phases, J. Am. Chem. Soc., 122, pp. 5169-5179. 2000. Ruckenstein E. and Wang H., Temperature-Programmed Reduction and XRD Studies of the Interactions in Supported Rhodium Catalysts and Their Effect on Partial Oxidation of Methane to Synthesis Gas, J. Catal., 190, pp. 32-38. 2000. 238 References Rupp J. L. M., T. Drobek, A. Rossi and L. J. Gauekler, Chemical Analysis of Spray Pyrolysis Gadolinia-doped Ceria Electrolytes for Solid Oxide Fuel Cells, Chem. Mater., 19, pp. 1134-1142. 2007. Ryoo R., C.H. Ko, M. Kruk, V. Antochshuk and M. Jaroniec, Block-Copolymer-Templated Ordered Mesoporous Silica: Array of Uniform Mesopores or Mesopore-Micropore Network?, J. Phys. Chem. B, 104, pp. 11465-11471. 2000. Sadi F., D. Duprez, F. Gérard and A. Miloudi, Hydrogen Formation in the Reaction of Steam with Rh/CeO2 Catalysts: A Tool for Characterising Reduced Centres of Ceria, J. Catal., 213, pp. 226-234. 2003. Sakakura T. and K. Kohno, The Synthesis of Organic Carbonates from Carbon Dioxide, Chem. Commun., pp. 1312-1330. 2009. Schuth F., K. Sing and J. Weitkamp, An Exhaustive Treatment Can Be Found in Handbook of Porous Solids, vol. I–V, Wiley-VCH, Weinheim, 2002. Segura Y., P. Cool, P. Kustrowski, L. Chmielarz, R. Dziembaj and E.F. Vansant, Characterization of Vanadium and Titanium Oxide Supported SBA-15, J. Phys. Chem. B, 109, pp. 12071-12079. 2005. Selvaraj M., B. H. Kim and T. G. Lee, FTIR Studies on Selected Mesoporous Metallosilicate Molecular Sieves, Chem. Lett., 34, pp. 1290-1291. 2005. Shah P. and V. Ramaswamy, Thermal Stability of Mesoporous SBA-15 and Sn-SBA-15 Molecular Sieves: An in situ HTXRD Study, Micro. Meso. Mater., 114, pp. 270-280. 2008. Shannon R. D., Solid State Commu., Synthesis and Properties of Two New Members of The Rutile Family RhO2 and PtO2, 6, pp. 139-145. 1968. Singh A. K., V. Kumar and Y. Kawazoe, Metal Encapsulated Nanotubes of Silicon and Germanium, J. Mater. Chem., 14, pp. 555-563. 2004. Soler-Illia G. J. A. A., E. L. Crepaldi, D. Grosso and C. Sanchez, Block Copolymer Templated Mesoporous Oxides, Curr. Opin. Colloid Interface Sci., 8, pp. 109-126. 2003. Song S. W., K. Hidajat and S. Kawi, Functionalized SBA-15 Materials as Carriers for Controlled Drug Delivery: Influence of Surface Properties on Matrix−Drug 239 References Interactions, Langmuir, 21, pp. 9568-9575. 2005. Spahr M. E., P. Bitterli, R. Nesper, M. Muller, F. Krumeich and H. U. Nissen, Redox-Active Nanotubes of Vanadium Oxide, Angew. Chem. Int. Ed., 37, pp. 1263-1265. 1998. Srivastava G. P., Theory of Thermal Conduction in Nanotubes, MRS Bulletin, 26, No. 6, pp. 445-440. 2001. Stankevich I. V. and L. A. Chernozatonskii, Tammov States and Quantum Points in Carbon and Heteroatomic Nanotubes, Fizika Tverdogo Tela, 41, No. 8, pp. 1515-1519. 1999. Stevens M. G., S. Subramoney and H. C. Foley, Spontaneous Formation of Carbon Nanotubes and Polyhedra from Cesium and Amorphous Carbon, Chem. Phys. Lett., 292, pp. 352-356. 1998. Strano M. S., C. A. Dyke, M. L. Usrey, P. W. Barone, M. J. Allen, H. W. Shan, C. Kittrell, R. H. Hauge, J. M. Tour and R. E. Smalley, Electronic Structure Control of Single-Walled Carbon Nanotube Functionalization, Science, 301, pp. 1519-1522. 2003. Strohm J. J., J. Zheng and C. S. Song, Low-Temperature Steam Reforming of Jet Fuel in the Absence and Presence of Sulfur over Rh and Rh–Ni Catalysts for Fuel Cells, J. Catal., 238, pp. 309-320. 2006. Suenaga K., C. Colliex and N. Demoncy, et al., Synthesis of Nanoparticles and Nanotubes with Well-Separated Layers of BN and Carbon, Science, 278, pp. 653-655. 1997. Sullivan J. A. and J. Cunningham, Selective Catalytic Reduction of NO with C2H4 over Cu/ZSM-5: Influences of Oxygen Partial Pressure and Incorporated Rhodia, Appl. Catal. B, 15, pp. 275-289. 1998. Sun J., X. Qiu, F. Wu, W. Zhu, W. Wang and S. Hao, Hydrogen From Steam Reforming Of Ethanol In Low And Middle Temperature Range For Fuel Cell Application, Int. J. Hydrogen Energy, 29, pp. 1075-1081. 2004. Sun J., X. P. Qiu, F. Wu and W. T. Zhu, H2 from Steam Reforming of Ethanol at Low Temperature over Ni/Y2O3, Ni/La2O3 and Ni/Al2O3 Catalysts for Fuel-Cell Application, Int. J. Hydrogen Energy, 30, pp. 437-445. 2005. Sun G., K. Hidajat and S. Kawi, Synthesis of Y2O3 Nanocrystals and the Effect of 240 References Nanocrystalline Y2O3 Supports on Ni/Y2O3 Catalysts for Oxidative Steam Reforming of Ethanol, Chem. Lett., 35, pp. 1308-1309. 2006. Sun G. B., K. Hidajat, X. S. Wu and S. Kawi, A Crucial Role of Surface Oxygen Mobility on Nanocrystalline Y2O3 Support for Oxidative Steam Reforming of Ethanol to Hydrogen over Ni/Y2O3 Catalysts, Appl. Catal. B, 81, pp. 303-312. 2008. Svrcek V., Encapsulation of Fresh Silicon Nanocrystals in Carbon Nanotube Cavity, Mater. Lett., 62, pp. 2578-2580. 2008. Szchenyi A. and F. Solymosi, Production of Hydrogen in the Decomposition of Ethanol and Methanol over Unsupported Mo2C Catalysts, J. Phys. Chem. C, 111, pp. 9509-9515. 2007. Szczodrowski K., B. Prelot, B. Lantenois, J. Douillard and J. Zajac, Effect of Heteroatom Doping on Surface Acidity and Hydrophilicity of Al, Ti, Zr-doped Mesoporous SBA-15, Micro. Meso. Mater., 124, pp. 84-93. 2009. Tagmatarchis N. and M. Prato, Functionalization of Carbon Nanotubes via 1,3-dipolar Cycloadditons, J. Mater. Chem., 14, pp. 437-439. 2004. Tan E.P.S. and C.T. Lim, Mechanical Characterization of Nanofibers-A Review, Compos. Sci. Technol., 66, pp. 1102-1111. 2006. Tang S., L. Ji, J. Lin, H. C. Zeng, K. L. Tan and K. Li, CO2 Reforming of Methane to Synthesis Gas over Sol-Gel-Made Ni/Gamma-Al2O3 Catalysts from Organometallic Precursors, J. Catal., 194, pp. 424-430. 2000. Tang Q., J. M. Shen, W. J. Zhou, W. Zhang, W. C. Yu and Y. T. Qian, Preparation, Characterization and Optical Properties of Terbium Oxide Nanotubes, J. Mater. Chem., 13, pp. 3103-3106. 2003. Tang C. C., Y. Bando, B. D. Liu and D. Golberg, Cerium Oxide Nanotubes Prepared from Cerium Hydroxide Nanotubes, Adv. Mater., 17, pp. 3005-3009. 2005. Thomas J.M., W.J. Thomas, Principles and Practice of Heterogeneous Catalysis, 2nd ed., Wiley–VCH, Weinheim, 1997. Timofeeva M. N., S. H. Jhung, Y. K. Hwang, D. K. Kim, V. N. Panchenko, M. S. Melgunov, Y. A. Chesalov and J. S. Chang, Ce-silica Mesoporous SBA-15-Type Materials for Oxidative Catalysis: Synthesis, Characterization, and Catalytic 241 References Application, Appl. Catal. A, 317, pp. 1-10. 2007. Tok A. I. Y., F. Y. C. Boey, Z. Dong and X. L. Sun, Hydrothermal Synthesis of CeO2 Nano-Particles, J. Mat. Process. Tech., 190, pp. 217-222. 2007. Tsang S. C., P. J. F. Harris and M. L. H. Green, Thinning and Opening Carbon Nanotubes by Oxidation Using Carbon Dioxide, Nature, 362, pp. 520-522. 1993. Tsang S. C., Y. K. Chen, P. J. F. Harris and M. L. H. Green, A Simple Chemical Method of Opening and Filling Carbon Nanotubes, Nature, 372, pp. 159-162. 1994. Tsao C. S., Yu M. S., Wang C. Y., Liao P. Y., Chen H. L., Jeng U. S., Tzeng Y. R., Chung T. Y. and Wu H. C., Nanostructure and Hydrogen Spillover of Bridged Metal-Organic Frameworks, J. Am. Chem. Soc., 131, pp. 1404-1406. 2009. Tu Y. J. and Y. W. Chen, Effects of Alkaline-Earth Oxide Additives on Silica-Supported Copper Catalysts in Ethanol Dehydrogenation, 37, pp.2618-2622. 1998. Ulrich M. D., J. E. Rowe, D. Niu and G. N. Parsons, Bonding and Structure of Ultrathin Yttrium Oxide Films for Si Field Effect Transistor Gate Dielectric Applications, J. Vac. Sci. Technol. B, 21, pp. 1792-1797. 2003. Van Santen R.A. and M. Neurock, Molecular Heterogeneous Catalysis. A Conceptual and Computational Approach, Wiley–VCH, Weinheim, 2006. Vasudeva K., N. Mitra, P. Umasankar and S. C. Dhingra, Steam Reforming of Ethanol for Hydrogen Production: Thermodynamic Analysis, Int. J. Hydrogen Energy, 21, pp. 13-18. 1996. Velu S., K. Suzuki, M. Vijayaraj, S. Barman and C. S. Gopinath, In Situ XPS Investigations of Cu1-xNixZnAl-Mixed Metal Oxide Catalysts Used in the Oxidative Steam Reforming of Bio-Ethanol, Appl. Catal. B, 55, pp. 287-299. 2005. Vinu A., V. Murugesan, W. Bohlmann and M. Hartmann, An Optimized Procedure for the Synthesis of AlSBA-15 with Large Pore Diameter and High Aluminum Content, J. Phys. Chem. B, 108, pp. 11496-11505. 2004. Vinu A., D.P. Sawant, K. Ariga, V. Hartmann and S.B. Halligudi, Benzylation of Benzene and other Aromatics by Benzyl Chloride over Mesoporous AlSBA-15 Catalysts, Micro. Meso. Mater., 80, pp. 195-203. 2005. 242 References Vizcaino A. J., A. Carrero and J. A. Calles, Ethanol Steam Reforming on Mg- and Ca-Modified Cu–Ni/SBA-15 Catalysts, Catal. Today, 146, pp. 63-70. 2009. Wagner C. D., W. M. Riggs, L. E. Davis, J. F. Moulder and G. E. Muilenberg, HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY, Perkin-Elmer, pp. 17. 1979. Wanat E.C., K. Venkataraman and L.D. Schmidt, Steam Reforming and Water-Gas Shift of Ethanol on Rh and Rh–Ce Catalysts in A Catalytic Wall Reactor, Applied Catalysis A, 276, pp.155-162. 2004. Wang S. and G. Q. M. Lu, CO2 Reforming of Methane on Ni Catalysts: Effect of the Support Phase and Preparation Technique, Appl. Catal. B, 16, pp. 269-277. 1998. Wang L. Z., S. Tomura, F. Ohashi, M. Maeda, M. Suzuki and K. Inukai, Synthesis of Single Silica Nanotubes in the Presence of Citric Acid, J. Mater. Chem., 11, pp. 1465-1468. 2001. Wang W. P., Z. Wang, Y. Ding, J. Xi and G. Lu, Partial Oxidation of Ethanol to Hydrogen over Ni–Fe Catalysts, Catal. Letters, 81, pp. 63-68. 2002. Wang C., M. Waje, X. Wang, J.M. Tang, R.C. Haddon and Y.S. Yan, Proton Exchange Membrane Fuel Cells with Carbon Nanotube Based Electrodes, Nano Lett., 4, pp. 345-348. 2004. Wang J. A., T. Lopez, X. Bokhimi and O. Novaro, Phase Composition, Reducibility and Catalytic Activity of Rh/Zirconia and Rh/Zirconia-Ceria Catalysts, J. Mol. Catal. A, 239, pp. 249-256. 2005a. Wang Y., J. Y. Lee and H. C. Zeng, Polycrystalline SnO2 Nanotubes Prepared via Infiltration Casting of Nanocrystallites and Their Electrochemical Application, Chem. Mater., 17, pp. 3899-3903. 2005b. Wang R., H. Xu, X. Liu, Q. Ge and W. Li, Role of Redox Couples of Rh0/Rhδ+ and Ce4+/Ce3+ in CH4/CO2 Reforming over Rh–CeO2/Al2O3 Catalyst, Appl. Catal. A, 305, pp. 204-210. 2006. Wang Z., S. Zhou and L. Wu, Preparation of Rectangular WO3·H2O Nanotubes Under Mild Conditions, Adv. Funct. Mater., 17, pp. 1790-1794. 2007a. Wang X. H., H. Orikasa, N. Inokuma, Q. H. Yang, P. X. Hou, H. Qshima, K. Itoh 243 References and T. Kyotani, Controlled Filling of Permalloy Into One-End-Opened Carbon Nanotubes, J. Mater. Chem., 17, pp. 986-991. 2007b. Wang G., H. Wang, Z. Tang, W. Li and J. Bai, Simultaneous Production of Hydrogen and Multi-Walled Carbon Nanotubes by Ethanol Decomposition over Ni/Al2O3 Catalysts, Appl. Catal. B, 88, pp. 142-151. 2009a. Wang Z. J., Liu Y., Shi P., Liu C. J. and Liu Y., Al-MCM-41 Supported Palladium Catalyst for Methane Combustion: Effect of Preparation Methodologies, Appl. Catal. B, 90, pp. 570-577. 2009b. Wei B., R. Spolenak and P. Kohler-Redlich, et al., Electrical Transport in Pure and Boron Doped Carbon Nanotubes, Appl. Phys. Lett., 74, No. 21, pp. 3149-3151. 1999. Weng W. Z., Pei X. Q., Liu J. M., Luo C. R., Liu Y., Lin H. Q., Huang C. J. and Wan H. L., Effects of Calcination Temperatures on the Catalytic Performance of Rh/Al2O3 for Methane Partial Oxidation to Synthesis Gas, Catal. Today, 117, pp. 53-61. 2006. White C. T. and T. N. Todorov, Carbon Nanotubes as Long Ballistic Conductors, Nature, 393, pp. 240-242. 1998. Wikipedia: http://en.wikipedia.org/wiki/Rhodium Wu H. Q., X. W. Wei, M. W. Shao, J. S. Gu and M. Z. Qu, Preparation of Fe–Ni Alloy Nanoparticles Inside Carbon Nanotubes via Wet Chemistry, J. Mater. Chem., 12, pp. 1919-1921. 2002. Wu G. S., T. Xie, X. Y. Yuan, B. C. Cheng and L. D. Zhang, An Improved Sol–Gel Template Synthetic Route to Large-Scale CeO2 Nanowires, Mat. Res. Bulletin, 39, pp. 1023-1028. 2004. Wu S. S., X. W. Zhang, W. L. Dai, S. F. Yin, W. S. Li, Y. Q. Ren and C. T. Au, ZnBr2-Ph4PI as Highly Efficient Catalyst for Cyclic Carbonates Synthesis from Terminal Epoxides and Carbon Dioxide, Appl. Catal. A, 341, pp. 106-111. 2008. Xia H. S. and M. Song, Preparation and Characterization of Polyurethane-Carbon Nanotube Composites, Soft Matter, 1, pp. 386-394. 2005. Xu J., X. Zhang, R. Zenobi, J. Yoshinobu, Z. Xu and J.T. Yates, Jr., Ethanol Decomposition on Ni(111): Observation of Ethoxy Formation by IRAS and Other Methods, Surf. Sci., 256, pp.288-300. 1991. 244 References Xu X., J. Li, Z. Hao, W. Zhao and C. Hu, Characterization and Catalytic Performance of Co/SBA-15 Supported Gold Catalysts for CO Oxidation, Mater. Res. Bulletin, 41, pp. 406-413. 2006. Yada M., M. Mihara, S. Mouri, M. Kuroki and T. Kijima, Rare Earth (Er, Tm, Yb, Lu) Oxide Nanotubes Templated by Dodecylsulfate Assemblies, Adv. Mater., 14, pp. 309-313. 2002. Yan L., X. R. Xing, R. B. Yu, J. X. Deng, J. Chen and G. R. Liu, Facile Alcohothermal Synthesis of Large-Scale Ceria Nanowires with Organic Surfactant Assistance, Physica B, 390, pp.59-64. 2007. Yang P., D. Zhao, D.I. Margolese, B.F. Chmelka and G.D. Stucky, Generalized Syntheses of Large-Pore Mesoporous Metal Oxides with Semicrystalline Frameworks, Nature, 396, pp. 152-155. 1998. Yang P., D. Zhao, D.I. Margolese, B.F. Chmelka and G.D. Stucky, Block Copolymer Templating Syntheses of Mesoporous Metal Oxides with Large Ordering Lengths and Semicrystalline Framework, Chem. Mater., 11, pp. 2813-2826. 1999. Yang Y., J. X. Ma and F. Wu, Production of Hydrogen by Steam Reforming of Ethanol over a Ni/ZnO Catalyst, Int. J. Hydrogen Energy, 31, pp. 877-882. 2006. Yang Y., X. H. Wang and L. T. Li, Crystallization and Phase Transition of Titanium Oxide Nanotube Arrays, J. Am. Ceram. Soc., 91, pp. 632-635. 2008. Yates D. T. C. and Prestridge E. B., Electron Diffraction and Anomalous X-ray Diffraction of Rhodium Oxide Platelets on Alumina, J. Catal., 106, pp. 549-552. 1987. Yee A., S. J. Morrison and H. Idriss, The Eeactions of Ethanol over M/CeO2 Catalysts: Evidence of Carbon–Carbon Bond Dissociation at Low Temperatures over Rh/CeO2, Catal. Today, 63, pp.327-335. 2000. Yin Y., R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai and A. P. Alivisatos, Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect, Science, 304, pp. 711-714. 2004. Yin S. F. and S. Shimada, Synthesis and Structure of Bismuth Compounds Bearing a Sulfur-Bridged Bis(phenolato) Ligand and Their Catalytic Application to the Solvent-Free Synthesis of Propylene Carbonate from CO2 and Propylene 245 References Oxide, Chem. Commun., pp. 1136-1138. 2009. Yu M.F., B.S. Files, S. Arepalli and R.S. Ruoff, Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties, Phys. Rev. Lett., 84, pp. 5552-5555. 2000. Yu M. and M. W. Urban, Formation of Concentric Ferromagnetic Nanotubes from Biologically Active Phospholipids, J. Mater. Chem., 17, pp. 4644-4646. 2007a. Yu K. L., Ruan G. L., Ben Y. H. And Zou J. J., Convenient Synthesis of CeO2 Nanotubes, Mat. Sci. and Eng. B, 139, pp. 197-200. 2007b. Yudanov N. F., A. V. Okotrub, Y. V. Shubin, L. I. Yudanova, L. G. Bulusheva, A. L. Chuvilin and J. M. Bonard, Fluorination of Arc-Produced Carbon Material Containing Multiwall Nanotubes, Chem. Mater., 14, pp. 1472-1476. 2002. Yue L., W. Gao, D. Zhang, X. Guo, W. Ding and Y. Chen, Colloids Seeded Deposition: Growth of Titania Nanotubes in Solution, J. Am. Chem. Soc., 128, pp. 11042-11043. 2006. Yue B., Y. W. Ma, H. S. Tao, L. S. Yu, G. Q. Jian, X. Z. Wang, X. S. Wang, Y. N. Lu and Z. Hu, CNx Nanotubes as Catalyst Support to Immobilize Platinum Nanoparticles for Methanol Oxidation, J. Mater. Chem., 18, pp. 1747-1750. 2008. Zahmakiran M. and S. Ozkar, Zeolite Framework Stabilized Rhodium(0) Nanoclusters Catalyst for the Hydrolysis of Ammonia-Borane in Air: Outstanding Catalytic Activity, Reusability and Lifetime, Appl. Catal. B, 89, pp. 104-110. 2009. Zeng S., J. Blanchard, M. Breysse, Y. Shi, X. Shu, H. Nie and D. Li, Post-Synthesis Alumination of SBA-15 in Aqueous Solution: A Versatile Tool for the Preparation of Acidic Al-SBA-15 Supports, Micro. Meso. Mater., 85, pp. 297-304. 2005. Zhang R. and X. Wang, One Step Synthesis of Multiwalled Carbon Nanotube/Gold Nanocomposites for Enhancing Electrochemical Response, Chem. Mater., 19, pp. 976-978. 2007. Zhang Y. J., Y. F. Shen, D. X. Han, Z. J. Wang, J. X. Song and L. Niu, Reinforcement of Silica with Single-Walled Carbon Nanotubes through Covalent Functionalization, J. Mater. Chem., 16, pp. 4592-4597. 2006. Zhao D., Q. Huo, J. Feng, B.F. Chmelka and G.D. Stucky, Nonionic Triblock and 246 References Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures, J. Am. Chem. Soc., 120, pp. 6024-6036. 1998a. Zhao D., J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka and G.D. Stucky, Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores, Science, 279, pp. 548-552. 1998b. Zhong C. J., J. Luo, M. M. Maye, L. Han and N. N. Kariuki, Nanotechnology in Catalysis, Kluwer Academic/Plenum Publishers. Vol. 1., Ch. 11, pp. 222-248. 2004. Zhong C. J. et al., Nanoparticles and Nanostructures in Sensors and Catalysis, MRS Proceedings, Vol. 900E, 2006. Zhou K., Wang X., Sun X., Peng Q. and Li Y., Enhanced Catalytic Activity of Ceria Nanorods from Well-Defined Reactive Crystal Planes, J. Catal., 229, pp. 206–212. 2005a. Zhou Q., X. Liu, L. Liu, Y. Li, Z. Jiang and D. Y. Zhao, Soft Template Synthesis of Highly Crystalline Microscale Nanotubules of PbO, Chem. Lett., 34, pp. 1226-1227. 2005b. Zhou J., J. Liu, X. D. Wang, J. H. Song, R. Tummala, N. S. Xu and Z. L. Wang, Vertically Aligned Zn2SiO4 Nanotube/ZnO Nanowire Heterojunction Arrays, Small, 3, pp. 622-626. 2007a. Zhou K., Z. Yang and S. Yang, Highly Reducible CeO2 Nanotubes, Chem. Mater., 19, pp. 1215-1217. 2007b. Zhou X. S., Z. R. Dong, H. M. Zhang, J. Y. Yan, J. X. Gao and B. W. Mao, Self-Assembly of a Rh(I) Complex on Au(111) Surfaces and Its Electrocatalytic Activity toward the Hydrogen Evolution Reaction, Langmuir, 23, pp. 6819-6826. 2007c. Zhu X. L., P. P. Huo, Y. P. Zhang, D. G. Cheng and C. J. Liu, Structure and Reactivity of Plasma Treated Ni/Al2O3 Catalyst for CO2 Reforming of Methane, Appl. Catal. B, 81, pp. 132-140. 2008. 247 Publications Publications 1. X. S. Wu and S. Kawi, Rh/Ce-SBA-15: Active and Stable Catalyst for CO2 Reforming of Ethanol to Hydrogen, Catal. Today (Impact Factor: 3.004, Elsevier), 2009, 148, 251. (Chapter 6) 2. G. B. Sun, K. Hidajat, X. S. Wu and S. Kawi, A Crucial Role of Surface Oxygen Mobility on Nanocrystalline Y2O3 Support for Oxidative Steam Reforming of Ethanol to Hydrogen over Ni/Y2O3 Catalysts, Appl. Catal. B (Impact Factor: 4.853, Elsevier), 2008, 81, 303. 3. X. S. Wu and S. Kawi, Steam Reforming of Ethanol to H2 over Rh/Y2O3: Crucial Roles of Y2O3 Oxidizing Ability, Space Velocity, and H2/C, Energy Environ. Sci. (Impact Factor: 8.5, RSC), 2010, 3, 334. (Chapter 4) 4. X. S. Wu and S. Kawi, Synthesis, Growth Mechanism and Properties of Open-Hexagonal and Nanoporous-Wall Ceria Nanotubes Fabricated via Alkaline Hydrothermal Route. Cryst. Growth Des. (Impact Factor: 4.215, ACS), 2010, 10, 1833. (Chapter 7) 5. X. S. Wu and S. Kawi, A Novel Rh/CeO2 Nanotubes for CO2 Reforming of Ethanol to H2: Crucial Roles of Oxidation State and Reducibility of Rh Species. Submitted. (Chapter 8) 6. X. S. Wu and S. Kawi, A Novel Rh/Y2O3 Nanotubes for Steam Reforming of Ethanol to H2: Effect of Anti-Sintering of Rh Species and Ultra-Low Rh Loading on Activity and Stability. Prepared. (Chapter 5) 7. X. S. Wu and S. Kawi, Synthesis and Properties of Multi-Layer Netlike Cerium Phosphate Nanotubes, 1st Nanotoday Conference, Biopolis, Singapore, Aug. 1-3, 2009 (Poster Presentation). 8. X. S. Wu and S. Kawi, Rh Supported on Y2O3 Nanotube: A New Catalyst for Steam Reforming of Ethanol to Hydrogen, 21st National Annual Meeting (North American Catalysis Society), San Francisco, USA. Jun. 6-12, 2009 (Poster Presentation). 9. X. S. Wu and S. Kawi, Production of Hydrogen from Steam Reforming of 248 Publications Ethanol over a Rh/Y2O3 Catalyst, 21st National Annual Meeting (North American Catalysis Society), San Francisco, USA. Jun. 6-12, 2009 (Poster Presentation). 10. X. S. Wu and S. Kawi, Rh/Ce-SBA-15: Active and Stable Catalyst for CO2 Reforming of Ethanol to Hydrogen, 10st International Conference on CO2 Utilization (ICCDU-X), Tianjin, China. May 17-22, 2009 (Oral Presentation). 11. X. S. Wu and S. Kawi, CO2 Reforming of Ethanol for Production of H2/Syngas over Rh/CeO2 Nanotubes, 10st International Conference on CO2 Utilization (ICCDU-X), Tianjin, China. May 17-22, 2009 (Poster Presentation). 12. X. S. Wu and S. Kawi, Synthesis Mechanism of CeO2 Nanotubes under Alkaline Route, MRS Fall Meeting, Boston, USA, Dec. 5-8, 2008 (Poster Presentation). 249 [...]... FESEM image of Ce(OH)3-OH-NT, (b) FESEM image displaying the outer and inner diameters of Ce(OH)3-OH-NT, (c) FE-TEM image of multi-layer crystal lattice of Ce(OH)3-OH-NT and (d) TEM image of CeO2 open-hexagonal nanotubes [CeO2-OH-NT] formed by calcination of Ce(OH)3-OH-NT 154 Figure 7-3 DTA-TGA analysis of Ce(OH)3-OH-NT 155 Figure 7-4 The effect of hydrothermal treatment time of Ce(OH)3-OH-NT... morphology of Ce(OH)3-OH-NT: (a) 0 day, (b) 15 days, (c) 30 days, and (d) 60 days (with the red arrow showing the nanopore diameter of ~ 2.5 nm) 166 Figure 7-10 H2-TPR profiles of CeO2-NW-NT, CeO2-OH-NT and CeO2-NP 170 Chapter 8 A Crucial Role of Oxidation State And Reducibility of Rh Species Over A Novel Rh/CeO2-Nanotube Catalyst for CO2 Reforming of Ethanol to H2 172 Figure 8-1 (a) FESEM image of. .. displaying the outer and inner diameters of Ce(OH)3-OH-NT, (c) FE-TEM image of multi-layer crystal lattice of Ce(OH)3-OH-NT and (d) TEM image of CeO2 open-hexagonal nanotubes [CeO2-OH-NT] formed by calcination of Ce(OH)3-OH-NT 182 Figure 8-2 (a) 1 wt% Rh and (b) 5 wt% Rh nanoparticles filled inside and on the surface of CeO2 nanotubes 183 Figure 8-3 XRD patterns of Rh-based catalysts... .201 xiii List of Tables List of Tables Table 4-1 Textural characterization of catalysts .61 Table 4-2 Comparison of ethanol conversion and GHSV .71 Table 4-3 Comparison of ethanol conversion and LHSV .71 Table 5-1 Textural characterization of catalysts 88 Table 6-1 Surface properties of 1%Rh/Ce-SBA-15 based catalysts 131 Table 6-2 Conversion of CO2 over 1% Rh/Ce-SBA-15... Literature Review characterization and application, promoting this area of study is an integral part of nanotechnology and nanoscience Generally, nanostructured materials include nanotubes, nanoparticles, mesoporous materials, nanowires and nanorods and so on In this review, we focus on the nanotubes and mesoporous materials and on some aspects of their synthesis, formation and application 2.3.1 Mesoporous... nanotube over two kinds of Ce(OH)3 compound bases: (a) vertical growth of Ce(OH)3-OH-NT over the amorphous nature of flat base of Ce(OH)3 compound and (b) multidirectional growth of Ce(OH)3-OH-NT into nanotube flowers over the spherical core base of Ce(OH)3 compound .165 Scheme 8-1 Formation process of enhanced lattice oxygen density at CeO2 crystalline defect sites and formation of oxygen vacancy... literature review, results and discussion, conclusions and references In Chapter 2, background knowledge and the related literature of nanostructured materials and their application in SRE and CRE reactions are provided Furthermore, the advantages and drawbacks of different metal based catalysts applied in these two reactions are discussed In Chapter 3, the experimental and characterization methods used... first to discuss the general aspects of nanotechnology in relevance to the catalysis, the synthesis and fabrication of nanostructure materials, the characterization of nanomaterials, and the applications of nanostructured materials in reforming of alcohols to produce hydrogen gas This chapter is constituted by four main sections In the first section, the development of nanotechnology in recent years was... smaller features in semiconductors and electronics and so on Novel creations in these intersecting fields are indeed remarkable, and a vibrant and intellectually stimulating community is always exploring new methods to fabricate and examine matter that were not available before In this study, we will be reviewing the chemical synthesis, characterization and applications of nanostructured materials, which... Table 7-1 Properties of CeO2-NW-NT, CeO2-OH-NT and CeO2-NP 168 Table 8-1 Textural characterization of catalysts .185 Table 8-2 Rh 3d XPS data over various Rh-based catalysts 188 Table 8-3 Conversion of CO2 over five Rh-based catalysts 198 xiv List of Schemes List of Schemes Scheme 7-1 Schematic illustration of anisotropic growth of Ce(OH)3-OH-NT along the c-axis of hexagonal nanotube . grateful to Professor Hidajat Kus for his help and support. I also extend my appreciation to Prof. Chung Tai Shung, Prof. Hong Liang, Prof. Kang En Tang, Prof. Tan Thiam Chye, and Prof. Song Lianfa. production in steam reforming of ethanol (SRE) and CO 2 reforming of ethanol (CRE). A fundamental understanding of the cause of the high activity and the stability of Rh/oxide-nanotube catalysts. Textural characterization of catalysts 61 Table 4-2 Comparison of ethanol conversion and GHSV 71 Table 4-3 Comparison of ethanol conversion and LHSV 71 Table 5-1. Textural characterization of catalysts