1. Trang chủ
  2. » Luận Văn - Báo Cáo

Thermal transport in low dimensional graded structures and silicon nanowires

125 184 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 125
Dung lượng 4,17 MB

Nội dung

THERMAL TRANSPORT IN LOW DIMENSIONAL GRADED STRUCTURES AND SILICON NANOWIRES YANG NUO NATIONAL UNIVERSITY OF SINGAPORE 2010 THERMAL TRANSPORT IN LOW DIMENSIONAL GRADED STRUCTURES AND SILICON NANOWIRES YANG NUO B.S. (UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA) 2000 M.ENG. (CHINESE ACADEMY OF SCIENCE) 2003 A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF PHYSICS NATIONAL UNIVERSITY OF SINGAPORE 2010 ii c ⃝ Copyright by YANG NUO 2010 All Rights Reserved i Acknowledgements I was extremely fortunate for the opportunity to work with, learn from, and establish friendships with some of the finest people during my time in Singapore.First and foremost, I would like to thank my advisor, Professor LI Baowen for his support, energy, encouragement, and insightful advice over the past years. There would be no this research work without his far-sight and guidance. I would also like to thank my collaborators, Prof. ZHANG Gang, Prof. WANG Lei and Dr. LI Nianbei for their sagacity and hard working. Additionally, I am appreciative of the colleagues in our group, Prof. WANG Wenge, Dr. YAN Yonghong, Dr. LAN Jinghua, Dr. Tang Yunfei, Mr. LO Wei-Chung and Mr. ZHANG Lifa for their valuable suggestions and comments. I am also grateful to all my friends in Singapore.A partial list includes: LI Pinghui, DAI Liang, LUO Jie, LI Zhipeng, SUI Yi, CHAI Bo, BAI Huixing, ZHAO Wei, LI Yangfan, LIU Furong, CHEN Xiaobing, ZHENG Jianguo, and ZHOU Lihong. I really enjoy the frisbee games under the sunset at West Coast Park. Finally, I would like to thank my parents and my parents-in-law. I am forever indebted for their love, support, and encouragement. Also, I am greatly appreciative of my dear wife Ying’s support and never-ending patience with me. Abstract ii Abstract Very recently, phononic (thermal) devices have been brought forward theoretically, in which the phonon is used as information carrier. It drives us to search materials fit for thermal devices, such as thermal diodes and thermal transistors. On the first part of this thesis, it is proposed that low dimensional graded materials are good candidates for thermal rectifier. The heat flux in the one dimensional harmonic/anharmonic chain with a mass gradient and the carbon nanocone were studied by using classical non-equilibrium molecular dynamics simulation. It was found that the heat flowed with asymmetric in anharmonic lattices with a mass gradient. Moreover, in a certain temperature region, negative differential thermal resistance was observed. It was also demonstrated that the structural asymmetry in carbon nanocone benefited the rectification ratio remarkably. It was found that there was a larger heat flux in the direction of decreasing diameter and the rectification in carbon nanocone was size independent. Possible applications in constructing thermal rectifiers and thermal transistors by using the graded material were discussed. The silicon nanowire (SiNW) has been shown to be an efficient thermoelectric material. The thermal conductivity of SiNW is crucial in thermoelectric applications. On the second part of this thesis, using classical nonequilibrium molecular dynamics simulation, it was studied that the reduction of the thermal conductivity of SiNWs with two isotope-doping methods: doping nanowires with isotope impurities randomly and isotopic-superlattice nanowires. It was shown that these two methods led to a large scale decrease of thermal conductivity of SiNWs. The thermal conductivity of isotopicsuperlattice structured SiNWs depended clearly on the period length of super- Abstract iii lattice. The mass effect on thermal conductivity was obvious. The heavier isotope atoms (42 Si) could decrease the conductivity much more than the lighter ones (29 Si). The remarkable isotopic effect observed in this work provides an efficient approach to decrease thermal conductivity of SiNW, which could be of great benefit to improve the thermoelectric performance. These improvements have raised the exciting prospect that SiNWs can be applied as novel nano-scale thermoelectric materials. It was also studied that the size effect on the thermal conductivity of nanowire structures. It was demonstrated that the thermal conductivity of SiNWs diverged with the longitudinal length, even when the sample length was much longer than the phonon mean free path at the room temperature, which meant Fourier’s empirical law was broken. The effect of fixed boundary on heat transport in SiNW was researched. It was reported that there was obvious difference between the heat flux of atoms close to boundary and the flux of atoms at the center of cross section. Contents Acknowledgements i Abstract ii Contents iv List of Tables viii List of Figures ix Introduction 1.1 Thermal Transport in Low-Dimensional Systems . . . . . . . . . 1.1.1 Thermal Transport in 1D Chains . . . . . . . . . . . . . 1.1.2 Thermal Transport in Quasi-1D Nano-Structures . . . . iv CONTENTS 1.1.3 1.2 1.2.2 1.4 1D Thermal Management Device Models . . . . . . . . Potential of Using Silicon Nanowires in Thermoelectrics . . . . . 10 1.2.1 1.3 v Thermoelectric Effects . . . . . . . . . . . . . . . . . . 10 Low Dimensional Thermoelectric Materials . . . . . . . 12 Molecular Dynamics Simulation . . . . . . . . . . . . . . . . . . 15 1.3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3.2 Thermodynamic Properties . . . . . . . . . . . . . . . . 19 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Thermal Rectification Effects in Low Dimensional Graded Structures 2.1 27 Thermal Rectification in 1D Mass-Graded Lattice . . . . . . . . 28 2.1.1 Simulation Method . . . . . . . . . . . . . . . . . . . . . 29 2.1.2 Abnormal Thermal Conductivity in Graded Harmonic Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.1.3 Abnormal Thermal Conductivity Graded Anharmonic Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.1.4 Thermal Rectification in Graded Anharmonic Lattice . . 35 CONTENTS vi 2.1.5 Negative Differential Thermal Resistance . . . . . . . . . 38 2.1.6 Rectification Mechanism in 1D Graded Chain . . . . . . 38 2.2 2.3 Thermal Rectification in Carbon Nanocone . . . . . . . . . . . . 41 2.2.1 Simulation Method . . . . . . . . . . . . . . . . . . . . . 43 2.2.2 Thermal Rectification in Carbon Nanocone . . . . . . . . 45 2.2.3 Heat Bath, Temperature and Size Effect and NDTR . . . 49 2.2.4 Rectification Mechanism in Carbon Nanocone . . . . . . 53 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Thermal Conductivity of Silicon Nanowires 58 3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.2 Thermal Conductivity of Isotope Doped Silicon Nanowires . . . 61 3.2.1 Modeling Method . . . . . . . . . . . . . . . . . . . . . . 61 3.2.2 Thermal Conductivity of Random Doping Silicon Nanowires 63 3.2.3 Thermal Conductivity of Superlattice Structure Silicon Nanowires . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.3 Size Effect on Thermal Conductivity of Silicon Nanowires . . . . 75 CONTENTS vii 3.3.1 Modeling Method . . . . . . . . . . . . . . . . . . . . . . 76 3.3.2 Dependence of Thermal Conductivity on Longitudinal Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.4 Boundary Effect on Thermal Conductivity . . . . . . . . . . . . 83 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Conclusions and Future Works Publication list 89 111 BIBLIOGRAPHY 97 [36] P. Kim, L. Shi, A. Majumdar, and P. L. McEuen,”Thermal transport measurements of individual multiwalled nanotubes”, Phys. Rev. Lett. 87, 215502 (2001). [37] C. W. Padgett , and D. W. Brenner,”Influence of chemisorption on the thermal conductivity of single-wall carbon nanotubes”, Nano Lett. 4, 1051 (2004). [38] J. F. Moreland, J. B. Freund, and G. Chen, ”The disparate thermal conductivity of carbon nanotubese and diamond nanowires studied by atomistic simulation”, Microscale Thermophys. Eng. 8, 61 (2004). [39] S. Maruyama,”A molecular dynamics simulation of heat conduction of a finite length single-walled carbon nanotube” , Microscale Thermophys. Eng. 7, 41 (2003). [40] S. Maruyama,”A molecular dynamics simulation of heat conduction in finite length SWNTs”, Physica B 323, 193 (2002). [41] G. Zhang and B.Li,”Thermal conductivity of nanotubes revisited: Effects of chirality, isotope impurity, tube length, and temperature”, J. Chem. Phys. 123, 114714 (2005). [42] C. W. Chang, D. Okawa, H. Garcia, A. Majumdar, and A. Zettl, ”Breakdown of fourier’s law in nanotube thermal conductors”, Phys. Rev. Lett. 101, 075903 (2008). [43] S.G. Volz and G. Chen, ”Molecular dynamics simulation of thermal conductivity of silicon nanowires”, Appl. Phys. Lett. 75, 2056 (1999). BIBLIOGRAPHY 98 [44] P. K. Schelling,S. R. Phillpot, and P. Keblinski, ”Comparison of atomiclevel simulation methods for computing thermal conductivity”, Phys. Rev. B 65, 144306 (2002). [45] C. Oligschleger and J. C. Schon, ”Simulation of thermal conductivity and heat transport in solids”, Phys. Rev. B 59, 4125, (1999). [46] R. H. H. Poetzsch and H. Bottger, ”Interplay of disorder and anharmonicity in heat conduction: Molecular-dynamics study”, Phys. Rev. B 50, 15757 (1994). [47] H. J. Goldsmid, ”Electronic refrigeration”, Pion, London (1986). [48] F. J. DiSalvo, ”Thermoelectric cooling and power generation”, Science 285, 703 (1999). [49] M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.-P. Fleurial, and P. Gogna, ”New directions for low-dimensional thermoelectric materials”, Adv. Mater. ,19,1(2007). [50] B. Poudel, Q. Hao, et al., ”High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys”,Science 320, 634 (2008). [51] T. Vo, A. J. Williamson, and G. Galli, ”First principles simulations of the structural and electronic properties of silicon nanowires”, Phys. Rev. B 74, 045116 (2006). [52] R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, ”Thinfilm thermoelectric devices with high room-temperature figures of merit”, Nature 413, 597 (2001). BIBLIOGRAPHY 99 [53] X. Sun, Z. Zhang, and M. S. Dresselhaus, ”Theoretical modeling of thermoelectricity in Bi nanowires”, Appl. Phys. Lett. 74, 4005 (1999). [54] O. Rabin, Y. M. Lin, and M. S. Dresselhaus, ”Anomalously high thermoelectric figure of merit in Bi1CxSbx nanowires by carrier pocket alignment”, Appl. Phys. Lett. 79, 81 (2001). [55] H. K. Lyeo, A. A. Khajetoorians, S. Li, P.P. Kevin, J.R. Rajeev, A. Shakouri, C. K. Shih, ”Profiling the thermoelectric power of semiconductor junctions with nanometer resolution”, Science 303, 816 (2004). [56] K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, and M. G. Kanatzidis, ”Cubic AgPbm SbTe2+m : bulk thermoelectric materials with high figure of merit”, Science 303, 818 (2004). [57] A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, ”Enhanced thermoelectric performance of rough silicon nanowires”, Nature 451, 163 (2008). [58] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. Yu, W. A. Goddard III, and J. R. Heath, ”Silicon nanowires as efficient thermoelectric materials”, Nature 451, 168 (2008). [59] L. D. Hicks, and M. S. Dresselhaus, ”Thermoelectric figure of merit of a one-dimensional conductor”, Phys. Rev. B 47, 16631 (1993). [60] A. Majumdar, ”Enhanced: thermoelectricity in semiconductor nanostructures”, Science 303, 777 (2004). BIBLIOGRAPHY 100 [61] G. Zhang, and B.Li, ”Anomalous vibrational energy diffusion in carbon nanotubes”, J. Chem. Phys. 123, 014705 (2005). [62] X. L¨ u, and J. Chu, ”Lattice thermal conductivity in a silicon nanowire with square cross section”, J. Appl. Phys. 100, 014305 (2006). [63] O. Bourgeois, T. Fournier, and J. Chaussy, ”Measurement of the thermal conductance of silicon nanowires at low temperature”, J. Appl. Phys. 101, 016104 (2007). [64] C. Chiritescu, D. G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, and P. Zschack, ”Ultralow thermal conductivity in disordered, layered WSe2 crystals”, Science 315, 351 (2007). [65] F.Ercolessi, ”A molecular dynamics primer”, Sring College in Computational Physics, ICTP, Trieste (1997). [66] E. Fermi, J. Pasta, S. Ulam, in: E. Fermi (Ed.), Collected Papers, University of Chicago Press, Chicago, 2, 78 (1965). [67] X. L. Feng , Z. X. Li, and Z. Y. Guo, ”Molecular dynamics simulation of thermal conductivity of nanoscale thin silicon films”, Microscale Thermophys. Eng. 7, 153 (2003). [68] A. Maiti, G. D. Mahan, and S. T. Pantelides,”Dynamical simulations of nonequilibrium processes - Heat flow and the Kapitza resistance across grain boundaries”, Solid State Commun. 102, 517 (1997). [69] F. H. Stillinger and T. A. Weber,”Computer simulation of local order in condensed phases of silicon”, Phys. Rev. B 31, 5262 (1985). BIBLIOGRAPHY 101 [70] (a) L. Verlet, ”Computer experiments on classical fluids .I. Thermodynamical properties of Lennard-Jones molecules”, Phys. Rev. 159, 98 (1967); (b) L. Verlet,”Computer Experiments on Classical Fluids. II. Equilibrium Correlation Functions”, Phys. Rev. 165, 201 (1968). [71] (a) S. Nos´e, ”A unified formulation of the constant temperature molecular dynamics methods”, J. Chem. Phys. 81, 511 (1984); (b) W. G. Hoover, ”Canonical dynamics: Equilibrium phase-space distributions” , Phys. Rev. A 31, 1695 (1985). [72] F. Bonetto, J. L. Lebowitz, and L. Ray Bellet, et al. , In ”Mathematical Physics 2000”, edited by A. Fokas et al. (Imperial College Press, London), pp.128 (2000). [73] S. Lepri, R. Livi and A. Politi,”Thermal conduction in classical lowdimensional lattices”, Phys. Rep. 377, (2003) and the references therein. [74] A. Rahman,M. J. Mandell, and J. P. McTague, ”Molecular dynamics study of an amorphous Lennard-Jones system at low temperature”, J. Chem. Phys. 64, 1564 (1976). [75] R. Pan, Z. Xu, Z. Zhu, and Z. Wang, ”Thermal conductivity of functionalized single-wall carbon nanotubes”, Nanotechnology 18, 285704 (2007). [76] Y. Koike, ”Graded index materials and components in Polymers for lightwave and integrated optics”, edited by L.A. Hornak, (Marcel Dekker, New York), pp.71-104 (1992). BIBLIOGRAPHY 102 [77] Y. Miyamoto et al. , ”Functional graded materials: Design, processing and applications”, Kluwer Academic Publishers (Dordrect, Boston, London) (1999). [78] A. M. Freyria, E. Chignier, J. Guidollet, and P. Louisot, ”Peritoneal macrophage response: an in vivo model for the study of synthetic materials”, Biomaterials 12, 111 (1991). [79] (a) H. Kroemer, ”Quasi-electric and quasi-magnetic fields in nonuniform semiconductors ”, RCA Review, 18, 332 (1957); (b) J. Tersoff, ”Theory of semiconductor heterojunctions: The role of quantum dipoles”, Phys. Rev. B, 30, 4874 (1984). [80] J. P. Huang, and K. W. Yu, ”Enhanced nonlinear optical responses of materials: Composite effects”, Phys. Rep. 431, 87 (2006). [81] G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, and L. A. Weller-Brophy , ”Enhanced nonlinear optical response of composite materials”, Phys. Rev. Lett. 74, 1871 (1995); R.S. Bennink, Y.K. Yoon, R.W. Boyd, J.E. Sipe, ”Accessing the optical nonlinearity of metals with metal-dielectric photonic bandgap structures”, Opt. Lett. 24, 1416 (1999); J. P. Huang and K. W. Yu, ”Optical nonlinearity enhancement of graded metallic films”, Appl. Phys. Lett. 85, 94 (2004); J.P. Huang and K. W. Yu, ”Second-harmonic generation in graded metallic films”, Oppt. Lett. 30, 275 (2005). [82] J. J. Xiao, K. Yakubo, and K.W. Yu, ”Harmonic vibrational excitations in graded elastic networks: Transition from phonons to gradons”, Phys. Rev. B 73, 054201(2006). BIBLIOGRAPHY 103 [83] H. Matsuda and K. Ishii, ”Localization of normal modes and energy transport in the disordered harmonic chain” , Suppl. Prog. Theor. Phys. 45, 56 (1970). [84] P. Grassberger, W. Nadler and L. Yang, ”Heat conduction and entropy production in a one-dimensional hard-particle gas”, Phys. Rev. Lett. 89,180601 (2002). [85] H. Zhao, L. Yi, F. Liu, and B. Xu, ”Influence of heat bath on the heat conductivity in disordered anharmonic chain”, Eur. Phys. J. B 54, 185 (2006). [86] M. Ge and K. Sattler, ”Observation of fullerene cones”, Chem. Phys. Lett. 220, 192 (1994). [87] A. Krishnan, et al. ”Graphitic cones and the nucleation of curved carbon surfaces”. Nature 388, 451 (1997). [88] J.-C.Charlier, and G.-M. Rignanese, ”Electronic structure of carbon nanocones”, Phys. Rev. Lett. 86, 5970 (2001). [89] Y. Guo , N. Karasawa, and W. A. III Goddard , Prediction of fullerene packing in C60 and C70 crestals, Nature 351, 464 (1991). [90] R. E. Tuzun, D. W. Noid , B. G. Sumpter, and R. C. Merkle, ”Dynamics of fluid flow inside carbon nanotubes”, Nanotechnology (3), 241 (1996). [91] F. F. Abraham, and I. P. Batra, ”Theoretical interpretation of atomic force microscope images of graphite”, Surf. Sci. 209, L125 (1989). BIBLIOGRAPHY 104 [92] G. Wu, and B.Li, ”Thermal rectification in carbon nanotube intramolecular junctions: Molecular dynamics calculations”, Phys. Rev. B 76, 085424 (2007). [93] H. Basch, R. Cohen, and M. A. Ratner, ”Interface geometry and molecular junction conductance: Geometric fluctuation and stochastic switching”, Nano Lett. 5, 1668, (2005). [94] J. Shiomi, and S. Maruyama, ”Non-Fourier heat conduction in a singlewalled carbon nanotube: Classical molecular dynamics simulations”, Phys. Rev. B, 73, 205420 (2006). [95] Y. Xia, and P. Yang, ”Chemistry and physics of nanowires, onedimensional nanostructures: Synthesis, characterization, and applications”, Adv. Mater. 15, 353 (2003). [96] Y. Cui, Q. Wei, H. Park, and C. M. Lieber, ”Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species”, Science 293, 1289 (2001). [97] Y. Huang, X. Duan, Y. Cui, L, J. Lauhon, K. Kim, and C. M. Lieber, ”Logic gates and computation from assembled nanowire building blocks”, Science 294, 1317 (2001). [98] L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, ”Epitaxial core-shell and core-multishell nanowire heterostructures”, Nature 420, 57 (2002). [99] R. Rurali and N. Lorente, ”Metallic and semimetallic silicon 100 nanowires”, Phys. Rev. Lett. 94, 026805 (2005). BIBLIOGRAPHY 105 [100] K. J. R. Rosman, and P. D. P. Taylor, ”Isotopic compositions of the elements”, Pure Appl. Chem. 70, 217(1998). [101] (a) J. Fridmann, et al. , ”Magic nucleus 42 Si”, Nature 435, 922 (2005); (b) M. Notani, et al. , ”New neutron-rich isotopes, produced by fragmentation of a 64 A MeV 48 34 Ne, 37 Na and 43 Si, Ca beam”, Phys. Lett. B 542, 49 (2002). [102] W. S. Capinski, H. J. Maris, E. Bauser, I. Silier, M. Asen-Palmer, T. Ruf, M. Cardona, and E. Gmelin, ”Thermal conductivity of isotopically enriched Si”, Appl. Phys. Lett. 71, 2109 (1997). [103] (a) W. S. Capinski, H. J. Maris, and S. Tamura, ”Analysis of the effect of isotope scattering on the thermal conductivity of crystalline silicon”, Phys. Rev. B 59, 10105 (1999); (b) A. Sparavigna, ”Influence of isotope scattering on the thermal conductivity of diamond”, Phys. Rev. B 65, 064305 (2002). [104] S. Tamura, Y. Tanaka, and H. J. Maris, ”Phonon group velocity and thermal conduction in superlattices”, Phys. Rev. B 60, 2627 (1999). [105] H. Matsuda, and K. Ishii, ”Localization of normal modes and energy transport in the disordered harmonic chain”, Prog. Theor. Phys. 45, 56 (1970). [106] R. Landauer, ”Electrical resistance of disordered one-dimensional lattices”, Philos. Mag. 21, 863 (1970). [107] D.E. Angelescu, M.C. Cross, M.L. Roukes, ”Heat transport in mesoscopic systems”, Superlattices Microstruct. 23, 673 (1998). BIBLIOGRAPHY 106 [108] L.G.C. Rego, G. Kirczenow, ”Quantized thermal conductance of dielectric quantum wires”, Phys. Rev. Lett. 81, 232 (1998); L.G.C. Rego, ”Thermal transport in the quantum regime”, Phys. Stat. Sol. (a) 187, 239 (2001). [109] M. Blencowe, ”Quantum energy flow in mesoscopic dielectric structures”, Phys. Rev. B 59, 4992 (1999); M. Blencowe, ”Quantum electromechanical systems”, Phys. Rep. 395, 159 (2004). [110] J.-S. Wang, J. Wang ,and J.T. L¨ u, ”Quantum thermal transport in nanostructures”, Eur. Phys. J. B 62, 381 (2008). [111] W. S. Capinski, H. J. Maris, E. Bauser, I. Sillier, M. Asen-Palmer, T. Ruf, M. Cardona, and E. Gmelin, ”Thermal conductivity of isotopically enriched Si”, Appl. Phys. Lett. 71, 2109 (1997). [112] (a) A. V. Gusev, A. M. Gibin, O. N. Morozkin, V. A. Gavva, and A. V. Mitin, ”Thermal Conductivity of 28 Si from 80 to 300 K”, Inorg. Mater 38, 1305 (2002); (b) R. K. Kremer, K. Graf, M. Cardona, et al. , ”Thermal conductivity of isotopically enriched 28 Si: revisited”, Solid State Commun. 131, 499 (2004); (c) D. G. Cahill, and Fumiya Watanabe, ”Thermal conductivity of isotopically pure and Ge-doped Si epitaxial layers from 300 to 550K”, Phys. Rev. B 70, 235322 (2004); (d) T. Ruf, R. W. Henn, M. Asen-Palmer, E. Gmelin, M. Cardona, H.-j. Pohl, G. G. Devyatych, and P. G. Sennikov, ”Thermal conductivity of isotopically enriched silicon”, Solid State Commun. 127, 257 (2003). [113] (a) A. P. Zhernov, ”The solution of the kinetic equation for phonon heat conductivity by the method of momenta and the influence of isotopic dis- BIBLIOGRAPHY 107 order on phonon heat conductivity of germanium and silicon crystals at T=300 K”, J. Exp. Theor. Phys. 93, 1074 (2001); (b) D. T. Morelli, J. P. Heremans, and G. A. Slack, ”Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors”, Phys. Rev. B 66, 195304 (2002); (c) A. Murakawa, H. Ishii, and K. Kakimoto, ”An investigation of thermal conductivity of silicon as a function of isotope concentration by molecular dynamics”, J. of Crystal Growth 267, 452 (2004); (d) D. A. Broido, A. Ward, and N. Mingo, ”Lattice thermal conductivity of silicon from empirical interatomic potentials”, Phys. Rev. B 72, 014308 (2005). [114] CASTEP is a commercial (and academic) software package which uses density functional theory with a plane wave basis set to calculate electronic properties of solids from first principles. (http://en.wikipedia.org/wiki/CASTEP) [115] (a) J. Che, T. Cagin, and W. A. Goddard III, ”Thermal conductivity of carbon nanotubes”, Nanotechnology 11, 65 (2000). (b) J. Che, T. Cagin, W. Deng, and W.A. Goddard III,”Thermal conductivity of diamond and related materials from molecular dynamics simulations”, J. Chemical Physics 113, 6888 (2000). [116] V. L. Gurevich, ”Transport in phonon systems”; North-Holland: Amsterdam (1986). [117] (a) T. Yao, ”Thermal properties of AlAs/GaAs superlattices”, Appl. Phys. Lett. 51, 1798 (1987); (b) X.Y.Yu, G. Chen, A.Verma, and J. S. Smith, ”Temperature dependence of thermophysical properties of BIBLIOGRAPHY 108 GaAs/AlAs periodic structure”, Appl. Phys. Lett. 67, 3554 (1995); (c) S.-M. Lee, D. Cahill, and R. Venkatasubramanian, ”Thermal conductivity of SiCGe superlattices”, Appl. Phys. Lett. 70, 2957 (1997); (d) S.T. Huxtable, A. R. Abramson, C-L Tien, and A. Majumdar et. al. , ”Thermal conductivity of Si/SiGe and SiGe/SiGe superlattices”, Appl. Phys. Lett. 80, 1737 (2002). [118] L. Wang, and B. Li, ”Reduction of thermal conductivity of anharmonic lattices”, Phys. Rev. B 74, 134204 (2006). [119] M.V. Simkin and G. D. Mahan, ”Minimum thermal conductivity of superlattices”, Phys. Rev. Lett. 84, 927 (2000). [120] A. Majumdar, ”Microscale heat conduction in dielectric thin film”, J. Heat Transf., 115, (1993). [121] G. Chen, ”Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices”, Phys. Rev. B 57, 14958 (1998). [122] P. Martin, Z. Aksamija, E. Pop, and U. Ravaioli, ”Impact of phononsurface roughness scattering on thermal conductivity of thin si nanowires”, Phys. Rev. Lett. 102, 125503 (2009). [123] A. Henry, and G. Chen, ”Spectral phonon transport properties of silicon based on molecular dynamics simulations and Lattice Dynamics”, J. Comput. Theor. Nanosci., 5, (2008). [124] A. Henry, and G. Chen,”High thermal conductivity of single polyethylene chains using molecular dynamics simulations”, Phys. Rev. Lett. 101, 235502 (2008). BIBLIOGRAPHY 109 [125] A. Henry, and G. Chen,”Anomalous heat conduction in polyethylene chains: Theory and molecular dynamics simulations”, Phys. Rev. B 79, 144305 (2009). [126] B. Becker, P. K. Schelling, and S. R. Phillpot, ”Interfacial phonon scattering in semiconductor nanowires by molecular-dynamics simulation”, J. Appl. Phys. 99, 123715 (2006). [127] G. Chen,”Particularities of heat conduction in nanostructures”, J. Nanoparticle Research 2, 199 (2000). [128] B. Li, and J. Wang, ”Anomalous heat conduction and anomalous diffusion in one-dimensional systems”, Phys. Rev. Lett. 91,044301 (2003). [129] G. Chen, D. Borca-Tasciuc, R. G. Yang; Nanoscale heat transfer, in Encyclopedia of nanoscience and nanotechnology; Nalwa, H. S., Ed.; American scientific publishers: Stevenson Ranch, CA ; Vol. 7, pp. 429-459 (2004). [130] S. Mazumder, and A. Majumdar, ”Monte Carlo study of phonon transport in solid thin films including dispersion and polarization”, J. Heat Tranf. 123, 749 (2001). [131] Y. Chen, D. Li, J. Lukes, and A. Majumdar, ”Monte Carlo simulation of silicon nanowire thermal conductivity”, J. Heat Tranf. 127, 1129 (2005). [132] C. J. Gomes, M. Madrid, J. V. Goicochea, and C. H. Amon,”In-plane and out-of-plane thermal conductivity of silicon thin films predicted by molecular dynamics”, J. Heat Tranf. 128, 1114 (2006). BIBLIOGRAPHY 110 [133] R. Prasher, T. Tong, and A. Majumdar, ”Approximate analytical models for phonon specific heat and ballistic thermal conductance of nanowires”, Nano Lett. 8, 99 (2008). [134] A. Balandin, and K. Wang, ”Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well”, Phys. Rev. B 58, 1544 (1998). [135] A. Khitun, A. Balandin, and K. L. Wang, ”Modification of the lattice thermal conductivity in silicon quantum wires due to spatial confinement of acoustic phonons”, Superlattices Microstruct. 26, 181 (1999). [136] Y.S. Ju, and K.E. Goodson, ”Phonon scattering in silicon films with thickness of order 100 nm”, Appl. Phys. Lett. 74, 3005 (1999). [137] Y. Zhang, and H. Zhao, ”Heat conduction in a one-dimensional aperiodic system”, Phys. Rev. E 66, 026106 (2002). [138] L.H. Liang, and B. Li, ”Size-dependent thermal conductivity of nanoscale semiconducting systems”, Phys. Rev. E 73, 153303 (2006). BIBLIOGRAPHY 111 Publication list Publications 1. Nuo Yang, Nianbei Li, Lei Wang, and Baowen Li, ”Thermal rectification and negative differential thermal resistance in mass graded systems”, Phys. Rev. B 76, 020301(R) (2007). 2. Nuo Yang, Gang Zhang, and Baowen Li, ”Ultra-low Thermal Conductivity of Isotope-Doped Silicon Nanowires”, Nano Lett. 8, 276 (2008). (This paper has been highlighted by Nature Asia-Pacific.) 3. Nuo Yang, Gang Zhang, and Baowen Li, ”Carbon Nanocone - A Practical Thermal Rectifier”, Appl. Phys. Lett. 93, 243111 (2009). (This paper has been selected for the Jan. 5, 2009 issue of Virtual Journal of Nanoscale Science & Technology.) 4. Nuo Yang, Gang Zhang, and Baowen Li, ”Thermal Rectification In Asymmetric Graphene Ribbons”, Appl. Phys. Lett. 95, 033107 (2009). 5. Nuo Yang, Gang Zhang, and Baowen Li, ”The Length Dependence of Thermal Conductivity of Silicon Nanowires”, Nano Today 5, 85 (R) (2010). Conferences Oral Presentations 1. ”Ultra Low Thermal Conductivity of Isotope Doped and Superlattice Structured Silicon Nanowire” and ”A Solid-State Thermal Rectifier from Carbon Nanocone”. The 2008 Asian Conference on Nano-science and Nano-technology (AsiaNANO2008), Singapore, Nov,2008. 2. ”Reduce Thermal Conductivity of Silicon Nanowires by Doping Isotopic Atoms” The 9th Frontier Science Symposium, Singapore, Oct 2008. BIBLIOGRAPHY 112 3. ”Ultra-low Thermal Conductivity of Isotope-Doped Silicon Nanowires”. The 5th Dynamics Days Asia Pacific (DDAP5), Nara, Japan, Sep, 2008. 4. ”Carbon Nano-cone: An Excellent Thermal Rectifier”. Transmission of Information and Energy in Nonlinear and Complex Systems (TIENCS), Singapore, June, 2008 5. ”A Thermal Rectifier from Cone-shaped Carbon Nanotube”. International Conference on Materials for Advanced Technologies & International Union of materials Research Societies International Conference in Asia 2009 (ICMAT & IUMRS-ICA 2009), Singapore, Jul, 2009. 6. ”The Size Effect on the Thermal Conductivity of Silicon Nanowires”. International Conference on Materials for Advanced Technologies & International Union of materials Research Societies International Conference in Asia 2009 (ICMAT & IUMRS-ICA 2009), Singapore, Jul, 2009. [...]... nanometers In the following search, the ther- 1.1 Thermal Transport in Low- Dimensional Systems 3 mal transport in bulk and nano -structures are introduced firstly Secondly, the application of nano-material in thermoelectrics is shown At the end of this chapter, molecular dynamics simulation methods and research objectives are presented 1.1 1.1.1 Thermal Transport in Low- Dimensional Systems Thermal Transport in. .. at low temperature and weak coupling in 1D lattice and β was 1/3 when there was coupling between longitudinal and transverse modes [16] The sufficient condition for keeping Fourier’s law in low dimensional system is still an open question Generally, studies have been focusing on disorders, chaos and the breaking of momentum conservation Zhao et al reported that the boundary condition was dominant in. .. harmonic chain, which means there is no energy diffusion and mode coupling 1.1 Thermal Transport in Low- Dimensional Systems 4 In the last few decades, there are many studies on the heat conduction in 1D lattices It was found that there was an abnormal conduction in a chain with nonlinear potential and the Fourier’s law was violated [5–14, 16–18] It was found that thermal conductivity of FPU-like chains diverged... of phonons in a solid than it is to control the flow of electrons In recent years more attention has been directed toward the phonon management on energy transport in dynamical systems and the emerging field is described as phononics Thermal diodes, thermal transistors and thermal logic gates, which are the basic 1.1 Thermal Transport in Low- Dimensional Systems 9 components of functional thermal devices,... for thermal energy transport which would reduce the efficiency of the rectifier Besides thermal diode, there are also some reports on other thermal devices In 2006, Li, Wang and Casati found the negative differential thermal resistance in nonlinear lattices, which provided the possibility of building the thermal transistor by a three-segment FK device [29] In the following year, Wang and Li realized a thermal. .. size independent in a system without the breaking of momentum conservation, the 1D coupled rotor model [22, 23] On the other hand, it was proposed that the momentum conservation was the sufficient condition for divergent thermal conductivity [9] 1.1.2 Thermal Transport in Quasi-1D Nano -Structures Recently, many researches focus on the thermal transport in quasi-1D materials, like silicon nanowires and. .. There was much debating on searching for a universal exponent value of β In 2002, Narayan and Ramaswamy asserted β should be 1/3 in 1D momentum-conserving systems by a renormalization group approach of the hydrodynamic equation of heat transport in a liquid [13] In the following year, using mode-coupling theory, Levi, Livi and Politi derived the universal exponent β = 2/5 [12, 14] Wang and Li found that... regime and anomalous conductivity in regular regime [7] However, Lepri et al found the anomalous 1.1 Thermal Transport in Low- Dimensional Systems 5 thermal conductivity in Fermi-Pasta-Ulam (FPU) -β chain, which had positive Lyapunov exponent and was chaotic [8] Later, Li et al showed that chaos was not even a necessary condition for normal thermal conductivity by finding finite thermal conductivity in 1D... new thermal properties in nano-materials are still not clearly understood In 2000, Berber et al predicted the super high thermal conductivity of an isolated (10, 10) single wall carbon nanotubes (SWCNT), 6600 W/mK at room temperature, by using classical molecular dynamics (MD) methods [34] This is a significant result, which motivated huge interest on researching thermal 1.1 Thermal Transport in Low- Dimensional. .. MD simulations [43] They solved the Boltzmann transport equation to explain the possibility of diffuse boundary scattering causing the thermal conductivity drop, which was observed in the MD simulation A few years later, Li et al showed experimentally the ultra -low thermal conductivity of single SiNW [4] The ultra -low thermal conductivity of SiNW could be mainly caused by two factors First, the confinement . THERMAL TRANSPORT IN LOW DIMENSIONAL GRADED STRUCTURES AND SILICON NANOWIRES YANG NUO NATIONAL UNIVERSITY OF SINGAPORE 2010 THERMAL TRANSPORT IN LOW DIMENSIONAL GRADED STRUCTURES AND SILICON. Introduction 1 1.1 Thermal Transport in Low- Dimensional Systems . . . . . . . . . 3 1.1.1 Thermal Transport in 1D Chains . . . . . . . . . . . . . 3 1.1.2 Thermal Transport in Quasi-1D Nano -Structures. the length scale of nanometers. In the following search, the ther- 1.1. Thermal Transport in Low- Dimensional Systems 3 mal transport in bulk and nano -structures are introduced firstly. Secondly,

Ngày đăng: 11/09/2015, 09:03

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN