1. Trang chủ
  2. » Luận Văn - Báo Cáo

Complexation, dynamics and rheology of vesicles and polymers

168 130 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 168
Dung lượng 3,3 MB

Nội dung

COMPLEXATION, DYNAMICS AND RHEOLOGY OF VESICLES AND POLYMERS CHIENG YU YUAN NATIONAL UNIVERSITY OF SINGAPORE 2010 COMPLEXATION, DYNAMICS AND RHEOLOGY OF VESICLES AND POLYMERS CHIENG YU YUAN (B.Eng., M.Eng.(Hons.), Universiti Teknologi Malaysia) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMICAL AND BIOMOLECULAR ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2010 Acknowledgements ACKNOWLEDGEMENTS In the first place, I owe my deepest gratitude to my principal investigator, Professor Chen Shing Bor for his supervision, guidance and fruitful discussions that have been invaluable to me throughout my graduate study. His ideas, passions in research and constructive comments always have been of great value for me. This thesis would not have been possible without his tireless effort, encouragement and ongoing support. I am also grateful to my oral qualifying examiners, Professor Hong Liang and Professor Lanry Yung Lin Yue for their detailed reviews, constructive criticisms and excellent advices to this study. My warmest thanks go to my lab mates and friends for giving me such a pleasant time when working together with them as a postgraduate research student. My sincere appreciation also extends to all the lab technologists for their indispensable help and untiring technical assistance in this project. Furthermore, the financial support from the National University of Singapore is gratefully acknowledged. Last but not least, I would like to express my heartfelt gratitude to all my beloved family members (Chieng Sie Lung, Ho Lien Hsi, Ong Chin Kiat, Chieng Yu Ding, Chieng Yu Ling and Chieng Yu Siang) for their enduring love, concern and understanding. Their encouragement and moral support make me courageous enough to complete my research study. i Table of Contents TABLE OF CONTENTS Page ACKNOWLEDGEMENTS i TABLE OF CONTENTS ii SUMMARY v LIST OF TABLES vii LIST OF FIGURES viii NOMENCLATURE xiii CHAPTER Introduction to Phospholipid Vesicles and Polymers 1.1 Phospholipid Vesicles 1.2 Polymers 1.3 Objectives and Significance of the Study 1.4 Thesis Organization 10 CHAPTER Materials and Methods 2.1 Phospholipids 11 2.2 Polymers 12 2.2.1 Pluronic triblock copolymers 12 2.2.2 Poly(acrylic acid) 13 2.2.3 Hydrophobically modified hydroxyethyl cellulose 14 2.2.4 Poly(diallydimethylammonium chloride) 15 2.3 Others 16 2.4 Experimental Methods 16 2.4.1 Preparation of polymer solution 16 2.4.2 Preparation of phospholipid vesicles-polymer solution 18 ii Table of Contents 2.4.3 Dynamic light scattering (DLS) 19 2.4.4 Zeta potential 19 2.4.5 Differential scanning calorimetry (DSC) 20 2.4.6 Fluorescence microscopy 21 2.4.7 Rheometry 21 2.4.8 UV-visible spectrophotometer 22 CHAPTER Interactions and Complexation of Phospholipid Vesicles and Triblock Copolymers 3.1 Research Background 23 3.2 Results and Discussion 26 3.2.1 DLS for unilamellar vesicle-Pluronic F-127 system 26 3.2.2 DLS for unilamellar vesicle-Pluronic L-61 system 32 3.2.3 DSC and fluorescence microscopy for multilamellar vesiclePluronic F-127 system 34 3.2.4 DSC and fluorescence microscopy for multilamellar vesiclePluronic L-61 system 42 3.2.5 Rheological properties of multilamellar vesicle-Pluronic System 3.3 Conclusions CHAPTER 47 51 Interaction between Poly(acrylic acid) and Phospholipid Vesicles: Effect of pH, Concentration and Molecular Weight 4.1 Research Background 52 4.2 Results and Discussion 54 4.2.1 High molecular weight PAA (450,000 g/mol) 54 4.2.2 Low molecular weight PAA (2,000 g/mol) 65 iii Table of Contents 4.3 Conclusions CHAPTER 73 Rheological Study of Hydrophobically Modified Hydroxylethyl Cellulose and Phospholipid Vesicles 5.1 Research Background 75 5.2 Results and Discussion 78 5.2.1 Rheological behavior of HMHEC solution 78 5.2.2 Viscosity behavior of HMHEC-phospholipid vesicles solution 80 5.3 5.2.3 Dynamic behavior of HMHEC-phospholipid vesicles solution 94 Conclusions 100 CHAPTER Complexation of Cationic Polyelectrolyte with Anionic Phospholipid Vesicles: Concentration, Molecular Weight, and Salt Effects 6.1 Research Background 101 6.2 Results and Discussion 104 6.2.1 Effect of PDADMAC concentration and molecular weight 104 6.2.2 Effect of salt concentration 117 Conclusions 121 6.3 CHAPTER Conclusions and Recommendations 7.1 Conclusions 122 7.2 Recommendations 128 References 131 iv Summary SUMMARY To elucidate the complexation and interaction mechanism between phospholipid vesicle and four polymers of interest (Pluronic, poly(acrylic acid), hydrophobically modified hydroxyethyl cellulose and poly(diallyldimethylammonium chloride), we studied the physical, thermotropic, phase behavior and rheological properties of the mixture solutions using different methods of characterization. Firstly, interactions and complexation between phospholipid vesicle and triblock copolymers were investigated for a wide range of Pluronic concentrations (015wt%). At low concentrations, Pluronic F-127 and L-61 monomers were incorporated into the lipid bilayers. Results showed that Pluronic L-61 interacts more strongly with phospholipid vesicles than F-127. By further increasing the concentrations to the CMC, Pluronics solubilize parts of the vesicles into small bilayer disks and patches. For high concentrations, F-127 forms mixed micelles with solubilized lipid molecules in the form of bilayer patches. The presence of these bilayer patches within the F-127 gel at high enough temperature can considerably increase the F-127 viscosity and both storage and loss moduli properties. In contrast, more hydrophobic L-61 tends to precipitate with the solubilized lipids as large crewcut mixed aggregates. Secondly, we studied the interaction between poly(acrylic acid) and phospholipid vesicle by manipulating the polymer concentration, molecular weight and medium pH. Hydrogen bonding between PAA and vesicle is the major associative interaction under acidic conditions. PAA adsorbed on the vesicles surfaces and increased the cooperativity of the lipid acyl chains at very low concentrations. By increasing the PAA concentrations, high molecular weight PAA induced vesicles v Summary aggregation while low molecular weight PAA showed hydrophobic attraction with phospholipid vesicles. At high enough concentrations, high molecular weight PAA can completely disrupt the lipid bilayers. In contrast, low molecular weight PAA leads to vesicle aggregation without destroying the bilayers. At alkaline pH, complexation did not occur because of strong dissociation of carboxyl groups of PAA. Thirdly, we explored the rheological behavior of phospholipid vesicle and hydrophobically modified hydroxyethyl cellulose. Two HMHEC concentrations at 0.3wt% (semidilute) and 0.7wt% (concentrated) were investigated as a function of lipid species and concentration. Results demonstrated that HMHEC and phospholipid vesicle mixture viscosity could be enhanced by more than one order of magnitude for sonicated samples at certain lipid concentrations, compared to a pure HMHEC solution. The viscosity first increases with the lipid concentration and then decreases. Besides, the lipid addition increases the plateau modulus. Direct bridging and indirect linking associations interconnect the vesicles and contribute to the viscosity enhancement. Finally, the interaction behavior between cationic PDADMAC and anionic DPPG vesicle was examined. PDADMAC can bind electrostatically to the vesicle to compensate, neutralize and reverse the vesicular charge, depending on the molar ratio of cationic to anionic group, R. For R1, charge reversal took place, the complex size reduced. Although the thermal behavior was nearly independent of the polymer molecular weight, the complex morphology is different. vi List of Tables LIST OF TABLES Table Title Page Table 3.1 Thermal data for DPPC vesicles modified by F-127 35 Table 3.2 Thermal data for DPPC vesicles modified by L-61 44 Table 4.1 Thermal data and pH for DPPC and PAA (450,000g/mol) 55 Table 4.2 Thermal data and pH for DPPC and PAA (2,000g/mol) 67 Table 5.1 Effect of EPC concentrations on the viscoelastic properties of 0.7wt% HMHEC at 10C 98 Table 5.2 Rheological data of HMHEC with addition of phospholipid vesicles 99 Table 6.1 DSC thermal data for DPPG with high and very low molecular weight PDADMAC 107 vii List of Figures LIST OF FIGURES Figure Title Page Figure 2.1 Molecular structures of (a) EPC, (b) DPPC, and (c) DPPG phospholipids 12 Figure 2.2 Chemical structure of Pluronic (x, PEO portion; y, PPO portion) 13 Figure 2.3 Molecular structure of poly(acrylic acid) 14 Figure 2.4 Molecular structure of hydrophobically modified hydroxyethyl cellulose 15 Figure 2.5 Molecular structure of poly(diallyldimethylammonium chloride) 15 Figure 3.1 Hydrodynamic diameter of large unilamellar vesicles with addition of F-127 28 Figure 3.2 Size distribution of EPC vesicles with varying concentration of F-127 29 Figure 3.3 Hydrodynamic diameter of large unilamellar vesicles with addition of Triton X-100 31 Figure 3.4 Hydrodynamic diameter of large unilamellar vesicles with addition of L-61 33 Figure 3.5 DSC thermogram of DPPC vesicles at different F-127 concentrations: (a) 0.0, (b) 0.02, (c) 0.04, (d) 0.1, (e) 0.3, (f) 0.5, (g) 0.7, (h) 1.0, (i) 5.0, (j) 10.0, and (k) 15.0wt% 37 Figure 3.6 HHW of the main phase transition peak vs F-127 concentration (0-15wt%). 38 Figure 3.7 Schematic diagram of interaction mechanisms of low and high concentrations of Pluronic F-127 and L-61 with phospholipid vesicles 39 Figure 3.8 Fluorescence image of DPPC vesicles at different F-127 concentrations: (a) 0.0, (b) 0.02, (c) 0.3, (d) 0.7, (e) 5.0, and (f) 10.0wt%. Bar = 100 μm. Magnification = 200 41 Figure 3.9 DSC thermogram of DPPC vesicles at different L-61 concentrations: (a) 0.0, (b) 0.02, (c) 0.04, (d) 0.1, (e) 0.3, (f) 0.5, (g) 0.7, (h) 1.0, (i) 5.0, (j) 10.0, and (k) 15.0wt% 43 viii References Escobar-Chávez, J. J., Lopez-Cervantes, M., Naik, A., Kalia, Y. N., QuintanarGuerrero, D. and A. Ganem-Quintanar. Applications of Thermo-Reversible Pluronic F-127 Gels in Pharmaceutical Formulations, J. Pharm. Pharmaceut Sci., 9, pp.339-358. 2006. Erukova, V. Yu., Krylova, O. O., Antonenko, N. Y. and N. S. Melik-Nubarov. Effect of Ethylene Oxide and Propylene Oxide Block Copolymers on the Permeability of Bilayer Lipid Membranes to Small Solutes Including Doxorubicin, Biochim. Biophys. Acta, 1468, pp.73-86. 2000. Exner, A. A., Krupka, T. M., Scherrer, K. and J. M. Teets. Enhancement of Carboplatin Toxicity by Pluronic Block Copolymers, J. Controlled Release, 106, pp.188-197. 2005. Fan, M., Xu, S., Xia, S. and X. Zhang. Effect of Different Preparation Methods on Physicochemical Properties of Salidroside Liposomes, J. Agric. Food Chem., 55, pp.3089-3095. 2007. Fang, N., Tan, W. J., Leong, K. W., Mao, H. Q. and V. Chan. pH Responsive Adhesion of Phospholipid Vesicle on Poly(acrylic acid) Cushion Grafted to Poly(ethylene terephthalate) Surface, Colloids Surf. B: Biointerfaces, 42, pp.245-252. 2005. Filippov, A., Suleymanova, A. and A. Berkovich. Effect of Polyacrylic Acid on Phase State of Lipids and Diffusion in Lipid-Water System, Appl. Magn. Reson., 33, pp.311-322. 2008. Foissy, A., Attar, A. E. and J. M. Lamarche. Adsorption of Polyacrylic Acid on Titanium Dioxide, J. Colloid Interface Sci., 96, pp.275-287. 1983. Fu, Y., Chen, H., Bai, S., Huo, F., Wang, Z. and X. Zhang. Base-Induced Release of Molecules from Hydrogen Bonding Directed Layer-By-Layer Film, Chinese. J. Polym. Sci., 21, pp.499-503. 2003. Fujiwara, M., Grubbs, R. H. and J. D. Baldeschwieler. Characterization of pHDependent Poly(acrylic Acid) Complexation with Phospholipid Vesicles, J. Colloid Interface Sci., 185, pp.210-216. 1997. Fukuda, K., Ohshima, H. and T. Kondo. Stability of Polymer-Complexed Phospholipid Vesicles, J. Colloid Interface Sci., 123, pp.442-447. 1988. 136 References Garidel, P., Johann, C., Mennicke, L. and A. Blume. The Mixing Behavior of Pseudobinary Phosphatidylcholine-Phosphatidylglycerol Mixtures as A Function of pH and Chain Length, Eur. Biophys. J., 26, pp.447-459. 1997. Gaucher, G., Dufresne, M. H., Sant, V. P., Kang, N., Maysinger, D. and J. C. Leroux. Block Copolymer Micelles: Preparation, Characterization and Application in Drug Delivery, J. Controlled Release, 109, pp.169-188. 2005. Ge, L., Möhwald, H. and J. Li. Phospholipid Liposomes Stabilized by the Coverage of Polyelectrolyte, Colloids Surf. A.: Physicochem. Eng. Asp., 221, pp.49-53. 2003. Gilbert, J. C., Richardson, J. L., Davies, M. C., Palin, K. J. and J. Hadgraft. The Effect of Solutes and Polymers on the Gelation Properties of Pluronic F-127 Solutions for Controlled Drug Delivery, J. Controlled Release, 5, pp.113-118. 1987. Goddard, E. D. Polymer/Surfactant Interaction: Interfacial Aspects, J. Colloid Interface Sci., 256, pp.228-235. 2002. Grassi, G., Crevatin, A., Farra, R., Guarnieri, G., Pascotto, A., Rehimers, B., Lapasin, R. and M. Grassi. Rheological Properties of Aqueous Pluronic-Alginate Systems Containing Liposomes, J. Colloid Interface Sci., 301, pp.282-290. 2006. Hayashi, H., Kono, K. and T. Takagishi. Temperature-Controlled Release Property of Phospholipid Vesicles Bearing A Thermo-Sensitive Polymer, Biochim. Biophys. Acta, 1280, pp.127-134. 1996. Hellweg, T., Brûlet, A., Lapp, A., Robertson, D. and J. Kötz. Temperature and Polymer Induced Structural Changes in SDS/Decanol Based Multilameller Vesicles, Phys. Chem. Chem. Phys., 4, pp.2612-2616. 2002. Hinderberger, D., Jeschke, G. and H. W. Spiess. Network Formation Involving Polyelectrolytes in Solution: The Role of Counterions, Colloid Polym. Sci., 282, pp.901-909. 2004. Hosoda, K., Sunami, T., Kazuta, Y., Matsuura, T., Suzuki, H. and T. Yomo. Quantitative Study of the Structure of Multilamellar Giant Liposomes as a Container of Protein Synthesis Reaction, Langmuir, 24, pp.13540-13548. 2008. Hrubý, M., Koňáck, C. and K. Ulbrich. Polymeric Micellar pH-Sensitive Drug Delivery System, J. Controlled Release, 103, pp.137-148. 2005. 137 References Huang, C. Empirical Estimation of the Gel to Liquid-Crystalline Phase Transition Temperatures for Fully Hydrated Saturated Phosphatidylcholines, Biochemistry, 30, pp.26-30. 1991. Huh, K. M., Min, H. S., Lee, S. C., Lee, H. J., Kim, S. W. and K. Park. A New Hydrotropic Block Copolymer Micelle System for Aqueous Solubilization of Paclitaxel, J. Controlled Release, 126, pp.122-129. 2008. Iliopoulos, I., Halary, J. L. and R. Audebert. Polymer Complexes Stabilized through Hydrogen Bonds. Influence of Structure Defects on Complex Formation: Viscometry and Fluorescence Polarization Measurements, J. Poly. Sci. Part A, 26, pp.275-284. 1988. Inoue, T., Yamahata, T. and R. Shimozawa. Systematic Study on the Solubilization of Phospholipid Vesicles by Various Surfactants, J. Colloid Interface Sci., 149, pp.345358. 1992. Jain, P., Jain, S., Prasad, K. N., Jain, S. K. and S. P. Vyas. Polyelectrolyte Coated Multilayered Liposomes (Nanocapsules) for the Treatment of Helicobacter Pylori Infection, Mol. Pharm., 6, pp.593-603. 2009. Jamshaid, M., Farr, S. J., Kearney, P. and I. W. Kellaway. Poloxamer Sorption on Liposomes: Comparison with Polystyrene Latex and Influence on Solute Efflux, Int. J. Pharm. 48, pp.125-131. 1988. Jin, S., Liu, M., Chen, S. and Y. Chen. Complexation between Poly(acrylic acid) and Poly(vinylpyrrolidone): Influence of the Molecular Weight of Poly(acrylic acid) and Small Molecule Salt on the Complexation, Eur. Polym. J., 41, pp.2406-2415. 2005. Jing, W., Hunter, H. N., Hagel, J. and H. J. Vogel. The Structure of the Antimicrobial Peptide Ac-RRWWRF-NH2 Bound to Micelles and Its Interactions with Phospholipid Bilayers, J. Peptide Res., 61, pp.219-229. 2003. Johnsson, M., Silvander, M., Karlsson, G. and K. Edwards. Effect of PEO-PPO-PEO Triblock Copolymers on Structure and Stability of Phosphatidylcholine Liposomes, Langmuir, 15, pp.6314-6325. 1999. Kabanov, A. V., Batrakova, E. V. and V. Y. Alakhov. Pluronic Block Copolymers As Novel Polymer Therapeutics for Drug and Gene Delivery, J. Controlled Release, 82, pp.189-212. 2002a. 138 References Kabanov, A. V., Batrakova, E. V. and V. Y. Alakhov. Pluronic Block Copolymers for Overcoming Drug Resistance in Cancer, Adv. Drug Delivery Rev., 54, pp.759-779. 2002b. Karlson, L., Joabsson, F. and K. Thuresson. Phase Behavior and Rheology in Water and in Model Paint Formulations Thickened with HM-EHEC: Influence of The Chemical Structure and The Distribution of Hydrophobic Tails, Carbohydr. Polym., 41, pp.25-35. 2000. Kayitmazer, A. B., Shaw, D. and P. L. Dubin. Role of Polyelectrolyte Persistence Length in the Binding of Oppositely Charged Micelles, Dendrimers, and Protein to Chitosan and Poly(dimethyldiallyammonium chloride), Macromolecules, 38, pp.5198-5204. 2005. Kitano, H., Akatsuka, Y. and N. Ise. pH-Responsive Liposomes Which Contain Amphiphiles Prepared by Using Lipophilic Radical Initiator, Macromolecules, 24, pp.42-46. 1991. Kodama, M. and T. Miyata. Effect of Na+ Concentrations on Both Size and Multiplicity of Multilamellar Vesicles Composed of Negatively Charged Phospholipid as Revealed by Differential Scanning Calorimetry and Electron Microscopy, Thermochim. Acta, 267, pp.365-372. 1995. Könczöl, F., Farkas, N., Dergez, T., Belágyi, J. and D. Lörinczy. Effect of Tetracaine on Model and Erythrocyte Membranes by DSC ad EPR, J. Therm. Analy. Cal., 82, pp.201-206. 2005. Kostarelos, K., Luckham, P. F. and Th. F. Tadros. Addition of Block Copolymers to Liposomes Prepared Using Soybean Lecithin. Effects on Formation, Stability and the Specific Localization of the Incorporated Surfactants Investigated, J. Lip. Res., 5, pp.117-130. 1995. Kostarelos, K., Luckham, P. F. and Th. F. Tadros. Addition of (Tri-) Block Copolymers to Phospholipid Vesicles: A Study of The Molecular Morphology and Structure by Using Hydrophobic Dye Molecules as Bilayer Probes, J. Colloid Inteface Sci., 191, pp.341-348. 1997. Kostarelos, K., Tadros, Th. F. and P. F. Luckham. Physical Conjugation of (Tri-) Block Copolymers to Liposomes Toward The Construction of Sterically Stabilized Vesicle Systems, Langmuir, 15, pp.369-376. 1999. 139 References Kötz, J., Tiersch, B. and I. Bogen. Polyelectrolyte-Induced Vesicle Formation in Lamellar Liquid-Crystalline Model Systems, Colloid Polym. Sci., 278, pp.164-168. 2000. Kragh-Hansen, U., Maire, M. L.and J. V. Møller. The Mechanism of Detergent Solubilization of Liposomes and Protein-Containing Membranes, Biophys. J., 75, pp.2932-2946. 1998. Kresheck, G. C., Kale, K. and M. D. Vallone. Calorimetric Studies of the Interaction between Asolectin Vesicles and Surfactants, J. Colloid Interface Sci., 73, pp.460-466. 1980. Krylova, O. O., Melik-Nubarov, N. S., Badun, G. A., Ksenofontov, A. L., Menger, F. M. and A. A. Yaroslavov. Pluronic L61 Accelerates Flip-Flop and Transbilayer Doxorubicin Permeation, Chem. Eur. J., 9, pp.3930-3936. 2003. Kučerka, N., Nagle, J. F., Sachs, H. N., Feller, S. E., Pencer, J., Jackson, A. and J. Katsaras. Lipid Bilayer Structure Determined by the Simultaneous Analysis of Neutron and X-Ray Scattering Data, Biophys. J., 95, pp.2356-2367. 2008. Kwak, J. C. T. Polymer-Surfactant System: Surfactant Science Series 77. pp. 1-482, New York: Marcel Dekker. 1998. Kwon, K. O., Kim, M. J., Abe, M., Ishinomori, T. and K. Ogino. Thermotropic Behavior of a Phospholipid Bilayer Interacting with Metal Ions. Langmuir, 10, pp.1415-1420. 1994. Ladavière, C., Dörr, N. and J. Claverie. Controlled Radical Polymerization of Acrylic Acid in Protic Media, Macromolecules, 34, pp.5370-5372. 2001. Lasic, D. D. and D. Needham. The “Stealth” Liposome: A Prototypical Biomaterial, Chem. Rev., 95, pp.2601-2628. 1995. Lasonder, E. and W. D. Weringa. An NMR and DSC Study of the Interaction of Phospholipid Vesicles with Some Anti-Inflammatory Agents, J. Colloid Interface Sci., 139, pp.469-478. 1990. Lau, A., Mclaughlin, A. and S. Mclaughlin. The Adsorption of Divalent Cations to Phosphatidylglycerol Bilayer Membranes, Biochim. Biophys. Acta, 345, pp.279-292. 1981. 140 References Lee, C. T., Smith, K. A. and T. A. Hatton. Photoreversible Viscosity Changes and Gelation in Mixtures of Hydrophobically Modified Polyelectrolytes and Photosensitive Surfactants, Macromolecules, 37, pp.5397-5405. 2004. Lee, H. S., Kim, K., Jeong, B. H., Moon, H. T. and Y. Byun. Stability of Poly(Acrylic Acid)-Grafted Phospholipid Liposomes in Gastrointestinal Conditions, Drug Development Res., 61, pp.13-18. 2004. Lee, J. H., Gustin, J. P., Chen, T., Payne, G. F. and S. R. Raghavan. VesicleBiopolymer Gels: Networks of Surfactant Vesicles Connected by Associating Biopolymers, Langmuir, 21, pp.26-33. 2005. Lefay, C., Belleney, J., Charleux, B., Guerret, O. and S. Magnet. End-Group Characterization of Poly(acrylic acid) Prepared by Nitroxide-Mediated Controlled Free-Radical Polymerization, Macromol. Rapid Commun., 25, pp.1215-1220. 2004. Lenaerts, V., Triqueneaux, C., Quarton, M., Rieg-Falson, F. and P. Couvreur. Temperature-Dependent Rheological Behavior of Pluronic F-127 Aqueous Solutions, Int. J. Pharm., 39, pp.121-127. 1987. Li, L. and Y. L. Hsieh. Ultra-fine Polyelectrolyte Fibers from Electrospinning of Poly(acrylic acid), Polymer, 46, pp.5133-5139. 2005. Li, Y., Dubin, P. L., Dautzenberg, H., Luck, U., Hartmann, J. and Z. Tuzar. Dependence of Structure of Polyelectrolyte Micelle Complexes upon Polyelectrolyte Chain Length and Micelle Size, Macromolecules, 28, pp.6795-6798. 1995. Li, Y., Xia, J. and P. L. Dubin. Complex Formation between Polyelectrolyte and Oppositely Charged Mixed Micelles: Static and Dynamic Light Scattering Study of the Effect of Polyelectrolyte Molecular Weight and Concentration, Macromolecules, 27, pp.7049-7055. 1994. Liang, X., Mao, G. and K. Y. S. Ng. Mechanical Properties and Stability Measurements of Cholesterol-Containing Liposome on Mica by Atomic Force Microscopy, J. Colloid Interface Sci., 278, pp.53-62. 2004. Liang, X. M., Mao, G. Z. and K. Y. S. Ng. Effect of Chain Lengths of PEO-PPO-PEO on Small Unilamellar Liposome Morphology and Stability: An AFM Investigation, J. Colloid Interface Sci., 285, pp.360-372. 2005. 141 References Lichtenberg, D. Characterization of the Solubilization of Lipid Bilayers by Surfactants, Biochim. Biophys. Acta, 821, pp.470-478. 1985. Lichtenberg, D., Robson, R. J. and E. A. Dennis. Solubilization of Phospholipids by Detergents Structural and Kinetic Aspects, Biochim. Biophys. Acta, 737, pp.285-304. 1983. Linhardt, J. G. and D. A. Tirrell. pH-Induced Fusion and Lysis of Phosphatidylcholine Vesicles by The Hydrophobic Polyelectrolyte Poly(2ethylacrylic Acid), Langmuir, 16, pp.122-127. 2000. Liu, J. and C. Allen. Polymeric Nanocarriers: Delivery Technology for Therapies of the 21st Century. The Drug Delivery Companies Report Autumn/Winter 2003, PharmaVentures Ltd. 2003. Liufu, S. C., Xiao, H. N. and Y. P. Li. Adsorption of Poly(acrylic acid) onto the Surface of Titanium Dioxide and the Colloidal Stability of Aqueous Suspension, J. Colloid Interface Sci., 281, pp.155-163. 2005. Loh, X. J., Goh, S. H. and J. Li. New Biodegradable Thermogelling Copolymers Having Very Low Gelation Concentrations, Biomacromolecules, 8, pp.585-593. 2007. Loiseau, J., Doërr, N., Suau, J. M., Egraz, J. B., Llauro, M. F. and C. Ladavière. Synthesis and Characterization of Poly(acrylic acid) Produced by RAFT Polymerization. Application as A Very Efficient Dispersant of CaCO3, Kaolin, and TiO2, Macromolecules, 36, pp.3066-3077. 2003. Maestro, A., González, C. and J. M. Gutiérrez. Rheological Behavior of Hydrophobically Modified Hydroxyethyl Cellulose Solutions: A Linear Viscoelastic Model, J. Rheol., 46, pp.127-143. 2002a. Maestro, A., González, C. and J. M. Gutiérrez. Shear Thinning and Thixotropy of HMHEC and HEC Water Solutions, J. Rheol., 46, pp.1445-1457. 2002b. Maestro, A., González, C. and J. M. Gutiérrez. Interaction of Surfactants with Thickeners Used in Waterborne Paints: A Rheological Study, J. Colloid Interface Sci., 288, pp.597-605. 2005. 142 References Marques, E. F., Regev, O., Khan, A., Miguel, M. G. and B. Lindman. Interactions between Cationic Vesicles and Oppositely Charged Polyelectrolytes-Phase Behavior and Phase Structure, Macromolecules. 32, pp.6626-6637. 1999. Matsumoto, K., Sakai, H., Takeuchi, R., Tsuchiya, K., Ohta, K., Sugawara, F., Abe, M. and K. Sakaguchi. Effective Form of Sulfoquinovosyldiacyglycerol (SQDG) Vesicles for DNA Polymerase Inhibition, Colloids Surf. B: Biointerf., 46, pp.175-181. 2005. McNamara, K. P. and Z. Rosenzweig. Dye-Encapsulating Liposomes as Fluorescence-Based Oxygen Nanosensors, Anal. Chem., 70, pp.4853-4859. 1998. Medronho, B., Autunes, F. E., Lindman, B. and M. G. Miguel. Gels of Cationic Vesicles and Hydrophobically Modified Poly(ethylene glycol), J. Dispersion Sci. Tech., 27, pp.83-90. 2006. Meier, W., Hotz, J. and S. Günther-Ausborn. Vesicle and Cell Networks: Interconnecting Cells by Synthetic Polymers, Langmuir, 12, pp.5028-5032. 1996. Meijere, K., Brezesinski, G. and H. Möhwald. Polyelectrolyte Coupling to a Charged Lipid Monolayer, Macromolecules, 30, pp.2337-2342. 1997. Meulenaer, B. D., Meeren, P. V. D., Cuyper, M. D., Vanderdeelen, J. V. and L. Baert. Electrophoretic and Dynamic Light Scattering Study of the Interaction of Cytochrome C with Dimyristoylphosphatidylglycerol, Dimyristoylphosphatidylcholine, and Intramembranously Mixed Liposomes, J. Colloid Interface Sci., 189, pp.254-258. 1997. Mills, J. K., Eichenbaum, G. and D. Needham. Effect of Bilayer Cholesterol and Surface Grafted Poly(ethylene glycol) on pH-Induced Release of Contents from Liposomes by Poly(2-ethylacrylic acid), J. Lip. Res., 9, pp.275-290. 1999. Minko, T., Batrakova, E. V., Li, S., Li, Y., Pakunlu, R. I., Alakhov, V. Y. and A. V. Kabanov. Pluronic Block Copolymers Alter Apoptotic Signal Transduction of Doxorubicin in Drug-Resistant Cancel Cells, J. Controlled Release, 105, pp.269-278. 2005. Mourtas, S., Aggelopoulos, C. A., Klepetsanis, P., Tsakiroglou, C. D. and S. G. Antimisiaris. Complex Hydrogel Systems Composed of Polymers, Liposomes, and Cyclodextrins: Implications of Composition on Rheological Properties and Aging, Langmuir, 25, pp.8480-8488. 2009. 143 References Mourtas, S., Fotopoulou, S., Duraj, S., Sfika, V., Tsakiroglou, C. and S. G. Antimisiaris. Liposomal Drugs Dispersed in Hydrogels Effect of Liposome, Drug and Gel Properties on Drug Release Kinetics, Colloids Surf. B: Biointerf., 55, pp.212-221. 2007. Mourtas, S., Haikou, M., Theodoropoulou, M., Tsakiroglou, C. and S. G. Antimisiaris. The Effect of Added Liposomes on the Rheological Properties of A Hydrogel: A Systematic Study, J. Colloid Interface Sci., 217, pp.611-619. 2008. Moya, S., Donath, E., Sukhorukov, G. B., Auch, M., Bäumler, H., Lichtenfeld, H. and H. Möhwald. Lipid Coating on Polyelectrolyte Surface Modified Colloidal Particles and Polyelectrolyte Capsules, Macromolecules, 33, pp.4538-4544. 2000. Nilsson, S., Goldraich, M., Lindman, B. and Y. Talmon. Novel Organized Structures in Mixtures of A Hydrophobically Modified Polymer and Two Oppositely Charged Surfactants, Langmuir, 16, pp.6825-6832. 2000. Nilsson, S., Thuresson, K., Hansson, P. and B. Lindman. Mixed Solutions of Surfactant and Hydrophobically Modified Polymer. Controlling Viscosity with Micellar Size, J. Phys. Chem. B, 102, pp.7099-7105. 1998. Oh, K. T., Bronich, T. K. and A. V. Kabanov. Micellar Formulations for Drug Delivery Based on Mixtures of Hydrophobic and Hydrophilic Pluronic Block Copolymers, J. Controlled Release, 94, pp.411-422. 2004. Okada, S., Peng, S., Spevak, W. and D. Charych. Color and Chromism of Polydiacetylene Vesicles, Acc. Chem. Res., 31, pp.229-239. 1998. Onuki, Y., Nishikawa, M., Morishita, M. and K. Takayama. Development of Photocrosslinked Polyacrylic Acid Hydrogel as An Adhesive for Dermatological Patches: Involvement of Formulation Factors in Physical Properties and Pharmacological Effects, Int. J. Pharm., 349, pp.47-52. 2008. Oppong, F. K. and J. R. de Bruyn. Microrheology and Dynamics of An Associative Polymer, Eur. Phys. J. E, 31, pp.25-35. 2010. Pandit, N. K. and J. Kisaka. Loss of Gelation Ability of Pluronic F127 in the Presence of Some Salts, Int. J. Pharm., 145, pp.129-136. 1996. 144 References Pantusa, M., Bartucci, R. and L. Sportelli. Calorimetric and Spin-Label ESR of PEG:2000-DPPE Containing DPPC/Lyso-PPC Mixtures, Colloid Polym Sci., 285, pp.649-656. 2007. Pappalardo, M., Milardi, D., Grasso, D. and C. L. Rosa. Phase Behavior of PolymerGrafted DPPC Membranes for Drug Delivery Systems Design, J. Therm. Analy. Cal., 80, pp.413-418. 2005. Peniche, C., Argüelles-Monal, W., Davidenko, N., Sastre, R., Gallardo, A. and J. S. Román. Self-Curing Membranes of Chitosan/PAA IPNs Obtained by Radical Polymerization: Preparation, Characterization and Interpolymer Complexation, Biomaterials, 20, pp.1869-1878. 1999. Polozova, A. and F. M. Winnik. Mechanism of The Interaction of HydrophobicallyModified Poly-(N-isopropylacrylamides) with Lipsomes, Biochim. Biophys. Acta, 1326, pp.213-224. 1997. Rieger, M. M. and L. D. Rhein. Surfactants in Cosmetics: Surfactant Science Series 68. pp. 1-635, New York: Marcel Dekker. 1997. Rigsbee, D. R. and P. L. Dubin. Microcalorimetry of Polyelectrolyte-Micelle Interactions, Langmuir, 12, pp.1928-1929. 1996. Rinaudo, M., Quemeneur, F. and B. Pépin-Donat. Stabilization of Liposomes by Polyelectrolytes: Mechanism of Interaction and Role of Experimental Conditions, Macromol. Symp., 278, pp.67-79. 2009. Ringsdorf, H., Sackmann, E., Simon, J. and F. M. Winnik. Interactions of Liposomes and Hydrophobically-Modified Poly-(N-isopropylacrylamides): An Attempt to Model the Cytoskeleton, Biochim. Biophys. Acta, 1153, pp.335-344. 1993. Ringsdorf, H., Venzmer, J. and F. M. Winnik. Interaction of HydrophobicallyModified Poly-N-isopropylacrylamides with Model Membranes-or Playing a Molecular Accordion, Angew. Chem. Int. Ed. Engl., 30, pp.315-318. 1991. Riske, K. A., Döbereiner, H. and M. T. Lamy-Freund. Gel-Fluid Transition in Dilute versus Concentrated DMPG Aqueous Dispersions, J. Phys. Chem. B, 106, pp.239-246. 2002. 145 References Robertson, D., Hellweg, T., Tiersch, B. and J. Koetz. Polymer-Induced Structural Changes in Lecithin/Sodium Dodecyl Sulfate-Based Multilamellar Vesicles, J. Colloid Interface Sci., 270, pp.187-194. 2004. Santhiya, D., Nandini, G., Subramanian, S., Natarajan, K. A. and S. G. Malghan. Effect of Polymer Molecular Weight on The Adsorption of Polyacrylic Acid at The Alumina-Water Interface, Colloids Surf. A: Physicochem. Eng. Aspects, 133, pp.157163. 1998. Santos, T. D., Medronho, B., Antunes, F. E., Lindman, B. and M. G. Miguel. How Does A Non-ionic Hydrophobically Modified Telechelic Polymer Interact with A Non-ionic Vesicles? Rheological Aspects, Colloids Surf. A: Physicochem. Eng. Asp., 219, pp.173-179. 2008. Sarrazin-Cartalas, A., Ilipoulos, I., Audebert, R. and U. Olsson. Association and Thermal Gelation in Mixtures of Hydrophobically Modified Polyelectrolytes and Nonionic Surfactants, Langmuir, 10, pp.1421-1426. 1994. Schmolka, I. R. A Review of Block Polymer Surfactants, J. Am. Oil Chemists’ Soc., 54, pp.110-116. 1977. Schwarz, S., Bratskaya, S., Jaeger, W. and B. R. Paulke. Effect of Charge Density, Molecular Weight, and Hydrophobicity on Polycations Adsorption and Flocculation of Polystyrene Latices and Silica, J. Appl. Polym. Sci., 101, pp.3422-3429. 2006. Schwarz, S., Buchhammer, H. M., Lunkwitz, K. and H. J. Jacobasch. Polyelectrolyte Adsorption on Charged Surfaces: Study by Electrokinetic Measurements, Colloids and Surf. A: Physicochem. Eng. Asp., 140, pp.377-384. 1998. Šegota, S. and D. Težak. Spontaneous Formation of Vesicles, Adv. Colloid Interface Sci., 121, pp.51-75. 2006. Seki, K. and D. A. Tirrell. pH-Dependent Complexation of Poly(acrylic acid) Derivatives with Phospholipid Vesicle Membranes?, Macromolecules, 17, pp.16921698. 1984. Shubin, V. and P. Linse. Self-Consistent-Field Modeling of Polyelectrolyte Adsorption on Charge-Regulating Surfaces, Macromolecules, 30, pp.5944-5952. 1997. 146 References Silvander, M. Steric Stabilization of Liposomes – A Review, Progr Colloid Polym Sci., 120, pp.35-40. 2002. Silvander, M., Karlsson, G. and K. Edwards. Vesicle Solubilization by Alkyl Sulfate Surfactants: A Cryo-Tem Study of the Vesicle to Micelle Transition, J. Colloid Interface Sci., 179, pp.104-113. 1996. Simard, P., Leroux, J., Allen, C. and O. Meyer. Liposome for Drug Delivery. In Nanoparticles for pharmaceutical applications, Vol.1, ed by A. J. Domb, Y. Tabata, N. N. V. Ravi Kumar and S. Farber, pp.3-49 , California: American Scientific Publishers. 2007. Simon, J., Kuhner, M., Ringsdorf, H. and E. Sackmann. Polymer-Induced Shape Changes and Capping in Giant Liposomes, Chem. Phys. Lip., 76, pp.241-258. 1995. Soga, O., Nostrum, C. F., Fens, M., Rijcken, C. J. F., Schiffelers, R. M., Storm, G. and W. E. Hennink. Thermosensitive and Biodegradable Polymeric Micelles for Paclitaxel Delivery, J. Controlled Release, 103, 341-353. 2005. Sotiropoulou, M., Oberdisse, J. and G. Staikos. Soluble Hydrogen-Bonding Interpolymer Complexes in Water : A Small-Angle Neutron Scattering Study, Macromolecules, 39, pp.3065-3070. 2006. Sunamoto, J., Sato, T., Taguchi, T. and H. Hamazaki. Naturally Occurring Polysaccharide Derivatives Which Behave as An Artificial Cell Wall on An Artificial Cell Liposome, Macromolecules, 25, pp.5665-5670. 1992. Tait, J. F. and C. Smith. Phosphatidylserine Receptors: Role of CD36 in Binding of Anionic Phospholipid Vesicles to Monocytic Cells, J. Biol. Chem., 274, pp.30483054. 1999. Takemasa, M., Sletmoen, M. and B. T. Stokke. Single Molecular Pair Interactions between Hydrophobically Modified Hydroxyethyl Cellulose and Amylose Determined by Dynamic Force Spectroscopy, Langmuir, 25, pp.10174-10182. 2009. Tan, A., Ziegler, A., Steinbauer, B.and J. Seelig Thermodynamics of Sodium Dodecyl Sulfate Partitioning into Lipid Membranes, Biophys. J., 83, pp.1547-1556. 2002. Tanaka, H., Odberg, L., Wagberg, L. and T. Lindstrom. Adsorption of Cationic Polyacrylamides onto Monodisperse Polystyrene Latices and Cellulose Fiber: Effect 147 References of Molecular Weight and Charge Density of Cationic Polyacylamides, J. Colloid Interface Sci., 134, pp.219-228. 1990. Tanaka, R., Meadows, J., Philips, G. O. and P. A. Williams. Viscometric and Spectroscopic Studies on the Solution Behavior of Hydrophobically Modified Cellulosic Polymers. Carbohydr. Polym., 12, pp.443-459. 1990. Taylor, K. M. G. and R. M. Morris. Thermal Analysis of Phase Transition Behavior in Liposomes, Thermochim. Acta, 248, pp.289-301. 1995. Thomas, J. L. and D. A. Tirrell. Polymer-Induced Leakage of Cations from Dioleoyl Phosphatidylcholine and Phosphatidylglycerol Liposomes, J. Controlled Release, 67, pp.203-209. 2000. Thomas, J. L., You, H. and D. A. Tirrell. Tuning the Response of a pH-Sensitive Membrane Switch, J. Am. Chem. Soc., 117, pp.2949-2950. 1995. Tian, Y., He, Q., Cui, Y., Tao, C. and J. B. Li. Assembly of Nanotubes of Poly(4vinylpyridine) and Poly(acrylic acid) through Hydrogen Bonding, Chem. Eur. J., 12, pp.4808-4812. 2006. Tian, Y., Ravi, P., Bromberg, L., Hatton, T. A. and K. C. Tam. Synthesis and Aggregation Behavior of Pluronic F87/Poly(acrylic acid) Block Copolymer in the Presence of Doxorubicin, Langmuir, 23, pp.2638-2646. 2007. Tirrell, D. A., Turek, A. B., Wilkinson, D. A. and T. J. McIntosh. Observation of an Interdigitated Gel Phase in Dipalmitoylphophatidyglycerol Bilayers Treated with Ionene-6,6, Macromolecules, 18, pp.1513-1515. 1985. Tocanne, J. F. and J. Teissié. Ionization of Phospholipids and Phospholipid-Supported Interfacial Lateral Diffusion of Protons in Membrane Model Systems, Biochim. Biophys. Acta, 1031, pp.111-142. 1990. Tong, Q., Kosmella, S. and J. Koetz. Formation of Rod-Like CdS Nanoparticles in SDS/Decanol Based Multilamellar Vesicles, Progr. Colloid Polym. Sci., 133, pp.152158. 2006. Vasheghani, F. B., Rajabi, F. H., Ahmadi, M. H. and S. Nouhi. Stability Constants and Thermodynamic Parameters of Some Intermacromolecular Complexes in Relation to Their Specific Interaction Forces, Polym. Bulletin, 55, pp.437-445. 2005. 148 References Vasheghani, F. B., Rajabi, F. H., Ahmadi, M. H. and S. Nouhi. Stability and Thermodynamic Parameters of Some Selective Intermacromolecular Complexation, Polym. Bulletin, 56, pp.395-404. 2006. Venema, F. R. and W. D. Weringa. The Interactions of Phospholipid Vesicles with Some Anti-Inflammatory Agents, J. Colloid Interface Sci., 125, pp.484-492. 1988. Wang, G. Q., Lin, H. N., Li, S. S. and C. H. Huang. Phosphatidylcholines with sn-1 Saturated and sn-2 cis-Monounsaturated Acyl Chains, J. Biol. Chem., 270, pp.2273822746. 1995. Wang, Y., Kimura, K., Huang, Q., Dubin, P. L. and W. Jaeger. Effects of Salt on Polyelectrolyte-Micelle Coacervation, Macromolecules, 32, pp.7128-7134. 1999. Wei, S., Zhang, Y. and J. Xu. The Dynamic Rheology Behaviors of Reactive Polyacrylic Acid/Nano-Fe3O4 Ethanol Suspension, Eng. Aspects, 296, pp.51-56. 2007. Weng, K. C., Noble, C. O., Papahadjopoulos-Sternberg, B., Chen, F. F., Drummond, D. C., Kirpotin, D. B., Wang, D., Hom, Y. K., Hann, B. and J. W. Park. Targeted Tumor Cell Internalization and Imaging of Multifunctional Quantum Dot-Conjugated Immunoliposomes in Vitro and in Vivo, Nano Lett., 8, pp.2851-2857. 2008. Woodle, M. C., Newman, M. S. and F. J. Martin. Liposome Leakage and Blood Circulation: Comparison of Adsorbed Block Copolymers with Covalent Attachement of PEG, Int. J. Pharm., 88, pp.327-334. 1992. Wu, X. S., Hoffman, A. S. and P. Yager. Conjugation of Phosphatidylethanolamine to Poly(N-isopropylacrylamide) for Potential Use in Liposomal Drug Delivery Systems, Polymer, 33, pp.4659-4662. 1992. Xia, J., Zhang, H., Rigsbee, D. R., Dubin, P. L. and T. Shaikh. Structural Elucidation of Soluble Polyelectrolyte-Micelle Complexes: Intra-vs Interpolymer Association, Macromolecules, 26, pp.2759-2766. 1993. Yamanaka, S. A., Charych, D. H., Loy, D. A. and D. Y. Sasaki. Solid Phase Immobilization of Optically Responsive Liposomes in Sol-Gel Materials for Chemical and Biological Sensing, Langmuir, 13, pp.5049-5053. 1997. Yamazaki, M. and T. Ito. Deformation and Instability in Membrane Structure of Phospholipid Vesicles of Poly(ethylene glycol)-Induced Membrane Fusion? Caused 149 References by Osmophobic Association: Mechanical Stress Model for the Mechanism, Biochemistry, 29, pp.1309-1314. 1990. Yaroslavov, A. A., Efimova, A. A., Lobyshev, V. I. and V. A. Kabanov, Reversibility of Structural Rearrangements in the Negative Vesicular Membrane upon Electrostatic Adsorption/Desorption of the Polycation, Biochim. Biophys. Acta, 1560, pp.14-24. 2002. Yaroslavov, A. A., Kiseliova, E. A., Udalykh, O. Y. and V. A. Kabanov. Integrity of Mixed Liposomes Contacting a Polycation Depends on the Negatively Charged Lipid Content, Langmuir 14, pp.5160-5163. 1998. Yaroslavov, A. A., Kuchenkova, O. Y., Okuneva, I. B., Melik-Nubarov, N. S., Kozlova, N. O., Lobyshev, V. I., Menger, F. M. and V. A. Kabanov, Effect of Polylysine on Transformations and Permeability of Negative Vesicular Membranes, Biochim. Biophys. Acta, 1611, pp.44-54. 2003. Yaroslavov, A. A., Kulkov, V. E., Polinsky, A. S., Baibakovb, B. A. and V. A. Kabanov. A Polycation Causes Migration of Negatively Charged Phospholipids from the Inner to Outer Leaflet of the Liposomal Membrane, FEBS lett., 340, pp.121-123. 1994. Yaroslavov, A. A., Melik-Nubarov, N. S. and F. M. Menger. Polymer-Induced FlipFlop in Biomembranes, Acc. Chem. Res., 39, pp.702-710. 2006. Yaroslavov, A. A., Rakhnyanskaya, A. A., Yaroslavova, E. G., Efimova, A. A. and F. M. Menger. Polyelectrolyte-Coated Liposomes: Stabilization of the Interfacial Complexes, Adv. Colloid Interface Sci., 142, pp.43-52. 2008. Yaroslavov, A. A., Sitnikova, T. A., Rakhnyanskaya, A. A., Ermakov, Y. A., Burova, T. V., Grinberg, V. Y. and F. M. Menger. Contrasting Behavior of Zwitterionic and Cationic Polymers Bound to Anionic Liposomes, Langmuir, 23, pp.7539-7544. 2007. Yaroslavov, A. A., Yaroslavova, E. G., Rakhnyanskaya, A. A., Menger, F. M. and V. A. Kabanov. Modulation of Interaction of Polycations with Negative Unilamellar Lipid Vesicles, Colloids Surf. B: Biointerfaces, 16, pp.29-43. 1999. Yessine, M. A. and J. C. Leroux. Membrane-Destabilizing Polyanions: Interaction with Lipid Bilayers and Endosomal Escape of Biomacromolecules, Adv. Drug Delivery Rev., 56, pp.999-1021. 2004. 150 References Yin, X. and H. D. H. Stöver. Hydrogel Microspheres Formed by Complex Coacervation of Partially MPEG-Grafted Poly(styrene-alt-maleic anhydride) with PDADMAC and Cross-Linking with Polyamines, Macromolecules, 36, pp.8773-8779. 2003. Young, P. R., Vacante, D. A. and W. R. Snyder. Protein-Induced Aggregation of Lipid Vesicles. Mechanism of the Myelin Basic Protein-Myelin Interaction, J. Am. Chem. Soc., 104, pp.7287-7291. 1982. Zhao, G. Q., Khin, C. C., Chen, S. B. and B. H. Chen. Nonionic Surfactant and Temperature Effects on The Viscosity of Hydrophobically Modified Hydroxyethyl Cellulose Solutions, J. Phys. Chem. B, 109, pp.14198-14204. 2005. Zhao, G. Q. and S. B. Chen. Clouding and Phase Behavior of Nonionic Surfactants in Hydrophobically Modified Hydroxyethyl Cellulose Solutions, Langmuir, 22, pp.9129-9134. 2006. Zhao, G. Q. and S. B. Chen. Three-Phase Separation in Nonionic Surfactant/ Hydrophobically Modified Polymer Aqueous Mixtures, Langmuir, 23, pp.9967-9973. 2007a. Zhao, G. Q. and S. B. Chen. Nonlinear Rheology of Aqueous Solutions of Hydrophobically Modified Hydroxyethyl Cellulose with Nonionic Surfactant, J. Colloid Interface Sci., 316, pp.858-866. 2007b. Zhao, G. Q. and S. B. Chen. Microviscosity of Hydrophobically Modified Hydroxyethyl Cellulose Aqueous Solutions, J. Colloid Interface Sci., 322, pp.678-680. 2008. Zhirnov, A. E., Demina, T. V., Krylova, O. O., Grozdova, I. D. and N. S. MelikNubarov. Lipid Composition Determines Interaction of Liposome Membranes with Pluronic L61, Biochim. Biophys. Acta, 1720, pp.73-83. 2005. Zuidam, N. J. and D. J. A. Crommelin. Differential Scanning Calorimetric Analysis of Dipalmitoylphosphatidylcholine-Liposomes upon Hydrolysis, Int. J. Pharm., 126, pp.209-217. 1995 151 [...]... complexation and interaction between phospholipid vesicles and polymers The motivation, objectives and scopes of this research work have also been pointed out The materials and methods will be described in Chapter 2 Chapter 3 presents the results and discussion for the study of interaction between phospholipid vesicles and triblock copolymers Chapter 4 describes the effect of pH, concentration and molecular... DPPC and 0.7wt%HMHEC 88 x List of Figures Figure 5.8 Schematic network structure of HMHEC and phospholipid vesicles 90 Figure 5.9 Viscosity versus shear stress of pure HMHEC in 20mM NaCl buffer solution (control) and with addition of 5mg/ml EPC and DPPC vesicles at 10°C (a) 0.7wt% HMHEC and (b) 0.3wt%HMHEC 93 Figure 5.10 Storage modulus (closed symbols) and loss modulus (open symbols) as functions of. .. rheological properties of polymers, focusing on the effects of added vesicles concentration and system temperature Finally, the influence of cationic PDADMAC on the morphology and phase behavior of anionic phospholipid vesicles was investigated as a function of PDADMAC concentration, molecular weight and salt concentration 9 Chapter 1 Although the obtained results will be useful for the design of a phospholipidpolymer... focusing on charge compensation and neutralization of vesicles at relatively low concentration of polycation, charge reversal phenomenon at sufficiently high charge ratio of polycation is less studied and thus not well understood The motivation of this study is to have a good fundamental understanding of how these polymers interact with phospholipid vesicles over a wide range of 8 Chapter 1 concentration,... HMHEC at (c) 10°C and (d) 25°C 84 Figure 5.5 Zero-shear viscosity of (a) 0.7wt% HMHEC and (b) 0.3wt% HMHEC as a function of EPC concentration at 10 and 25°C 85 Figure 5.6 Flow curves of sonicated DPPC vesicles with 0.7 wt% HMHEC at (a) 10°C; (b) 25°C, and with 0.3wt% HMHEC at (c) 10°C and (d) 25°C 86 Figure 5.7 DSC thermogram of 5 mg/ml (a) unsonicated DPPC; (c) unsonicated DPPC and 0.7wt% HMHEC; (c)... symbol) and without (open symbol) 20 mM NaCl at 10°C and 25°C 80 Figure 5.2 Zero-shear viscosity as a function of EPC concentration for 0.7wt% HMHEC with sonicated vesicles at 10°C and 25°C 81 Figure 5.3 Shear viscosity (a) and moduli (b) of 1wt% HEC (720,000 g/mol) with sonicated EPC vesicles at 25 °C 82 Figure 5.4 Flow curve of sonicated EPC vesicles with 0.7 wt% HMHEC at (a) 10°C; (b) 25°C, and with... (magnification = 50) and schematic diagram depict the complex structure of 15wt%PDADMAC and DPPG bilayers 112 Figure 6.7 Effect of PDADMAC on the zeta potential of DPPG vesicles in 20 mM NaCl at pH 6.4, HMW=high molecular weight, VLMW=very low molecular weight 113 Figure 6.8 Effect of PDADMAC on the average hydrodynamic diameter of DPPG vesicles 115 xi List of Figures Figure 6.9 Turbidity of PDADMAC/DPPG... success Most of the previous studies overlooked the effect of important experimental parameters such as concentration, temperature, polymer molecular weight, salt and medium pH on the changes in physical and thermal behavior of phospholipid vesicles In brief, diverging findings were obtained for low concentration of Pluronic modified vesicles system While some studies reported the enhancement of vesicles. .. The effect of PAA concentration, molecular weight and pH on the structure of complexes formed has not been clearly elucidated To the best of our knowledge, there is yet no information about the rheological behavior of hydrophobically modified hydroxyethyl cellulose and phospholipid vesicles It remains questionable whether the insertion of HMHEC random hydrophobic side chains will interconnect and bridge... focused on studies concerning the interaction of different types of polymer with phospholipid vesicles to improve the performance of both systems such as stability, permeability and sensitivity properties The interaction between phospholipid vesicles and polymer in aqueous solution is complex, depending on the species and composition A good understanding of fundamental interaction mechanisms between . COMPLEXATION, DYNAMICS AND RHEOLOGY OF VESICLES AND POLYMERS CHIENG YU YUAN NATIONAL UNIVERSITY OF SINGAPORE 2010 COMPLEXATION, DYNAMICS AND RHEOLOGY. TABLE OF CONTENTS Page ACKNOWLEDGEMENTS i TABLE OF CONTENTS ii SUMMARY v LIST OF TABLES vii LIST OF FIGURES viii NOMENCLATURE xiii CHAPTER 1 Introduction to Phospholipid Vesicles and Polymers. diameter of large unilamellar vesicles with 28 addition of F-127 Figure 3.2 Size distribution of EPC vesicles with varying concentration 29 of F-127 Figure 3.3 Hydrodynamic diameter of large

Ngày đăng: 11/09/2015, 09:57

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN