1. Trang chủ
  2. » Luận Văn - Báo Cáo

Designing and synthesis of shape memory polymers for biomedical application

164 656 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

DESIGNING AND SYNTHESIS OF SHAPE-MEMORY POLYMERS FOR BIOMEDICAL APPLICATION XUE LIANG NATIONAL UNIVERSITY OF SINGAPORE 2010 DESIGNING AND SYNTHESIS OF SHAPE-MEMORY POLYMERS FOR BIOMEDICAL APPLICATION XUE LIANG (Msc in Chemistry, Zhejiang University, China ) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHYLOSOPHY DEPARTMENT OF CHEMICAL & BIOMOLECULAR ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2010 To My Family ACKNOWLEDGEMENTS First of all, I would like to express my sincere gratitude to my supervisor, Professor Li Zhi, for his patient supervision, encourage and continuous support. He is always helping me to solve the problems and sharing his inspiring ideas, the most important thing he makes me understand is how to research. He also seizes every tiny problem and tries to solve it promptly. Such kind of critical attitude and rigorous scholarship in research will accompany me in the rest of my life. This thesis has benefited by many other people’s efforts. I would like to acknowledge Professor Hong Liang and Prof. George Zhao for their helpful advices and discussions. I would specially thank Dr. Lou Xian Jun for his help in doing cytotoxicity test. The kind helps from Mdm. Li Fengmei, Mdm. Li Xiang, Ms. Chew Su Mei, Mdm. Han Yanhui, Mr. Wong Chee Ping, Mr. Cheung Augustine, Dr. Dharmarajan Rajarathnam, Mr. Ng Kim Poi, Mr. Boey Kok Hong, Ms. Tay Kai Si, and Ms. Xu Yanfang, are really appreciated. Without their help, this thesis would never have been so successful. The financial support provided by National University of Singapore was also gratefully acknowledged. Additional thanks go to my colleagues, Dr. Dai shiyao, Dr. Zhang Wei, Dr. Christine Schutz, Ms. Tang Weng Lin, Dr. Wang Zunsheng, Dr. Xu Yi, Mr. Jia Xin, Ms. Wang Wen, Mr. Mojtaba Binazadeh, Mr. Pham Quang Son, Ms. Ngo Nguyen Phuong Thao, and Dr. Mou Jie, for their friendship and valuable discussion during the study. Special thanks go to my friends, Ms. Lai Siok Lian, and Ms. Chieng Yu Yuan. You always patiently answer the questions for me and helped me a lot at the beginning of my Ph.D. study. You are also good listeners whenever I met any troubles in life or i researches. I really spent a great time with all of you. I would also thank my other friends: Ms. Wang Yanyan and Ms. Lou Liping. Last but not least, I would like to express my gratitude from to my parents, husband and brother. Thank you very much for your continuous and invaluable support in my life. I could not finish the whole study without the great love and care from you. ii TABLE OF CONTENT ACKNOWLEDGEMENTS . I LIST OF FIGURES . VII LIST OF TABLES XI LIST OF SCHEMES XIII NOMENCLATURE XIV SUMMARY XVII CHAPTER INTRODUCTION .1 1.1 Shape-memory alloys 1.2 Shape-memory polymers 1.3 Thermally-induced shape-memory polymers . 1.4 SMPs with PCL as switching segment and polyurethane as hard segment 1.5 SMPs with PCL as switching segment and macrodiol as hard segment . 1.6 Biodegradable SMP as fast self-expandable stent 1.7 Biodegradable SMP as self-expandable drug-eluting stent 1.8 Objective . 1.9 Thesis organization . CHAPTER LITERATURE REVIEW 2.1 Parameters for Characterization of Shape-Memory Properties 2.2 Indirect Actuation of Thermally-Induced SMPs . 11 2.3 Direct Actuation of Thermally-Induced SMPs . 12 2.4 Chemically Cross-linked SMPs 13 2.4.1 Tg-dependent chemically cross-linked SMPs . 14 2.4.2 Tm-dependent chemically cross-linked SMPs . 16 2.5 Physically Cross-linked SMPs 18 2.5.1 Tg-dependent SMPs .20 2.5.2 Tm-dependent physically cross-linked SMPs .23 2.5.2.1 PCL-based SMPs with non-crystallizable polyurethane as hard segment 23 iii 2.5.2.2 PCL-based SMPs with crystallizable macrodiol as hard segment 27 2.6 Chemically and Physically Double Cross-linked SMPs . 28 2.7 Shape-Memory Composites and Blends . 28 2.8 Biodegradable Shape-Memory Systems . 29 2.8.1 Biodegradable thermoplastic elastomers with shape-memory effect . 30 2.8.2 Poly(ε-caprolactone) as biomaterials in biomedical applications . 31 2.9 Application of SMPs . 31 2.9.1 The application of SMPs as smart suture . 32 2.9.2 The application of SMPs as stent . 33 2.9.3 The application of SMPs as actuator 34 2.10 Enzymatic ring-opening polymerization . 35 2.10.1 The general aspect of ring-opening polymerization of lactones . 35 2.10.2 Mechanism of lipase-catalyzed ring-opening polymerization of cyclic lactones . 36 2.11 Poly[(R)-3-hydroxyalkanoate]s (PHAs) . 37 2.11.1 General concept of PHAs . 37 2.11.2 Poly[(R)-3-hydroxybutyrate] (PHB) 38 2.11.2.1 Production of PHB 39 2.11.2.2 Physical properties of PHB . 39 2.11.3 Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) . 40 2.12 Stents in the treatment of coronary arteries 42 2.12.1 Metallic stent 42 2.12.2 Polymeric stents 43 2.12.2.1 Biostable polymeric stent 43 2.12.2.2 Biodegradable polymeric stent 43 2.12.3 Drug-eluting stents . 45 2.12.3.1 Paclitaxel-eluting stent 46 CHAPTER MATERIALS AND CHARACTERIZATION METHODS .47 3.1 Materials . 47 3.2 Material synthesis . 47 3.2.1 General procedure for the preparation of three-arm PCL-triols by enzymatic ring-opening polymerization of ε-caprolactone with glycerol 47 3.2.1.1Preparation of three-arm PCL (Tm of 47 oC, Mn of 4200 g/mol) 48 3.3 Characterization of materials 48 3.3.1 Characterization of molecular weight and structure . 48 3.3.1.1 Gel Permeation Chromatography (GPC) 49 3.3.1.2 Nuclear Magnetic Resonance (NMR) . 49 3.3.2 Characterization of thermal property 49 3.3.2.1 Differential Scanning Calorimetry (DSC) . 49 3.3.3 Characterization of mechanical and shape-memory properties 50 3.3.3.1 Tensile Stress Test 50 iv 3.3.3.2 Collapsed pressure 50 3.3.3.3 Shape-Memory Properties .50 3.3.4 Cell culture, cytotoxicity, and biocompatibility of materials . 51 3.3.5 Evaluation of SMPs as self-expandable stent . 52 3.3.6 Preparation drug-eluting stent and drug release profiles 52 CHAPTER SYNTHESIS AND CHARACTERIZATION OF THREEARM POLY(ε-CAPROLACTONE)-BASED POLY(ESTER-URETHANES) WITH SHAPE-MEMORY EFFECT AT BODY TEMPERATURE … 54 4.1 Introduction . 54 4.2 Experimental Section 57 4.2.1 General procedure for synthesis of three-arm PCL-based poly(ester-urethane)s (tPCLPUs). 57 4.2.2 Preparation of three-arm PCL-based poly(ester-urethane) (tPCL-PU) (sample M). 57 4.3 Results and Discussion . 59 4.3.1 Enzymatic synthesis of three-arm PCL-triols. 59 4.3.2 Preparation and structure analysis of three-arm PCL-based polyesterurethanes (tPCLPUs). 65 4.3.3 Thermal properties of tPCL-PUs. . 70 4.3.4 Mechanical and shape-memory properties of tPCL-PUs. 71 4.4 Conclusion 75 CHAPTER BIODEGRADABLE SHAPE-MEMORY POLYMR AS FAST SELF-EXPANDABLE STENT .76 5.1 Introduction . 76 5.2 Experiments 79 5.2.1 Preparation of PHBV-diol. . 79 5.2.2 Synthesis of poly(PCL-PHBV)urethanes (PCTBV)s. 79 5.3 Results and Discussion . 80 5.3.1 Synthesis of poly (PCL-triol/PHBV-diol) urethanes (PCLBVs). . 80 5.3.2 Mechanical properties of PCTBVs. 86 5.3.3 Shape-memory properties of PCTBVs. 86 5.3.4 Cytotoxicity test of PCTBVs. . 89 5.3.5 Evaluation of PCTBV-25 as self-expandable stent. . 91 5.4 Conclusion 93 CHAPTER EVALUATION OF BIODEGREDADABLE SHAPEMEMORY POLYMERS AS FULL POLYMERIC AND SELFEXPANDABLE DRUG-ELUTING STENT 95 v 6.1 Introduction . 95 6.2 Materials and methods 98 6.2.1 Synthesis of 2-Oxepane-1,5-dione (OPD) 98 6.2.2 Synthesis of poly(2-Oxepane-1,5-dione)-diol (POPD) 98 6.2.3 Synthesis of poly(ester-urethane)s (PCTOPD)s containing hyperbranched three-arm PCL block and POPD block 98 6.3. Result and Discussion 100 6.3.1 Synthesis of poly(2-Oxepane-1,5-dione)-diol (POPD) . 100 6.3.2 Synthesis of poly(ester-urethane)s (PCTOPD) containing hyperbranched three-arm PCL block and POPD block 104 6.3.3 Mechanical properties of PCTOPDs 106 6.3.4 Shape-memory properties of PCTOPDs. 108 6.3.5 Cytotoxicity and biocompatibility of PCTOPDs 109 6.3.6 Evaluation of PCTOPD-27 as self-expandable stent. . 110 6.3.7 In vitro drug release of PCTOPD stents. 112 6.3.8 Collapsed pressure of PCTOPD-27 stents. . 113 6.4 Conclusions . 115 CHAPTER CONCLUSION AND RECOMMENDATIONS . 117 7.1 Conclusion 117 7.2 Future Work 120 REFERENCES . 124 LIST OF PUBLICATIONS……………………………………………….141 vi LIST OF FIGURES Figure 1.1 A simplified scheme for shape-changes of SMP from deformation to recovery upon application of external stimulus. Figure 2.1 Characterization of shape-memory properties with cyclic thermomechanical tensile test. Figure 2.2 Characterization of shape-memory properties with bending test. Figure 2.3 A scheme of thermally-induced SMP changing shapes by heating-cooling process. Figure 2.4 The mechanical property (maximum stress and elongation at break) and shapememory properties (Rf) of PDI-based SMPs. Figure 2.5 The plot of Mn of PCL-diol with Tm of PCL-diol and the corresponding PU. Figure 2.6 The relationship between switching segment content and Rf (A) as well as Rr (B) for PCL-diol with Mn of 2000 and 8000. Figure 2.7 The relationship between hard-segment content and Rf for PCL-based SMPs. Figure 2.8 Curves for Rf and Rr at different deformation rate. Figure 2.9 Photographs of shape-memory suture for self wound closure. Figure 2.10 Electroactive shape recovery behavior of PU/PPy=80/20 composite. Figure 2.11 Recovery of a crosslinked SMP stent delivered via catheter into ID glass tube. vii 39. Chen, M. C.; Tsai, H. W.; Chang, Y.; Lai, W. Y.; Mi, F. L.; Liu, C. T.; Wong, H. S.; Sung, H. W., Rapidly self-expandable polymeric Stents with a shape-memory property. Biomacromolecules 2007, 8, (9), 2774-2780. 40. Venkatraman, S. S.; Tan, L. P.; Joso, J. F. D.; Boey, Y. C. F.; Wang, X. T., Biodegradable stents with elastic memory. Biomaterials 2006, 27, (8), 1573-1578. 41. Sheth, S.; Park, K. D.; Dev, V.; Jacobs, H.; Kim, S. W.; Lambert, T.; Forrester, J. S.; Litvack, F.; Eigler, N., Prevention of stent subacute thrombosis by segmented polyurethaneurea - polyethylene oxide - heparin coating in the rabbit carotid. Journal of the American College of Cardiology 1994, A187-A187. 42. Chen, M. C.; Chang, Y.; Liu, C. T.; Lai, W. Y.; Peng, S. F.; Hung, Y. W.; Tsai, H. W.; Sung, H. W., The characteristics and in vivo suppression of neointimal formation with sirolimus-eluting polymeric stents. Biomaterials 2009, 30, (1), 79-88. 43. Pachence, J. M.; Kohn, J., Principles of tissue engineering. Academic Press: New York, 1997. 44. Kohn, J.; Langer, R., Biomaterials science. Academic Press: New York, 1996. 45. Middleton, J. C.; Tipton, A. J., Biomaterials 2000, 21, 2335-2346. 46. Pitt, C. G.; Gratzl, M. M.; Kimmel, G. L.; Surles, J.; Schindler, A., Aliphatic polyesters. 2. The degradation of poly(DL-lactide), poly(epsilon-caprolactone), and their copolymers in vivo. Biomaterials 1981, 2, (4), 215-220. 47. Woodward, S. C.; Brewer, P. S.; Moatamed, F.; Schindler, A.; Pitt, C. G., The intracellular degradation of poly(epsilon-caprolactone). J. Biomed. Mater. Res. 1985, 19, (4), 437-444. 48. Behl, M.; Ridder, U.; Feng, Y.; Kelch, S.; Lendlein, A., Shape-memory capability of binary multiblock copolymer blends with hard and switching domains provided by different components. Soft Matter 2009, 5, (3), 676-684. 49. Feng, Y. K.; Behl, M.; Kelch, S.; Lendlein, A., Biodegradable multiblock copolymers based on oligodepsipeptides with shape-memory properties. Macromol. Biosci. 2009, 9, (1), 45-54. 50. Kim, B. K.; Lee, S. Y.; Xu, M., Polyurethanes having shape memory effects. Polymer 1996, 37, (26), 5781-5793. 51. Lendlein, A.; Jiang, H. Y.; Junger, O.; Langer, R., Light-induced shape-memory polymers. Nature 2005, 434, (7035), 879-882. 52. Jiang, H. Y.; Kelch, S.; Lendlein, A., Polymers move in response to light. Adv. Mater. 2006, 18, (11), 1471-1475. 53. Koerner, H.; Price, G.; Pearce, N. A.; Alexander, M.; Vaia, R. A., Remotely actuated polymer nanocomposites - stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat. Mater. 2004, 3, (2), 115-120. 54. Cho, J. W.; Kim, J. W.; Jung, Y. C.; Goo, N. S., Electroactive shape-memory polyurethane composites incorporating carbon nanotubes. Macromol. Rapid Commun. 2005, 26, (5), 412-416. 55. Mohr, R.; Kratz, K.; Weigel, T.; Lucka-Gabor, M.; Moneke, M.; Lendlein, A., Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, (10), 3540-3545. 56. Buckley, P. R.; McKinley, G. H.; Wilson, T. S.; Small, W.; Benett, W. J.; Bearinger, J. P.; McElfresh, M. W.; Maitland, D. J., Inductively heated shape memory polymer for the magnetic actuation of medical devices. IEEE Trans. Biomed. Eng. 2006, 53, (10), 2075-2083. 126 57. Weigel, T.; Mohr, R.; Lendlein, A., Investigation of parameters to achieve temperatures required to initiate the shape-memory effect of magnetic nanocomposites by inductive heating. Smart Mater. Struct. 2009, 18, (2), 9. 58. Yang, B.; Huang, W. M.; Li, C.; Lee, C. M.; Li, L., On the enects of moisture in a polyurethane shape memory polymer. Smart Mater. Struct. 2004, 13, (1), 191-195. 59. Wang, H. H.; Yuen, U. E., Synthesis of thermoplastic polyurethane and its physical and shape memory properties. J. Appl. Polym. Sci. 2006, 102, (1), 607-615. 60. Maitland, D. J.; Metzger, M. F.; Schumann, D.; Lee, A.; Wilson, T. S., Photothermal properties of shape memory polymer micro-actuators for treating stroke. Lasers Surg. Med. 2002, 30, (1), 1-11. 61. Hone, J.; Llaguno, M. C.; Biercuk, M. J.; Johnson, A. T.; Batlogg, B.; Benes, Z.; Fischer, J. E., Thermal properties of carbon nanotubes and nanotube-based materials. Appl. Phys. A-Mater. Sci. Process. 2002, 74, (3), 339-343. 62. Huang, W. M.; Yang, B.; Zhao, Y.; Ding, Z., Thermo-moisture responsive polyurethane shape-memory polymer and composites: a review. J. Mater. Chem. 20, (17), 3367-3381. 63. Ota, S., Atomic radiation and polymers, Pergamon Prss, Oxford 1960, pp. 198257. 64. Hayashi, S.; Kondo, S.; Giordano, C., Conference Proceedings of the Annual Technical Conference and Exhibition of Plastic Engineers 1994, 1998-2001. 65. Liu, G. Q.; Ding, X. B.; Cao, Y. P.; Zheng, Z. H.; Peng, Y. X., Shape memory of hydrogen-bonded polymer network/poly(ethylene glycol) complexes. Macromolecules 2004, 37, (6), 2228-2232. 66. Choi, N. Y.; Kelch, S.; Lendlein, A., Synthesis, shape-memory functionality and hydrolytical degradation studies on polymer networks from poly(rac-lactide)bpoly(propylene oxide)-b-poly(rac-lactide) dimethacrylates. Adv. Eng. Mater. 2006, 8, (5), 439-445. 67. Choi, N. Y.; Lendlein, A., Degradable shape-memory polymer networks from oligo[(L-lactide)-ran-glycolide]dimethacrylates. Soft Matter 2007, 3, (7), 901-909. 68. Bertmer, M.; Buda, A.; Blomenkamp-Hofges, I.; Kelch, S.; Lendlein, A., Biodegradable shape-memory polymer networks: characterization with solid-state NMR. Macromolecules 2005, 38, (9), 3793-3799. 69. Bertmer, M.; Buda, A.; Blomenkamp-Hofges, I.; Kelch, S.; Lendlein, A., Solidstate NMR characterization of biodegradable shape-memory polymer networks. Macromol. Symp. 2005, 230, 110-115. 70. Yakacki, C. M.; Shandas, R.; Safranski, D.; Ortega, A. M.; Sassaman, K.; Gall, K., Strong, tailored, biocompatible shape-memory polymer networks. Advanced Functional Materials 2008, 18, (16), 2428-2435. 71. Safranski, D. L.; Gall, K., Effect of chemical structure and crosslinking density on the thermo-mechanical properties and toughness of (meth)acrylate shape memory polymer networks. Polymer 2008, 49, (20), 4446-4455. 72. Lin, J. R.; Chen, L. W., Shape-memorized crosslinked ester-type polyurethane and its mechanical viscoelastic model. J. Appl. Polym. Sci. 1999, 73, (7), 1305-1319. 73. Alteheld, A.; Feng, Y. K.; Kelch, S.; Lendlein, A., Biodegradable, amorphous copolyester-urethane networks having shape-memory properties. Angewandte ChemieInternational Edition 2005, 44, (8), 1188-1192. 127 74. Lendlein, A.; Zotzmann, J.; Feng, Y. K.; Alteheld, A.; Kelch, S., Controlling the switching temperature of biodegradable, amorphous, shape-memory poly(raclactide)urethane networks by incorporation of different comonomers. Biomacromolecules 2009, 10, (4), 975-982. 75. Chen, W.; Zhu, C. Y.; Gu, X. R., Thermosetting polyurethanes with waterswollen and shape memory properties. J. Appl. Polym. Sci. 2002, 84, (8), 1504-1512. 76. Li, F.; Hanson, M. V.; Larock, R. C., Soybean oil-divinylbenzene thermosetting polymers: synthesis, structure, properties and their relationships. Polymer 2001, 42, (4), 1567-1579. 77. Li, F. K.; Larock, R. C., New soybean oil-styrene-divinylbenzene thermosetting copolymers - IV. Good damping properties. Polym. Adv. Technol. 2002, 13, (6), 436-449. 78. Li, F. K.; Larock, R. C., New soybean oil-styrene-divinylbenzene thermosetting copolymers. v. shape memory effect. J. Appl. Polym. Sci. 2002, 84, (8), 1533-1543. 79. Perez-Foullerat, D.; Hild, S.; Mucke, A.; Rieger, B., Synthesis and properties of poly (ketone-co-alcohol) materials: Shape memory thermoplastic elastomers by control of the glass transition process. Macromolecular Chemistry and Physics 2004, 205, (3), 374-382. 80. Sawhney, A. S.; Pathak, C. P.; Hubbell, J. A., Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(alpha-hydroxy acid) diacrylate macromers. Macromolecules 1993, 26, (4), 581-587. 81. Hu, Z. B.; Zhang, X. M.; Li, Y., Synthesis and application of modulated polymer gels. Science 1995, 269, (5223), 525-527. 82. He, X. W.; Oishi, Y.; Takahara, A.; Kajiyama, T., Higher order structure and thermo-responsive properties of polymeric gel with crystalline side chains. Polym. J. 1996, 28, (5), 452-457. 83. Sawhney, A. S.; Pathak, C. P.; Vanrensburg, J. J.; Dunn, R. C.; Hubbell, J. A., Optimization of photopolymerized bioerodible hydrogel properties for adhesion prevention. J. Biomed. Mater. Res. 1994, 28, (7), 831-838. 84. Li, Y.; Hu, Z. B.; Chen, Y. Y., Shape memory gels made by the modulated gel technology. J. Appl. Polym. Sci. 1997, 63, (9), 1173-1178. 85. Osada, Y.; Matsuda, A., Shape-memory in hydrogels. Nature 1995, 376, (6537), 219-219. 86. Hirai, T.; Maruyama, H.; Suzuki, T.; Hayashi, S., Shape memorizing properties of a hydrogel of poly(vinyl alcohol). J. Appl. Polym. Sci. 1992, 45, (10), 1849-1855. 87. Rousseau, I. A.; Mather, P. T., Shape memory effect in smectic-C liquid crystalline elastomers. Abstr. Pap. Am. Chem. Soc. 2004, 228, 308-POLY. 88. Rousseau, I. A.; Mather, P. T., Shape memory effect exhibited by smectic-c liquid crystalline elastomers. J. Am. Chem. Soc. 2003, 125, (50), 15300-15301. 89. Lendlein, A.; Schmidt, A. M.; Langer, R., AB-polymer networks based on oligo(epsilon-caprolactone) segments showing shape-memory properties. Proceedings of the National Academy of Sciences of the United States of America 2001, 98, (3), 842-847. 90. Lendlein, A.; Schmidt, A. M.; Schroeter, M.; Langer, R., Shape-memory polymer networks from oligo(epsilon-caprolactone)dimethacrylates. Journal of Polymer Science Part a-Polymer Chemistry 2005, 43, (7), 1369-1381. 91. Neuss, S.; Blomenkamp, I.; Stainforth, R.; Boltersdorf, D.; Jansen, M.; Butz, N.; Perez-Bouza, A.; Knuchel, R., The use of a shape-memory poly(is an element of128 caprolactone)dimethacrylate network as a tissue engineering scaffold. Biomaterials 2009, 30, (9), 1697-1705. 92. Nagata, M.; Kitazima, I., Photocurable biodegradable poly(epsiloncaprolactone)/poly(ethylene glycol) multiblock copolymers showing shape-memory properties. Colloid and Polymer Science 2006, 284, (4), 380-386. 93. Nagata, M.; Yamamoto, Y., Synthesis and characterization of photocrosslinked poly(epsilon-caprolactone)s showing shape-memory properties. Journal of Polymer Science Part a-Polymer Chemistry 2009, 47, (9), 2422-2433. 94. Kelch, S.; Steuer, S.; Schmidt, A. M.; Lendlein, A., Shape-memory polymer networks from oligo[(epsilon-hydroxycaproate)-co-glycolate]dimethacrylates and butyl acrylate with adjustable hydrolytic degradation rate. Biomacromolecules 2007, 8, (3), 1018-1027. 95. Liu, C. D.; Chun, S. B.; Mather, P. T.; Zheng, L.; Haley, E. H.; Coughlin, E. B., Chemically cross-linked polycyclooctene: Synthesis, characterization, and shape memory behavior. Macromolecules 2002, 35, (27), 9868-9874. 96. Ota, S., Current status of irradiated heat-shrinkable tubing in Japan. Radiat. Phys. Chem. 1981, 18, (1-2), 81-87. 97. Yang, F. Q.; Zhang, S. L.; Li, J. C. M., Impression recovery of amorphous polymers. J. Electron. Mater. 1997, 26, (7), 859-862. 98. Beloshenko, V. A.; Beygelzimer, Y. E.; Borzenko, A. P.; Varyukhin, V. N., Shape memory effect in the epoxy polymer-thermoexpanded graphite system. Compos. Pt. A-Appl. Sci. Manuf. 2002, 33, (7), 1001-1006. 99. Jeon, H. G.; Mather, P. T.; Haddad, T. S., Shape memory and nanostructure in poly(norbornyl-POSS) copolymers. Polym. Int. 2000, 49, (5), 453-457. 100. Nagai, H.; Ueda, A.; Isomura, S., Shape-memory Norbornene Polymer Molded Products, Jpn. Pat., 06080768 1994. 101. Kobayashi, K.; Hayashi, S., Shape memory fibrous sheet and method of imparting shape memory property to fibrous sheet product US Patent 5098776 1992. 102. Takahashi, T.; Hayashi, N.; Hayashi, S., Structure and properties of shapememory polyurethane block copolymers. J. Appl. Polym. Sci. 1996, 60, (7), 1061-1069. 103. Kim, H. D.; Lee, T. J.; Huh, J. H.; Lee, D. J., Preparation and properties of segmented thermoplastic polyurethane elastomers with two different soft segments. J. Appl. Polym. Sci. 1999, 73, (3), 345-352. 104. Lee, B. S.; Chun, B. C.; Chung, Y. C.; Sul, K. I.; Cho, J. W., Structure and thermomechanical properties of polyurethane block copolymers with shape memory effect. Macromolecules 2001, 34, (18), 6431-6437. 105. Lin, J. R.; Chen, L. W., Study on shape-memory behavior of polyether-based polyurethanes. I. Influence of the hard-segment content. J. Appl. Polym. Sci. 1998, 69, (8), 1563-1574. 106. Lin, J. R.; Chen, L. W., Study on shape-memory behavior of polyether-based polyurethanes. II. Influence of soft-segment molecular weight. Journal of Applied Polymer Science 1998, 69, (8), 1575-1586. 107. Cho, J. W.; Jung, Y. C.; Chun, B. C.; Chung, Y. C., Water vapor permeability and mechanical properties of fabrics coated with shape-memory polyurethane. J. Appl. Polym. Sci. 2004, 92, (5), 2812-2816. 129 108. Cho, J. W.; Jung, Y. C.; Chung, Y. C.; Chun, B. C., Improved mechanical properties of shape-memory polyurethane block copolymers through the control of the soft-segment arrangement. J. Appl. Polym. Sci. 2004, 93, (5), 2410-2415. 109. Chun, B. C.; Cho, T. K.; Chung, Y. C., Blocking of soft segments with different chain lengths and its impact on the shape memory property of polyurethane copolymer. J. Appl. Polym. Sci. 2007, 103, (3), 1435-1441. 110. Jeong, H. M.; Lee, S. Y.; Kim, B. K., Shape memory polyurethane containing amorphous reversible phase. Journal of Materials Science 2000, 35, (7), 1579-1583. 111. Yang, B.; Huang, W. M.; Li, C.; Li, L., Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer. Polymer 2006, 47, (4), 1348-1356. 112. Yang, J. H.; Chun, B. C.; Chung, Y. C.; Cho, J. H., Comparison of thermal/mechanical properties and shape memory effect of polyurethane blockcopolymers with planar or bent shape of hard segment. Polymer 2003, 44, (11), 32513258. 113. Wang, Y. L.; Li, Y. G.; Luo, Y. F.; Huang, M. N.; Liang, Z. Q., Synthesis and characterization of a novel biodegradable thermoplastic shape memory polymer. Mater. Lett. 2009, 63, (3-4), 347-349. 114. Min, C. C.; Cui, W. J.; Bei, J. Z.; Wang, S. G., Biodegradable shape-memory polymer-polylactideco-poly(glycolide-co-caprolactone) multiblock copolymer. Polymers for Advanced Technologies 2005, 16, (8), 608-615. 115. Li, F. K.; Zhang, X.; Hou, J. N.; Xu, M.; Lu, X. L.; Ma, D. Z.; Kim, B. K., Studies on thermally stimulated shape memory effect of segmented polyurethanes. J. Appl. Polym. Sci. 1997, 64, (8), 1511-1516. 116. Li, F. K.; Hou, J. N.; Zhu, W.; Zhang, X.; Xu, M.; Luo, X. L.; Ma, D. Z.; Kim, B. K., Crystallinity and morphology of segmented polyurethanes with different soft-segment length. J. Appl. Polym. Sci. 1996, 62, (4), 631-638. 117. Kim, B. K.; Lee, S. Y.; Lee, J. S.; Baek, S. H.; Choi, Y. J.; Lee, J. O.; Xu, M., Polyurethane ionomers having shape memory effects. Polymer 1998, 39, (13), 2803-2808. 118. Ping, P.; Wang, W. S.; Chen, X. S.; Jing, X. B., Poly(epsilon-caprolactone) polyurethane and its shape-memory property. Biomacromolecules 2005, 6, (2), 587-592. 119. Jeong, H. M.; Lee, J. B.; Lee, S. Y.; Kim, B. K., Shape memory polyurethane containing mesogenic moiety. Journal of Materials Science 2000, 35, (2), 279-283. 120. Jeong, H. M.; Kim, B. K.; Choi, Y. J., Synthesis and properties of thermotropic liquid crystalline polyurethane elastomers. Polymer 2000, 41, (5), 1849-1855. 121. Zhu, G. M.; Xu, S. G.; Wang, J. H.; Zhang, L. B., Shape memory behaviour of radiation-crosslinked PCL/PMVS blends. Radiat. Phys. Chem. 2006, 75, (3), 443-448. 122. Zhu, Y.; Hu, J.; Yeung, K. W.; Choi, K. F.; Liu, Y. Q.; Liem, H. M., Effect of cationic group content on shape memory effect in segmented polyurethane cationomer. J. Appl. Polym. Sci. 2007, 103, (1), 545-556. 123. Lendlein, A.; Langer, R., Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 2002, 296, (5573), 1673-1676. 124. Lee, K. M.; Knight, P. T.; Chung, T.; Mather, P. T., Polycaprolactone-POSS chemical/physical double networks. Macromolecules 2008, 41, (13), 4730-4738. 125. Jeong, H. M.; Song, J. H.; Lee, S. Y.; Kim, B. K., Miscibility and shape memory property of poly(vinyl chloride)/thermoplastic polyurethane blends. Journal of Materials Science 2001, 36, (22), 5457-5463. 130 126. Zhang, H.; Wang, H. T.; Zhong, W.; Du, Q. G., A novel type of shape memory polymer blend and the shape memory mechanism. Polymer 2009, 50, (6), 1596-1601. 127. Wang, L. S.; Chen, H. C.; Xiong, Z. C.; Pang, X. B.; Xiong, C. D., Novel degradable compound shape-memory-polymer blend: Mechanical and shape-memory properties. Mater. Lett. 64, (3), 284-286. 128. Gall, K.; Dunn, M. L.; Liu, Y. P.; Finch, D.; Lake, M.; Munshi, N. A., Shape memory polymer nanocomposites. Acta Mater. 2002, 50, (20), 5115-5126. 129. Park, Y. C.; Lee, J. K.; Lee, G. C., Development of an expert system for evaluation of the strength of matrix shape memory composites. Compos. Struct. 2007, 77, (2), 241-248. 130. Zheng, X. T.; Zhou, S. B.; Li, X. H.; Weng, H., Shape memory properties of poly(D,L-lactide)/hydroxyapatite composites. Biomaterials 2006, 27, (24), 4288-4295. 131. Liang, C.; Rogers, C. A.; Malafeew, E., Investigation of shape memory polymers and their hybrid composites (Reprinted from Proceedings of the Second Joint Japan/US Conference on Adaptive Structures, Nov, pg 789-802). J. Intell. Mater. Syst. Struct. 1997, 8, (4), 380-386. 132. Liu, Y. P.; Gall, K.; Dunn, M. L.; McCluskey, P., Thermomechanics of shape memory polymer nanocomposites. Mech. Mater. 2004, 36, (10), 929-940. 133. Ohki, T.; Ni, Q. Q.; Ohsako, N.; Iwamoto, M., Mechanical and shape memory behavior of composites with shape memory polymer. Compos. Pt. A-Appl. Sci. Manuf. 2004, 35, (9), 1065-1073. 134. Zhang, C. S.; Ni, Q. Q., Bending behavior of shape memory polymer based laminates. Compos. Struct. 2007, 78, (2), 153-161. 135. Brennan, M., Materials - Suite of shape-memory polymers. Chem. Eng. News 2001, 79, (6), 5-5. 136. Ashley, S., Shape-shifters - Shape-memory polymers find use in medicine and clothing. Sci.Am. 2001, 284, (5), 20-21. 137. Nagata, M.; Sato, Y., Synthesis and properties of photocurable biodegradable multiblock copolymers based on poly(epsilon-caprolactone) and poly(L-lactide) segments. Journal of Polymer Science Part a-Polymer Chemistry 2005, 43, (11), 24262439. 138. Wang, W. S.; Ping, P.; Chen, X. S.; Jing, X. B., Polylactide-based polyurethane and its shape-memory behavior. Eur. Polym. J. 2006, 42, (6), 1240-1249. 139. Wang, L. S.; Chen, H. C.; Xiong, Z. C.; Pang, X. B.; Xiong, C. D., A completely biodegradable poly[(L-lactide)-co-(epsilon-caprolactone)] elastomer reinforced by in situ poly(glycolic acid) fibrillation: manufacturing and shape-memory effects. Macromolecular Materials and Engineering 295, (4), 381-385. 140. Wang, W. S.; Ping, P.; Chen, X. S.; Jing, X. B., Biodegradable polyurethane based on random copolymer of L-lactide and epsilon-caprolactone and its shape-memory property. J. Appl. Polym. Sci. 2007, 104, (6), 4182-4187. 141. Ebine, T.; Harada, H., ‘The Thermoplastic Poly Coloring Picture Recording Medias and its Image Formation Method of using the Heat Sensitive Characteristic form Memory Ingredient. [Machine Translation]’, Jpn. Pat. 2002006280, 2002. 142. Terai, T., Reversible Thermal Recording Media Comprising Shape Memory Polymers and Showing Good Image Storability, Jpn. Pat. 2002086914, 2002. 131 143. Adachi, H.; Yokoi, T.; Hatori, T.; Morishita, K.; Sakashita, K.; Kaiya, H.; Inoue, K.; Ueda, Y.; Nakamura, T.; Yamaguchi, S., “Temperature Display Devices”, Jpn. Pat. 02124438 1990. 144. Kobayashi, K.; Hayashi, S., Acoustic sensors using polymers “with shape memory”, Jpn. Pat.02183132, 1990. 145. Yoo, H. J.; Jung, Y. C.; Sahoo, N. G.; Cho, J. W., Polyurethane-carbon nanotube nanocomposites prepared by in-situ polymerization with electroactive shape memory. J. Macromol. Sci. Part B-Phys. 2006, 45, (4), 441-451. 146. Langer, R.; Tirrell, D. A., Designing materials for biology and medicine. Nature 2004, 428, (6982), 487-492. 147. Vogt, F.; Stein, A.; Rettemeier, G.; Krott, N.; Hoffmann, R.; vom Dahl, J.; Bosserhoff, A. K.; Michaeli, W.; Hanrath, P.; Weber, C.; Blindt, R., Long-term assessment of a novel biodegradable paclitaxel-eluting coronary polylactide stent. European Heart Journal 2004, 25, (15), 1330-1340. 148. Ewert, P.; Riesenkampff, E.; Neuss, M.; Kretschmar, O.; Nagdyman, N.; Lange, P. E., Novel growth stent for the permanent treatment of vessel stenosis in growing children: An experimental study. Catheterization and Cardiovascular Interventions 2004, 62, (4), 506-510. 149. Epstein, M. L., Does a "split" stent make sense? Catheterization and Cardiovascular Interventions 2004, 62, (4), 511-511. 150. Yakacki, C. M.; Shandas, R.; Lanning, C.; Rech, B.; Eckstein, A.; Gall, K., Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications. Biomaterials 2007, 28, (14), 2255-2263. 151. Sahoo, N. G.; Jung, Y. C.; Goo, N. S.; Cho, J. W., Conducting shape memory polyurethane-polypyrrole composites for an electroactive actuator. Macromol. Mater. Eng. 2005, 290, (11), 1049-1055. 152. Hampikian, J. M.; Heaton, B. C.; Tong, F. C.; Zhang, Z. Q.; Wong, C. P., Mechanical and radiographic properties of a shape memory polymer composite for intracranial aneurysm coils. Mater. Sci. Eng. C-Biomimetic Supramol. Syst. 2006, 26, (8), 1373-1379. 153. Chou, S. Y.; Krauss, P. R.; Renstrom, P. J., Imprint lithography with 25nanometer resolution. Science 1996, 272, (5258), 85-87. 154. King, W. P.; Kenny, T. W.; Goodson, K. E.; Cross, G.; Despont, M.; Durig, U.; Rothuizen, H.; Binnig, G. K.; Vettiger, P., Atomic force microscope cantilevers for combined thermomechanical data writing and reading. Appl. Phys. Lett. 2001, 78, (9), 1300-1302. 155. Nelson, B. A.; King, W. P.; Gall, K., Shape recovery of nanoscale imprints in a thermoset "shape memory" polymer. Appl. Phys. Lett. 2005, 86, (10), 3. 156. Knani, D.; Gutman, A. L.; Kohn, D. H., Enzymatic polyesterification in organic media. Enzyme-catalyzed synthesis of linear polyesters. J. Poly. Sci.: Poly. Chem. 1993, 31, 1221-1232. 157. Uyama, H.; Kobayashi, S., Enzymatic ring-opening polymerization of lactones catalyzed by lipase. Chem. Lett. 1993, 22, 1149-1150. 158. Matsumura, S.; Beppu, H.; Tsukada, K.; Toshima, K., Biotechnol. Lett. 1996, 18, 1041-1046. 159. Namekawa, S.; Uyama, H.; Kobayashi, S., Polym. J. 1996, 28, 730-731. 132 160. Nobes, G. A. R.; Kazlauska, R. J.; Marchessault, R. H., Lipase-catalyzed ringopening polymerization of lactones: A novel route to poly(hydroxyalkanoate)s. Macromolecules 1996, 29, 4829-4833. 161. Suzuki, Y.; Taguchi, S.; Hisano, T.; Toshima, K.; Matsumura, S.; Doi, Y., Correlation between structure of the lactones and substrate specificity in enzymecatalyzed polymerization for the synthesis of polyesters. Biomacromolecules 2003, 4, 537-543. 162. Matsumura, S.; Suzuki, Y.; Tsukada, K.; Toshima, K.; Doi, Y.; Kasuya, K., Lipase-catalyzed ring-opening polymerization of β-butyrolactone to the cyclic and linear poly(3-hydroxybutyrate). Macromolecules 1998, 31, 6444-6449. 163. Dong, H.; Wang, H.; Cao, S.; Shen, J., Lipase-catalyzed polymerization of lactones and linear hydroxyesters Biotechnol. Lett. 1998, 20, 905-908. 164. Kobayashi, S.; Takeya, K.; Suda, S.; Uyama, H., Lipase-catalyzed ring-opening polymerization of medium-size lactone to polyesters. Macromol. Chem. Phys. 1998, 199, 1729-1736. 165. MacDonald, R. T.; Pulapura, S. K.; Svirkin, Y. Y.; Gross, R. A.; Kaplan, D. L., Enzyme-catalyzed caprolactone ring-opening polymerization. Macromolecules 1995, 28, 73-78. 166. Uyama, H.; Suda, S.; Kikuchi, H.; Kobayashi, S., Extremely efficient catalysis of immobilized lipase in ring-opening polymerization of lactones. Chem. Lett. 1997, 26, 1109-1110. 167. Cordova, A.; Iversen, T.; Hult, K.; Martinelle, M., Lipase-catalyzed formation of macrocycles of caprolactone. Polymer 1998, 39, 6519-6524. 168. Srivastava, R. K.; Albertsson, A. C., Enzyme-catalyzed ring-opening polymerziation of seven-membered ring lactones leading to terminal-functionalized and triblock polyesters. Macromolecules 2006, 39, 46-54. 169. Mei, Y.; Kumar, A.; Gross, R. A., Kinetics and mechanism of CALB catalyzed solution polymerization of caprolactone. Macromolecules 2003, 36, 5530-5536. 170. Panova, A. A.; Kaplan, D. L., Mechanistic Limitation in the synthesis of polyester by lipase-catalyzed ring-opening polymerization. Biotechnol. Bioeng. 2003, 84, 103-113. 171. Kobayashi, S.; Uyama, H.; Namekawa, S.; Hayakawa, H., Enzymatic ringopening polymerization and copolymerization of 8-octanolide by lipase catalyst. Macromolecules 1998, 31, 5655-5659. 172. Runge, M.; O'Hagan, D.; Haufe, G., Lipase-catalyzed polymerization of fluorinated lactones and fluorinated hydroxycarboxylic acids J. Poly. Sci.: Poly. Chem. 2000, 38, 2004. 173. Uyama, H.; Takeya, K.; Kobayashi, S., Enzymatic ring-opening polymerization of lactones to polyesters by lipase catalyst: Unusually high reactivity of macrolides. Bull. Chem. Soc. Jpn. 1995, 68, 56-61. 174. Uyama, H.; Takeya, K.; Hoshi, N.; Kobayashi, S., Lipase-catalyzed ring-opening polymerization of 12-dodecanolide. Macromolecules 1995, 28, 7046-7050. 175. Uyama, H.; Kikuchi, H.; Takeya, K.; Kobayashi, S., Lipase-catalyzed ringopening polymerization and copolymerization of 15-pentadecanolide Acta Polym. 1996, 47, 357-360. 176. Bisht, K. S.; Henderson, L. A.; Gross, R. A.; Kaplan, D. L.; Swift, G., Enzymecatalyzed ring-opening polymerization of ω-pentadecalactone. Macromolecules 1997, 30, 2705-2711. 133 177. Kumar, A.; Kalra, B.; Dekhterman, A.; Gross, R. A., Macromolecules 2000, 33, 6303-6309. 178. Namekawa, S.; Uyama, H.; Kobayashi, S., Lipase-catalyzed ring-opening polymerization of 16-hexadecanolide. Proc. Japan Acad. Ser. B 1998, 74. 179. Kobayashi, S.; Uyama, H.; Kimura, S., Enzymatic polymerization. Chem. Rev. 2001, 101, 3793-3818. 180. Gross, R. A.; Kumar, A.; Kalra, B., Polymer synthesis by in vitro enzyme catalysis. Chem. Rev. 2001, 101, 2097-2124. 181. Doi, Y., Microbial polyester. VCH: New York, 1990. 182. Mobley, D. P., Plastics from microbes. Hanser: Munich, 1994. 183. Williams, S. F.; Martin, D. P. Therapeutic uses of polymers nd oligomers comprising gamma-hydroxybutyrate. US Patent 6623730, 2000. 184. Williams, S. F.; Martin, D. P.; Skraly, F. A. Medical devices and applications of polyhydroxyalkanoate polymers. US patent 7268205, 2000. 185. Lemoigne, M., CR Acad Sci 1925, 180, 1539-1541. 186. Lemoigne, M., Ann Inst Pasteur 1925, 39, 144. 187. Lemoigne, M., Bull Soc Chim Biol 1926, 8, 770-782. 188. Lemoigne, M., Ann Inst Pasteur 1926, 41, 148-165. 189. Williamson, D. H.; Wilkinson, J. F., J. Gen. Microbiol 1958, 19, 198-209. 190. Anderson, A. J.; Dawes, E. A., Microbiological Reviews 1990, 54, 450. 191. Holmes, P. A., Development in Crystalline Polymers. Elsevier: New York, 1988; Vol. 2. 192. Steinbuchel, A., Biomaterials. MacMillan: London, 1991. 193. Muller, H. M.; Seebach, D., Angew Chem. Int. Ed. 1993, 32, 477. 194. M. Avella, E. M. a. M. R., Review Properties of blends and composites based on poly(3-hydroxy)butyrate (PHB) and poly(3-hydroxybutyrate-hydroxyvalerate) (PHBV) copolymers Journal of Materials Science 2000, 35, (3), 523-545. 195. Barham, P. J.; Keller, A.; Otun, E. L.; Holmes, P. A., Crystallization and morphology of a bacterial thermoplastic: poly-3-hydroxybutyrate J. Mater. Sci. 1984, 19, 2781-2794. 196. Barham, P. J., Nucleation behaviour of poly-3-hydroxy-butyrate J. Mater. Sci. 1984, 19, 3826-3834. 197. Doi, Y., Microbial Polyester. VCH: New York 1990. 198. Doi, Y.; Kunioka, M.; Nakamura, Y.; Soga, K., Macromolecules 1986, 19, 1274. 199. Holmes, P. A., Phys. Technol. 1985, 16, 32-36. 200. Byrom, D., Trends Biotechnol. 1987, 5, 246-250. 201. Doi, Y.; Kunioka, M.; Nakamura, Y.; Soga, K., Biosynthesis of copolyesters in Alcaligenes eutrophus H16 From 13C labeled acetate and propionate. Macromolecules 1987, 20, 2988-2991. 202. Bloembergen, S.; Holden, D. A.; Hamer, G. K.; Bluhm, T. L.; Marchessault, R. H., Macromolecules 1986, 19, 2865-2871. 203. Holmes, P. A.; Wright, L. F.; Collins, S. H. EP 52495, 1982. 204. Doi, Y.; Tamaki, A.; Kunioka, M.; Soga, K., Appl. Microbio Biotechnol. 1988, 28, 330-334. 205. Doi, Y.; Tamaki, A.; Kunioka, M.; Soga, K., J. Chem. Soc., Chem. Commun. 1987, 1635-1636. 206. Owen, A. J., J. Colloid Polym. Sci. 1985, 263, 799. 134 207. Holmes, P. A., Development in Crystalline Polymers. Elsevier: London, 1988. 208. Mobley, D. P., Plastics from Microbes. Hanser: Munich 1994. 209. Williams, S. F. M., D. P.; Horowitz, D. M.; Peoples, O. P., PHA applications: addressing the price performance issue I. Tissue Engineering. Int. J. Biol. Macromol. 1999, 25, 111-121. 210. Chen, Q. W., Q., The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 2005, 26, 6565-6578. 211. Peng, T.; Gibula, P.; Yao, K. D.; Goosen, M. F. A., Role of polymers in improving the results of stenting in coronary arteries. Biomaterials 1996, 17, (7), 685-694. 212. Bar, F. W.; Vanoppen, J.; Deswart, H.; Vanommen, V.; Havenith, M.; Daemen, M.; Leenders, P.; Vanderveen, F. H.; Vanlankveld, M.; Verduin, M.; Braak, L.; Wolff, R.; Wellens, H. J. J., Percutaneous implantation of a new intracoronary stent in pigs. Am. Heart J. 1991, 122, (6), 1532-1541. 213. Serruys, P. W.; Strauss, B. H.; Vanbeusekom, H. M.; Vandergiessen, W. J., Stenting of coronary arteries - has a modern pandora box been opened. J. Am. Coll. Cardiol. 1991, 17, (6), B143-B154. 214. Mitchel, J. F.; Azrin, M. A.; Fram, D. B.; Schwedick, M. W.; Alberghini, T.; Waters, D. D.; McKay, R. G., Intramural deposition of urokinase at the angioplasty site comparative efficiency of systemic and local-drug delivery techniques. Circulation 1994, 90, (4), 20-20. 215. Agrawal, C. M.; Haas, K. F.; Leopold, D. A.; Clark, H. G., EVALUATION OF POLY(L-LACTIC ACID) AS A MATERIAL FOR INTRAVASCULAR POLYMERIC STENTS. Biomaterials 1992, 13, (3), 176-182. 216. Tan, L. P.; Venkatraman, S. S.; Joso, J. F. D.; Boey, F. Y. C., Collapse pressures of bilayered biodegradable stents. J. Biomed. Mater. Res. Part B 2006, 79B, (1), 102-107. 217. Clark, D. A., Coronary angioplasty. New York; Wiley-Liss Inc. 1991. 218. Hearn, J. A.; King, S. B.; Douglas, J. S.; Carlin, S. F.; Lembo, N. J.; Ghazzal, Z. M. B., Clinical and angiographic outcomes after coronary-artery stenting for acute or threatened closure after percutaneous transluminal coronary angioplasty - initial results with a balloon-expandable, stainless-steel design. Circulation 1993, 88, (5), 2086-2096. 219. Waller, B. F.; Orr, C. M.; Pinkerton, C. A.; Vantassel, J. W.; Pinto, R. P., Morphologic observations late after coronary balloon angioplasty - mechanisms of acute injury and relationship to restenosis. Radiology 1990, 174, (3), 961-967. 220. Hermans, W. R. M.; Foley, D. P.; Rensing, B. J.; Serruys, P. W., Morphologic changes during follow-up after successful percutaneous transluminal coronary balloon angioplasty - quantitative angiographic analysis in 778 lesions - further evidence for the restenosis paradox. Am. Heart J. 1994, 127, (3), 483-494. 221. Fischman, D. L.; Leon, M. B.; Baim, D. S.; Schatz, R. A.; Savage, M. P.; Penn, I.; Detre, K.; Veltri, L.; Ricci, D.; Nobuyoshi, M.; Cleman, M.; Heuser, R.; Almond, D.; Teirstein, P. S.; Fish, R. D.; Colombo, A.; Brinker, J.; Moses, J.; Shaknovich, A.; Hirshfeld, J.; Bailey, S.; Ellis, S.; Rake, R.; Goldberg, S., A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary-artery disease. N. Engl. J. Med. 1994, 331, (8), 496-501. 222. Lemos, P. A.; Mercado, N.; van Domburg, R. T.; Kuntz, R. E.; O'Neill, W. W.; Serruys, P. W., Comparison of late luminal loss response pattern after sirolimus-eluting stent implantation or conventional stenting. Circulation 2004, 110, (20), 3199-3205. 135 223. Lemos, P. A.; Serruys, P. W.; van Domburg, R. T.; Saia, F.; Arampatzis, C. A.; Hoye, A.; Degertekin, M.; Tanabe, K.; Daemen, J.; Liu, T. K. K.; McFadden, E.; Sianos, G.; Hofma, S. H.; Smits, P. C.; van der Giessen, W. J.; de Feyter, P. J., Unrestricted utilization of sirolimus-eluting stents compared with conventional bare stent implantation in the "real world" - the rapamycin-eluting stent evaluated at rotterdam cardiology hospital (RESEARCH) registry. Circulation 2004, 109, (2), 190-195. 224. Moses, J. W.; Leon, M. B.; Popma, J. J.; Fitzgerald, P. J.; Holmes, D. R.; O'Shaughnessy, C.; Caputo, R. P.; Kereiakes, D. J.; Williams, D. O.; Teirstein, P. S.; Jaeger, J. L.; Kuntz, R. E., Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N. Engl. J. Med. 2003, 349, (14), 1315-1323. 225. Stone, G. W.; Ellis, S. G.; Cox, D. A.; Hermiller, J.; O'Shaughnessy, C.; Mann, J. T.; Turco, M.; Caputo, R.; Bergin, P.; Greenberg, J.; Popma, J. J.; Russell, M. E., A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N. Engl. J. Med. 2004, 350, (3), 221-231. 226. Stone, G. W.; Moses, J. W.; Ellis, S. G.; Schofer, J.; Dawkins, K. D.; Morice, M.; Colombo, A.; Schampaert, E.; Grube, E.; Kirtane, A. J.; Cutlip, D. E.; Fahy, M.; Pocock, S. J.; Mehran, R.; Leon, M. B., Safety and efficacy of sirolimus- and paclitaxel-eluting coronary stents. N. Engl. J. Med. 2007, 356, (10), 998-1008. 227. Spaulding, C.; Daemen, J.; Boersma, E.; Cutlip, D. E.; Serruys, P. W., A pooled analysis of data comparing sirolimus-eluting stents with bare-metal stents. N. Engl. J. Med. 2007, 356, (10), 989-997. 228. Ong, A. T. L.; McFadden, E. P.; Regar, E.; de Jaegere, P. P. T.; van Domburg, R. T.; Serruys, P. W., Late angiographic stent thrombosis (LAST) events with drug-eluting stents. European Heart Journal 2005, 26, 640-640. 229. Ong, A. T. L.; McFadden, E. P.; Regar, E.; de Jaegere, P. P. T.; van Domburg, R. T.; Serruys, P. W., Late angiographic stent thrombosis (LAST) events with drug-eluting stents. Journal of the American College of Cardiology 2005, 45, (12), 2088-2092. 230. Iakovou, I.; Schmidt, T.; Bonizzoni, E.; Ge, L.; Sangiorgi, G. M.; Stankovic, G.; Airoldi, F.; Chieffo, A.; Montorfano, M.; Carlino, M.; Michev, I.; Corvaja, N.; Briguori, C.; Gerckens, U.; Grube, E.; Colombo, A., Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents. JAMA-J. Am. Med. Assoc. 2005, 293, (17), 2126-2130. 231. McFadden, E. P.; Stabile, E.; Regar, E.; Cheneau, E.; Ong, A. T. L.; Kinnaird, T.; Suddath, W. O.; Weissman, N. J.; Torguson, R.; Kent, K. M.; Pichard, A. D.; Satler, L. F.; Waksman, R.; Serruys, P. W., Late thrombosis in drug-eluting coronary stents after discontinuation of antiplatelet therapy. Lancet 2004, 364, (9444), 1519-1521. 232. Unger, F.; Westedt, U.; Hanefeld, P.; Wombacher, R.; Zimmermann, S.; Greiner, A.; Ausborn, M.; Kissel, T., Poly(ethylene carbonate): A thermoelastic and biodegradable biomaterial for drug eluting stent coatings? J. Control. Release 2007, 117, (3), 312-321. 233. Westedt, U.; Wittmar, M.; Hellwig, M.; Hanefeld, P.; Greiner, A.; Schaper, A. K.; Kissel, T., Paclitaxel releasing films consisting of poly(vinyl alcohol)-graft-poly(lactideco-glycolide) and their potential as biodegradable stent coatings. J. Control. Release 2006, 111, (1-2), 235-246. 234. Virmani, R.; Farb, A.; Guagliumi, G.; Kolodgie, F. D., Drug-eluting stents: caution and concerns for long-term outcome. Coronary Artery Dis. 2004, 15, (6), 313318. 136 235. Loh, X. J.; Sng, K. B. C.; Li, J., Synthesis and water-swelling of thermoresponsive poly(ester urethane)s containing poly(epsilon-caprolactone), poly(ethylene glycol) and poly(propylene glycol). Biomaterials 2008, 29, (22), 3185-3194. 236. Sokolowski, W.; Metcalfe, A.; Hayashi, S.; Yahia, L.; Raymond, J., Medical applications of shape memory polymers. Biomedical Materials 2007, 2, (1), S23-S27. 237. Metcalfe, A.; Desfaits, A. C.; Salazkin, I.; Yahia, L.; Sokolowski, W. M.; Raymond, J., Cold hibernated elastic memory foams for endovascular interventions. Biomaterials 2003, 24, (3), 491-497. 238. Metzger, M. F.; Wilson, T. S.; Schumann, D.; Matthews, D. L.; Maitland, D. J., Mechanical properties of mechanical actuator for treating ischemic stroke. Biomedical Microdevices 2002, 4, (2), 89-96. 239. Daniels, A. U.; Chang, M. K. O.; Andriano, K. P.; Heller, J., Mechanicalproperties of biodegradable polymers and composites proposed for internal-fixation of bone. Journal of Applied Biomaterials 1990, 1, (1), 57-78. 240. Lendlein, A.; Kelch, S., Shape-memory polymers as stimuli-sensitive implant materials. Clinical Hemorheology and Microcirculation 2005, 32, (2), 105-116. 241. Jeong, H. M.; Ahn, B. K.; Cho, S. M.; Kim, B. K., Water vapor permeability of shape memory polyurethane with amorphous reversible phase. J. Polym. Sci. Pt. B-Polym. Phys. 2000, 38, (23), 3009-3017. 242. Zia, K. M.; Barikani, M.; Zuber, M.; Bhatti, I. A.; Sheikh, M. A., Molecular engineering of chitin based polyurethane elastomers. Carbohydrate Polymers 2008, 74, (2), 149-158. 243. Jain, R. A., The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 2000, 21, (23), 2475-2490. 244. Abayasinghe, N. K.; Perera, K. P. U.; Thomas, C.; Daly, A.; Suresh, S.; Burg, K.; Harrison, G. M.; Smith, D. W., Amido-modified polylactide for potential tissue engineering applications. Journal of Biomaterials Science-Polymer Edition 2004, 15, (5), 595-606. 245. Domb, A. J. K., J.; Wiseman, D. M., Handbook of biodegradable polymers. 1997. 246. Lendlein, A.; Neuenschwander, P.; Suter, U. W., Hydroxy-telechelic copolyesters with well defined sequence structure through ring-opening polymerization. Macromolecular Chemistry and Physics 2000, 201, (11), 1067-1076. 247. Lang, M. D.; Wong, R. P.; Chu, C. C., Synthesis and structural analysis of functionalized poly (epsilon-caprolactone)-based three-arm star polymers. Journal of Polymer Science Part a-Polymer Chemistry 2002, 40, (8), 1127-1141. 248. Cordova, A.; Iversen, T.; Hult, K., Lipase-catalyzed formation of endfunctionalized poly(epsilon-caprolactone) by initiation and termination reactions. Polymer 1999, 40, (24), 6709-6721. 249. Kumar, A.; Gross, R. A., Candida antartica lipase B catalyzed polycaprolactone synthesis: Effects of organic media and temperature. Biomacromolecules 2000, 1, (1), 133-138. 250. Peeters, J. W.; van Leeuwen, O.; Palmans, A. R. A.; Meijer, E. W., Lipasecatalyzed ring-opening polymerizations of 4-substituted epsilon-caprolactones: Mechanistic considerations. Macromolecules 2005, 38, (13), 5587-5592. 251. Srivastava, R. K.; Albertsson, A. C., Enzyme-catalyzed ring-opening polymerization of seven-membered ring lactones leading to terminal-functionalized and triblock polyesters. Macromolecules 2006, 39, (1), 46-54. 137 252. Gross, R. A.; Kumar, A.; Kalra, B., Polymer synthesis by in vitro enzyme catalysis. Chemical Reviews 2001, 101, (7), 2097-2124. 253. Kobayashi, S.; Uyama, H.; Kimura, S., Enzymatic polymerization. Chemical Reviews 2001, 101, (12), 3793-3818. 254. Neffe, A. T.; Hanh, B. D.; Steuer, S.; Lendlein, A., Polymer networks combining controlled drug release, biodegradation, and shape memory capability. Advanced Materials 2009, 21, (32-33), 3394-+. 255. Robinson, T. M.; Kieswetter, K.; Mcnulty, A., System comprising drape, adhesive layer, and release agent, and method for healing wound at tissue site. US Patent No. 20090216170 2009. 256. Cheng, Y. T.; Ni, W.; Lukitsch, M. J.; Weiner, A. M.; Grummon, D. S., Selfhealing tribological surfaces on polymeric materials and metals. US Patent No. 20040202888, 2004. 257. Meng, B.; Wang, J.; Zhu, N.; Meng, Q. Y.; Cui, F. Z.; Xu, Y. X., Study of biodegradable and self-expandable PLLA helical biliary stent in vivo and in vitro. J. Mater. Sci.-Mater. Med. 2006, 17, (7), 611-617. 258. Sato, S.; Nakayama, Y.; Matsuhashi, T.; Seiji, K.; Matsunaga, K.; Takasawa, C.; Ishibashi, T.; Zhou, Y. M.; Ishibashi-Ueda, H.; Okamoto, Y.; Asano, H.; Takahashi, S., Evaluation of self-expandable, FK506-coated, covered stents in canine animal model. J. Biomed. Mater. Res. Part B 2009, 90B, (2), 647-652. 259. Behl, M.; Bellin, I.; Kelch, S.; Wagermaier, W.; Lendlein, A., One-step rrocess for creating triple-shape capability of AB polymer networks. Adv. Funct. Mater. 2009, 19, (1), 102-108. 260. Ying, T. H.; Ishii, D.; Mahara, A.; Murakami, S.; Yamaoka, T.; Sudesh, K.; Samian, R.; Fujita, M.; Maeda, M.; Iwata, T., Scaffolds from electrospun polyhydroxyalkanoate copolymers: Fabrication, characterization, bioabsorption and tissue response. Biomaterials 2008, 29, (10), 1307-1317. 261. Zhu, X. H.; Gan, S. K.; Wang, C. H.; Tong, Y. W., Proteins combination on PHBV microsphere scaffold to regulate Hep3B cells activity and functionality: A model of liver tissue engineering system. J. Biomed. Mater. Res. Part A 2007, 83A, (3), 606-616. 262. Nair, L. S.; Laurencin, C. T., Polymers as biomaterials for tissue engineering and controlled drug delivery. In Tissue Engineering I: Scaffold Systems for Tissue Engineering, Springer-Verlag Berlin: Berlin, 2006; Vol. 102, pp 47-90. 263. Channuan, W.; Siripitayananon, J.; Molloy, R.; Mitchell, G. R., Defining the physical structure and properties in novel monofilaments with potential for use as absorbable surgical sutures based on a lactide containing block terpolymer. Polymer 2008, 49, (20), 4433-4445. 264. Xue, L.; Dai, S. Y.; Li, Z., Synthesis and characterization of three-arm poly(epsilon-caprolactone)-based poly(ester-urethanes) with shape-memory effect at body temperature. Macromolecules 2009, 42, (4), 964-972. 265. Sun, H. F.; Mei, L.; Song, C. X.; Cui, X. M.; Wang, P. Y., The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials 2006, 27, (9), 1735-1740. 266. Hirt, T. D.; Neuenschwander, P.; Suter, U. W., Synthesis of degradable, biocompatible, and tough block-copolyesterurethanes. Macromol. Chem. Phys. 1996, 197, (12), 4253-4268. 138 267. Hirt, T. D.; Neuenschwander, P.; Suter, U. W., Telechelic diols from poly[(R)-3hydroxybutyric acid] and poly{[(R)-3-hydroxybutyric acid]-co-[(R)-3-hydroxyvaleric acid]}. Macromol. Chem. Phys. 1996, 197, (5), 1609-1614. 268. Dai, S. Y.; Li, Z., Enzymatic preparation of novel thermoplastic di-block copolyesters containing poly[(R)-3-hydroxybutyrate] and poly(epsilon-caprolactone) blocks via ring-opening polymerization. Biomacromolecules 2008, 9, (7), 1883-1893. 269. Timbart, L.; Amsden, B. G., Functionalizable biodegradable photocrosslinked elastomers based on 2-oxepane-1,5-dione. J. Polym. Sci. Pol. Chem. 2008, 46, (24), 8191-8199. 270. Lecomte, P.; Stassin, F.; Jerome, R., Recent developments in the ring-opening polymerization of epsilon-caprolactone and derivatives initiated by tin(IV) alkoxides. Macromol. Symp. 2004, 215, 325-338. 271. Dwan'Isa, J. P. L.; Lecomte, P.; Dubois, P.; Jerome, R., Synthesis and characterization of random copolyesters of epsilon-caprolactone and 2-oxepane-1,5-dione. Macromolecules 2003, 36, (8), 2609-2615. 272. Latere, J. P.; Lecomte, P.; Dubois, P.; Jerome, R., 2-oxepane-1,5-dione: A precursor of a novel class of versatile semicrystalline biodegradable (Co)polyesters. Macromolecules 2002, 35, (21), 7857-7859. 273. Miller, R.; Guo, Z.; Vogler, E. A.; Siedlecki, C. A., Plasma coagulation response to surfaces with nanoscale chemical heterogeneity. Biomaterials 2006, 27, (2), 208-215. 274. Ratcliffe, A., Tissue engineering of vascular grafts. Matrix Biology 2000, 19, (4), 353-357. 275. Xue, L.; Greisler, H. P., Biomaterials in the development and future of vascular grafts. Journal of Vascular Surgery 2003, 37, (2), 472-480. 276. Holmes, D. R.; Kereiakes, D. J.; Garg, S.; Serruys, P. W.; Dehmer, G. J.; Ellis, S. G.; Williams, D. O.; Kimura, T.; Moliterno, D. J., Stent thrombosis. Journal of the American College of Cardiology 56, (17), 1357-1365. 277. Garg, S.; Serruys, P. W., Coronary stents current status. Journal of the American College of Cardiology 56, (10), S1-S42. 278. Garg, S.; Serruys, P. W., Coronary stents looking forward. Journal of the American College of Cardiology 56, (10), S43-S78. 279. Okano, T.; Nishiyama, S.; Shinohara, I.; Akaike, T.; Sakurai, Y.; Kataoka, K.; Tsuruta, T., Effect of hydrophilic and hydrophobic microdomains on mode of interaction between polymer and blood-paltelet. Journal of Biomedical Materials Research 1981, 15, (3), 393-402. 280. Lelah, M. D.; Pierce, J. A.; Lambrecht, L. K.; Cooper, S. L., Polyether urethane ionomers - surface-property ex vivo blood copatibility relationships. Journal of Colloid and Interface Science 1985, 104, (2), 422-439. 281. Liu, L.; Guo, S. R.; Chang, J.; Ning, C. Q.; Dong, C. M.; Yan, D. Y., Surface modification of polycaprolactone membrane via layer-by-layer deposition for promoting blood compatibility. Journal of Biomedical Materials Research Part B-Applied Biomaterials 2008, 87B, (1), 244-250. 282. Behl, M.; Bellin, I.; Kelch, S.; Wagermaier, W.; Lendlein, A., Dual and triple shape capability of AB polymer networks based on poly(epsiloncaprolactone)dimethacrylates. In Advances in Material Design for Regenerative Medicine, Drug Delivery and Targeting/Imaging, Materials Research Society: Warrendale, 2009, 1140, 3-8. 139 283. Behl, M.; Lendlein, A., Triple-shape polymers. J. Mater. Chem. 2010, 20, (17), 3335-3345. 284. Bellin, I.; Kelch, S.; Langer, R.; Lendlein, A., Polymeric triple-shape materials. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, (48), 18043-18047. 285. Bellin, I.; Kelch, S.; Lendlein, A., Dual-shape properties of triple-shape polymer networks with crystallizable network segments and grafted side chains. J. Mater. Chem. 2007, 17, (28), 2885-2891. 286. Xie, T.; Xiao, X. C.; Cheng, Y. T., Revealing triple-shape memory effect by polymer bilayers. Macromol. Rapid Commun. 2009, 30, (21), 1823-1827. 140 LIST OF PUBLICATIONS L. Xue, S. Dai and Z. Li, Synthesis and characterization of three-arm poly(epsiloncaprolactone)-based poly(ester-urethanes) with shape-memory effect at body temperature. Macromolecules, 2009, 42(4) 964. L. Xue, S. Dai and Z. Li, Biodegradable shape-memory block co-polymers for fast self-expandable stents. Biomaterials, 2010, 31, 8132. L. Xue, S. Dai and Z. Li, Evaluation of biodegradable shape-memory polymers as full polymeric and self-expandable drug-eluting stent. (Submitted to Adv. Func. Mat.) S. Dai, L. Xue, Z, Manfred, Z. Li, Enzyme-catalyzed polycondensation of polyester macrodiols with divinyl adipate: a green eethod for the preparation of thermoplastic block copolyesters. Biomacromolecules, 2009, 10(12), 3176. 141 [...]... properties of PCTBVs and PCDBVs xi Table 5.2 Shape- Memory Properties of PCTBVs and PCDBVs Determined by Cyclic Thermomechanical Tensile Test Table 6.1 The reaction condition and results of the preparation of poly(2-oxepane-1,5dione)-diol Table 6.2 Molecular weight and thermal properties of PCTOPD Table 6.3 The mechanical and shape- memory property of PCTOPDs xii LIST OF SCHEMES Scheme 2.1 Reaction routes for. .. The prepared three-arm biodegradable shape- memory polymers with switching temperature at body temperature are potentially useful materials for biomedical applications Expecially, due to their good shape- memory property and fast shape- recovery, these SMPs could be used as fast selfexpandable stents For the application as fast self-expandable stent, novel block co -polymers PCLtriol-co-PHBV PU (PCTBVs)... and desired thermal properties are prepared from the enzymatic syntheses Novel poly(ester–urethanes) are then synthesized from three-arm PCL-troil The effect of switching segment (PCL-triol) on the thermal, mechanical and shape- memory properties of SMPs is examined The characterization of polymers structure, thermal, and mechanical properties, and the investigation of shapememory behavior of star polymers. .. temperature (Ts) of tPCL-PUs could be adjusted by using PCL-triols with different Tm Ts of 36-39 oC was achieved by using PCL-triols with Tm of 45-47 oC and Mn of 2720-4200 g/mol Excellent shape- memory properties of tPCL-PU were demonstrated in cyclic thermomechanical tensile tests at 38 oC, with shape recovery in 10 second, shape fixity rate (Rf) of 91-92%, shape recovery rate (Rf) of 95-99% The prepared... The drug release profiles of paclitexal from PCTOPD stents The biodegradable and self-expandable chitosan material was used to make sirolimus-eluting stent with 2.5 wt% of sirolimus Figure 6.11 Compression curve for stent from PCTOPD-27 with the thickness of 0.22 mm and out diameter of 3.45 mm x LIST OF TABLES Table 1.1 Comparison of the properties of SMPs with SMAs Table 2.1 Overview of chemically cross-linked... demanding processing and traditional conditions,14 appreciable toxicity15, 16 and non- biodegradability This provides motivation for the development of alternative shapememory materials 1.2 Shape- memor y polymer s The most important alternative is shape- memory polymers (SMPs) The first SMP was developed by CDF Chimie Company in the mid of 1980s.17 Later on, tremendous attraction and efforts have been paid... combination of overall polymer structure and morphology together with a tailored programming technology Therefore, the shape- memory performance not only depends 2 on the molecular structure but also on the mode of deformation as well as the programming of stimulus application process The shape- change process, shown in Figure 1.1, includes: i) the original shape A of SMP is formed by traditional process, extruding... especially in biomedical fields Figure 1.1 A simplified scheme for shape- changes of SMP from deformation to recovery upon application of external stimulus 1.3 Ther mally-induced shape- memor y polymer s Polymers, exhibiting shape- memory effect, are classified into physically crosslinked thermoplastics and chemically cross-linked thermosets Since chemically crosslinked thermosets are unable to be reshaped after... elastic memory of materials For this reason, SMPs should be the most promising materials because SMPs exhibit very good elastic memory and can complete shape changes within a minute Thus far, no biodegradable SMP for the reponse at body temperatue has been reported for such application New SMPs containing hyperbranched PCL and PHBC may be prepared for such application 1.7 Biodegr adable SMP as self-expandable... shape- memory property from the phase separation between the hard and the switching segements, which also leads to the property related to blood compatibility Thus, the studing of shapememory segmented polyurethane for various biomedical applications becomes more and more meaningful and important In this sense, the aim of this PhD project is to develop multifunctional SMPs, combining thermoplastic and . DESIGNING AND SYNTHESIS OF SHAPE- MEMORY POLYMERS FOR BIOMEDICAL APPLICATION XUE LIANG NATIONAL UNIVERSITY OF SINGAPORE 2010 DESIGNING AND SYNTHESIS OF SHAPE- MEMORY. biomaterials in biomedical applications 31 2.9 Application of SMPs 31 2.9.1 The application of SMPs as smart suture 32 2.9.2 The application of SMPs as stent 33 2.9.3 The application of SMPs as. EVALUATION OF BIODEGREDADABLE SHAPE- MEMORY POLYMERS AS FULL POLYMERIC AND SELF- EXPANDABLE DRUG-ELUTING STENT 95 vi 6.1 Introduction 95 6.2 Materials and methods 98 6.2.1 Synthesis of 2-Oxepane-1,5-dione

Ngày đăng: 11/09/2015, 09:58

Xem thêm: Designing and synthesis of shape memory polymers for biomedical application

TỪ KHÓA LIÊN QUAN

Mục lục

    1.4 SMPs with PCL as switching segment and polyurethane as hard segment

    1.5 SMPs with PCL as switching segment and macrodiol as hard segment

    1.6 Biodegradable SMP as fast self-expandable stent

    1.7 Biodegradable SMP as self-expandable drug-eluting stent

    2.1 Parameters for Characterization of Shape-Memory Properties

    2.2 Indirect Actuation of Thermally-Induced SMPs

    2.3 Direct Actuation of Thermally-Induced SMPs

    2.4.1 Tg-dependent chemically cross-linked SMPs

    2.4.2 Tm-dependent chemically cross-linked SMPs

    2.5.2 Tm-dependent physically cross-linked SMPs

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN