Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 209 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
209
Dung lượng
5,53 MB
Nội dung
References Amora, M.R.; Torres, A.E.B.; Azevedo, D.C.S.; Cavalcante Jr., C.L. Charge and discharge cycles in a storage vessel for adsorbed natural gas, AIChE Annual Meeting, 2007. Arash, A.N.; Wan, M.A.W.D.; Mjalli, F.S. Comparative study of the textural characteristics of oil palm shell activated carbon produced by chemical and physical activation for methane adsorption, Chemical Engineering Research and Design, 89(6), pp.567-664, 2011. Azevedo, D.C.S.; Araujo, J.C.S.; Bastos-Neto, M.; Torres, A.E.B.; Jaguaribe, E.F.; Cavalcante, Jr., C.L. Microporous activated carbon prepared from coconut shells using chemical activation with zinc chloride, Microporous and Mesoporous Materials, 100, pp.361-364, 2007. Bagheri, N. and Abedi, J. Adsorption of methane on corn cobs based activated carbon, Chemical Engineering Research and Design, Article in press, 2011. Balathanigaimani, M.S.; Kang, H.C.; Shim, W.G.; Kim, C.; Lee, J.W.; Moon, H. Preparation of powdered activated carbon from rice husk and its methane adsorption properties, Korean Journal of Chemical Engineering, 23(4), pp.663668, 2006. Balathanigaimani, M.S.; Lee, M. J.; Shim, W.G.; Lee, J.W.; Moon, H. Charge and discharge of methane on phenol-based carbon monolith, Adsorption, 14, pp.525532, 2008. Barrett and Jon, Low pressure gas locked in carbon, Eureka, 15(4), pp.24-25, 1995. Bastos-Neto, M.; Torres, A.E.B.; Azevedo, D.C.S.; Cavalcante Jr., C.L. A theoretical and experimental study of charge and discharge cycles in a storage vessel for adsorbed natural gas, Adsorption, 11, pp. 147–157, 2005a. 169 References Bastos-Neto, M.; Torres, A.E.B.; Azevedo, D.C.S.; Cavalcante Jr., C.L. Methane adsorption storage using microporous carbons obtained from coconut shells, Adsorption, 11, pp.911-915, 2005b. Bastos-Neto, M.; Canabrava, D.V.; Torres, A.E.B.; Rodriguez-Castellón, E.; JiménezLópez, A.; Azevedo, D.C.S.; Cavalcante Jr., C.L. Effects of textural and surface characteristics of microporous activated carbons on the methane adsorption capacity at high pressures, Applied Surface Science, 253(13), pp. 5721-5725, 2007. Basumatary, R.; Dutta, P.; Prasad, M.; Srinivasan, K. Thermal modeling of activated carbon based adsorptive natural gas storage system, Carbon, 43, pp.541-549, 2005. Biloé, S.; Goetz, V.; Mauran, S. Characterization of adsorbent composite block for methane storage, Carbon, 39, pp.1653-1662, 2001a. Biloé, S.; Goetz, V.; Mauran, S. Dynamic discharge and performance of a new adsorbent for natural gas storage, AIChE Journal, 47(12), pp.2819-2830, 2001b. Biloé, S.; Goetza, V.; Guillotb A. Optimal design of an activated carbon for an adsorbed natural gas storage system, Carbon, 40, pp.1295-1308, 2002. Brady, T.A.; Rostam-Abadi, M.; Rood, M.J. Applications for activated carbons from waste tires: Natural gas storage and air pollution control, Gas Separation & Purification, 10, pp.97-102, 1996. Cardenas, A.R.; Pilehvari, A.A.; Heenan, W.A. Is there a hope for adsorbed natural gas (ANG) vehicles, SPE Proceedings-Gas Technology Symposium, pp151-158, 1996. 170 References Celzard, A. and Fierro, V. Preparing a suitable material designed for methane storage: A comprehensive report, Energy & Fuels, 19, pp.573-583, 2005. Celzard, A.; Albiniak, A.; Jasienko-Halat, M.; Marêché, J.F.; Furdin, G. Methane storage capacities and pore textures of active carbons undergoing mechanical densification, Carbon, 43, pp.1990–1999, 2005. Chakraborty, A.; Saha, B.B.; Koyama, S.; Ng, K.C. On the thermodynamic modeling of the isosteric heat of adsorption and comparison with experiments, Applied Physics Letter, 89, pp.171901, 2006. Chakraborty, A.; Saha, B.B.; Koyama, S.; Ng, K.C. Specific heat capacity of a single component adsorbent-adsorbate system, Applied Physics Letter, 90, pp. 171902, 2007. Chakraborty, A.; Saha, B.B.; Ng, K.C.; Koyama, S.; Srinivasan, K. Theoretical insight of physical adsorption for a single-component adsorbent + adsorbate system: I. Thermodynamic property surfaces, Langmuir, 25(4), pp.2204-2211, 2009. Chang, K.J. and Talu, O. Behaviour and performance of adsorptive natural gas storage cylinders during discharge, Applied Thermal Engineering, 16(5), pp.359-374, 1996. Chen, X.S.; Mcenaney, B.; Mays, T.J.; Alcañiz-Monge, J.; Cazorla-Amorós, D.; Linares-Solano, A. Theoretical and experimental studies of methane adsorption on microporous carbons, Carbon, 35(9), pp.1251-1258, 1997. Chen, J.; Lou, S.; Lu, S. Study on adsorbents for storage of natural gas and their performance, 1. Adsorbent production and property assessment for storage of natural gas, Journal of Fuel Chemistry and Technology, 27(5), pp.399-402, 1999. 171 References Choi, B.U.; Choi, D.K.; Lee, Y.W.; Lee, B.K. Adsorption equilibria of Methane, Ethane, Ethylene, Nitrogen, and Hydrogen onto activated carbon, Journal of Chemical Engineering & Data, 48, pp.603-607, 2003. Chua, H.T.; Ng, K.C.; Malek, A.; Kashiwagi, T.; Akisawa, A.; Saha, B.B. Modeling the performance of two-bed, silica gel-water adsorption chillers, International Journal of Refrigeration, 22, pp.194-204, 1998. Chua, H.T.; Ng, K.C.; Chakraborty, A.; Oo, N.M. Thermodynamic property fields of an adsorbate-adsorbent system, Langmuir, 19, pp.2254-2259, 2003. Cook, T.L.; Komodromos, C.; Quinn, D.F.; Ragan, S. Carbon (Edited by Burchell, T.D.), Materials for Advanced Technologies, Pergamon, New York, pp.269-302, 1999. Cracknell, R.F.; Gordon, P.; Gubbins, K.E. Influence of pore geometry on the design of microporous materials for methane storage, Journal of Physical Chemistry, 97(2), pp.494-499, 1993. Dai, X.D.; Liu, X.M.; Zhao, G.; Qian, L.; Qiao, K.; Yan, Z.F. Treatment of activated carbon for methane storage, Asia-pacific Journal of Chemical Engineering, 3, pp.292-297, 2008. Dai, X.D.; Liu, X.M.; Xing, W.; Qian, L.; Qiao, K.; Yan, Z.F. Natural gas storage on activated carbon modified by metal oxides, Journal of Porous Materials, 16, pp.27-32, 2009. Ding, T.F.; Ozawa, S.; Yamazaki, T.; Watanuki, I.; Ogino, Y. A generalized treatment of adsorption of methane onto various zeolites, Langmuir, 4, pp.392-396, 1988. Do, D.D. Adsorption Analysis: Equilibria and Kinetics, Imperial College Press, Singapore, 1998. 172 References Dubinin, M.M., The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces, Chemical Review, 60, pp.1–70, 1960. Düren, T.; Sarkisov, L.; Yaghi, O.M.; Snurr, R.Q. Design of new materials for methane storage, Langmuir, 20, pp.2683-2689, 2004. Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; Michael O’Keeffe, M.; Yaghi, O.M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage, Science, 295, pp.469-472, 2002. Ergun, S. Fluid Flow through Packed Columns, Chemical Engineering Progress, 48(2), pp.89-94, 1952. Esteves, I.A.A.C.; Lopes, M.S.; Nunes, P.M.; Eusébio, M.F.; Mota, J.P.B. Automatic filtering and reodorization of adsorbed natural gas storage systems, Adsorption, 11, pp.905-910, 2005. Esteves, I.A.A.C.; Lopes, M.S.S.; Nunes, P.M.C.; Mota, J.P.B. Adsorption of natural gas and biogas components on activated carbon, Separation & Purification Technology, 62, pp.281-296, 2008. Everett, D.H. Thermodynamics of adsorption, Transactions of the Faraday Society, 46, pp.453-458, 942-949, 950-957, 1950. Frère, M.G. and De Weireld, G.F. High-pressure and high-temperature excess adsorption isotherms of N2, CH4, and C3H8 on Activated Carbon, Journal of Chemical & Engineering Data, 47, pp.823-829, 2002. Fu, G. and Zhou, L. Performance simulation of adsorbed natural gas storage cylinders during charge, Journal of Chemical Industry and Engineering (China), 54(10), pp.1418-1423, 2003. 173 References García Blancoa, A.A.; Alexandre De Oliveiraa, J.C.; Lópeza, R.; Moreno-Pirajánb, J.C.; Giraldoc, L.; Zgrablicha, G.; Sapaga, K. A study of the pore size distribution for activated carbon monoliths and their relationship with the storage of methane and hydrogen, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 357, pp.74-83, 2010. Glueckauf, E. Theory of chromatography, Part 10: Formula for diffusion into spheres and their application to chromatography, Transactions of the Faraday Society, 51, pp.1540-1551, 1955. Guan, C.; Loo, L.S.; Wang, K.; Yang, C. Methane storage in carbon pellets prepared via a binderless method, Energy Conversion and Management, 52, pp.12581262, 2011. Hill, T.L. Thermodynamics of adsorption, Transactions of the Faraday Society, 47, pp.376-380, 1951. Himeno, S.; Komatsu, T.; Fujita, S. High pressure adsorption equilibria of methane and carbon dioxide on several activated carbons, Journal of Chemical & Engineering Data, 50, pp.369-376, 2005. Hirata, S.C.; Couto, P.; Lara, L.G.; Cotta, R.M. Modeling and hybrid simulation of slow discharge process of adsorbed methane tanks, International Journal of Thermal Sciences, 48, pp.1176-1183, 2009. Inomata, K.; Kanazawa, K.; Urabe, Y.; Ozono, H.; Araki, T. Natural gas storage in activated carbon pellets without a binder, Carbon, 40, pp.87-93, 2002. Karger, J. and Ruthven, D. M. Diffusion in Zeolites and Other Microporous Solids, Willey Interscience, New York, 1992. 174 References Kim, B.H.; Kum, G.H.; Seo, Y.G. Adsorption of methane and ethane into singlewalled carbon nanotubes and slit-shaped carbonaceous pores, Korean Journal of Chemical Engineering, 20(1), pp.104-109, 2003. Kitagawa, S.; Kitaura, R.; Noro, S. Functional porous coordination polymers, Angewandte Chemie International Edition, 43(18), pp.2334-2375, 2004. Kondo, M.; Okubo, T.; Asami, A.; Noro, S.; Yoshitomi, T.; Kitagawa, S.; Ishii, T.; Matsuzaka, H.; Seki, K. Rational synthesis of stable channel-like cavities with methane gas adsorption properties: [{Cu2(pzdc)2(L)}n] (pzdc=pyrazine-2,3dicarboxylate; L=a pillar ligand), Angewandte Chemie International Edition, 38(1), pp.140-143, 1999. Latham, J.L. and Burgess, A.E. Elementary Reaction Kinetics, Butterworth, London, pp.13-24, 1981. Loh, W.S.; Kumja, M.; Rahman, K.A.; Ng, K.C.; Saha, B.B.; Koyama, S.; ElSharkawy, I.I. Adsorption parameter and heat of adsorption of activated carbon/HFC-134a pair, Heat Transfer Engineering, 31(11), pp.910-916, 2010a. Loh, W.S.; Rahman, K.A.; Ng, K.C.; Saha, B.B.; Chakraborty, A. Parametric studies of charging and discharging in adsorbed natural gas vessel using activated carbon, Modern Physics Letters B, 24(13), pp.1421-1424, 2010b. Loh, W.S.; Rahman, K.A.; Saha, B.B.; Chakraborty, A.; Ng, K.C.; Chun, W.G.; Sorption Rate and Isotherms of Methane on Pitch-Based Activated Carbon using Volumetric Method, The 5th Asian Conference on Refrigeration and Airconditioning, Proceedings of 5th ACRA, June 7-9, 2010c, Tokyo, Japan, Paper No. 051. 175 References Loh, W.S.; Rahman, K.A.; Chakraborty, A.; Saha, B.B.; Choo, Y.S.; Khoo, B.C.; Ng, K.C. Improved Isotherm data for Adsorption of Methane on Activated Carbons, Journal of Chemical Engineering & Data, 55, pp.2840–2847, 2010d. Lozano-Castelló, D.; Alcañiz-Monge, J.; De La Casa-Lillo, M.A.; Cazorla-Amorós, D.; Linares-Solano, A. Advances in the study of methane storage in porous carbonaceous materials, Fuel, 81(14), pp.1777-1803, 2002a. Lozano-Castelló, D.; Cazorla-Amorós, D.; Linares Solano, A.; Quinn, D.F. Activated carbon monoliths for methane storage: influence of binder, Carbon, 40, pp.28172825, 2002b. Lozano-Castelló, D.; Cazorla-Amorós, D.; Linares-Solano, A. Powdered activated carbons and activated carbon fibers for methane storage: A comparative study, Energy & Fuels, 16, pp.1321-1328, 2002c. Lua, A.C. and Guo, J. Activated carbon prepared from oil palm stone by one-step CO2 activation for gaseous pollutant removal, Carbon, 38, pp.1089-1097, 2000. Ma, S.; Sun, D.; Simmons, J.M.; Collier, C.D.; Yuan, D.; Zhou, H.C. Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake, Journal of American Chemical Society, 130, pp.10121016, 2008. MacDonald, I.F.; El-Sayed, M.S.; Mow, K.; Dullien, F.A.L. Flow through porous media-The Ergun equation revisited, Industrial & Engineering Chemistry Fundamentals, 18(3), pp.199-208, 1979. MacDonald, J.A.F. and Quinn, D.F. Adsorbents for methane storage made by phosphoric acid activation of peach pits, Carbon, 34(9), pp.1103-1108, 1996. 176 References Malbrunot, P.; Vidal, D.; Vermesse, J. Storage of gases at room temperature by adsorption at high pressure, Applied Thermal Engineering, 16(5), pp.375-382, 1996. Marsh, H. and Rodríguez-Reinoso, F. Activated Carbon, Elsevier Science & Technology Books, United Kingdom, 2006. Matranga, K.R.; Myers, A.L.; Glandt, E.D. Storage of natural gas by adsorption on activated carbon, Chemical Engineering Science, 47(7), pp.1569-1579, 1992. Matsuda, R.; Kitaura, R.; Kitagawa, S.; Kubota, Y.; Belosludov, R.V.; Kobayashi, T.C.; Sakamoto, H.; Chiba, T.; Takata, M.; Kawazoe, Y; Mita, Y. Highly controlled acetylene accommodation in a metal-organic microporous material, Nature, 436(14), pp.238-241, 2005. Menon , V.C. and Komarneni, S. Porous adsorbents for vehicular natural gas storage: A review, Journal of Porous Materials, 5, pp.43–58, 1998. Molina-Sabio, M.; Almansa, M.; Rodríguez-Reinoso, F. Phosphoric acid activated carbon discs for methane adsorption, Carbon, 41, pp.2113-2119, 2003. Mota, J.P.B. Impact of gas composition on natural gas storage by adsorption, AIChE Journal, 45(5), pp.986-996, 1999. Mota, J. P. B. Adsorbed natural gas technology: Recent advances in adsorption processes for environmental protection and security, Springer, Netherlands, pp.177-192, 2008. Mu, B. and Walton, K.S. High-pressure adsorption equilibrium of CO2, CH4, and CO on an impregnated activated carbon, Journal of Chemical & Engineering Data, 56, pp.390-397, 2011. 177 References Myers, A.L. Thermodynamics of adsorption in porous materials, AIChE Journal, 48, pp.145-160, 2002. Myers A.L. and Monson, P.A. Adsorption in porous materials at high pressure: Theory and experiment, Langmuir, 18, pp.10261-10273, 2002. Namvar-Asl, M.; Soltanieh, M.; Rashidi, A.; Irandoukht, A. Modeling and preparation of activated carbon for methane storage I. Modeling of activated carbon characteristics with neural networks and response surface method, Energy Conversion and Management, 49, pp.2471-2477, 2008. Olivares-Marin, M.; Fernandez-Gonzalez, C.; Macias-Garcia, A.; Gomez-Serrano, V. Preparation of activated carbons from cherry stones by activation with potassium hydroxide, Applied Surface Science, 252, 5980-5983. 2006. Otowa, T.; Tanibata, R.; Itoh, M. Production and adsorption characteristics of MAXSORB: high-surface-area active carbon, Gas Separation & Purification, 7(4), pp.241-245, 1993. Ozawa, S.; Kusumi, S.; Ogino, Y. Physical Adsorption of Gases at High Pressure. Journal of Colloid and Interface Science, 56, pp.83-91, 1976. Parkyns, N.D. and Quinn, D.F. Porosity in Carbons: Characterisation and Applications (Edited by Patrick, J.W.), Halsted Press, New York, pp. 293-325, 1995. Prauchner, M.J. and Rodríguez-Reinoso, F. Preparation of granular activated carbons for adsorption of natural gas, Microporous and Mesoporous Materials, 109, pp.581-584, 2008. Pupier, O.; Goetz, V.; Fiscal, R. Effect of cycling operations on an adsorbed natural gas storage, Chemical Engineering and Processing, 44, pp.71-79, 2005. 178 References Quinn, D. F. and MacDonald, J. A. Natural Gas Storage, Carbon, 30(7), pp.1097-1103, 1992. Quinn D.F.; MacDonald J.A.; Sosin K. Microporous carbons as adsorbents for methane storage, American Chemical Society, Preprints (Div. Fuel Chem.) 39, pp.451-455, 1994. Rahman, K.A.; Loh, W.S.; Yanagi, H.; Chakraborty, A.; Saha, B.B.; Chun, W.G.; Ng, K.C. Experimental adsorption isotherm of methane onto activated carbon at suband supercritical temperatures, Journal of Chemical Engineering & Data, 55, pp.4961–4967, 2010. Rahman, K.A.; Loh, W.S.; Chakraborty, A.; Saha, B.B.; Chun, W.G.; Ng, K.C. Thermal enhancement of charge and discharge cycles for adsorbed natural gas storage, Applied Thermal Engineering, 31, pp.1630-1639, 2011. Richard, M.A.; Bénard, P.; Chahine, R. Gas adsorption process in activated carbon over a wide temperature range above the critical point. Part 1: modified DubininAstakhov model, Adsorption, 15, pp.43-51, 2009a. Richard, M.A.; Bénard, P.; Chahine, R. Gas adsorption process in activated carbon over a wide temperature range above the critical point. Part 2: conservation of mass and energy, Adsorption, 15, pp.53-63, 2009b. Rios, R.B.; Silva, F.W.M.; Eurico, A.; Torres, B.; Azevedo, D.C.S.; Cavalcante, Jr., C.L. Adsorption of methane in activated carbons obtained from coconut shells using H3PO4 chemical activation, Adsorption, 15, pp.271-277, 2009. Rios, R.B.; Bastos-Neto, M.; Amora Jr., M.R.; Torres, A.E.B.; Azevedo, D.C.S.; Cavalcante Jr., C.L. Experimental analysis of the efficiency on charge/discharge cycles in natural gas storage by adsorption, Fuel, 90, pp.113-119, 2011. 179 References Rodríguez-Reinoso, F.; Nakagawa, Y.; Silvestre-Albero, J.; Juárez-Galán, J.M.; Molina-Sabio, M. Correlation of methane uptake with microporosity and surface area of chemically activated carbons, Microporous and Mesoporous Materials, 115, pp.603–608, 2008. Rouquerol, J.; Avnir, D.; Fairbridge, C.W.; Everett, D.H.; Haynes, J.H.; Pernicone, N.; Ramsay, D.F.; Sing, K.S.W.; Unger, K.K. Recommendations for the characterization of porous solids, Pure and Applied Chemistry, 66, pp.17391758, 1994. Rouquerol, F.; Rouquerol, J.; Sing, K. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, Academic Press, United Kingdom, pp.10-11, 18-20, 1999. Rowsell, J.L.C.; Spencer, E.C.; Eckert, J.; Howard, J.A.K.; Yaghi, O.M. Gas adsorption sites in a large-pore metal-organic framework, Science, 309, pp.13501354, 2005. Ruthven, D.M. and Derrah, R.I. Sorption in Davison-5a molecular sieves, The Canadian Journal of Chemical Engineering, 50, pp.743-747, 1972. Ruthven, D.M. Principles of Adsorption and Adsorption Processes, John Wiley and Sons, London, 1984. Sacsa Diaz, R.P. and Sphaier, L.A. Development of dimensionless groups for heat and mass transfer in adsorbed gas storage, International Journal of Thermal Sciences, 50, pp.599-607, 2011. Sáez, A. and Toledo, M. Thermal effect of the adsorption heat on an adsorbed natural gas storage and transportation systems, Applied Thermal Engineering, 29, pp.2617-2623, 2009. 180 References Saha, B.B.; Boelman, E.C.; Kashiwagi, T. Computer simulation of a silica gel water adsorption refrigeration cycle-the influence of operating conditions on cooling output and COP, ASHRAE Transactions Res., 101(2), pp.348-357, 1995. Saha, B.B.; Koyama, S.; El-Sharkawy, I.I.; Habib, K.; Srinivasan, K.; Dutta, P. Evaluation of Adsorption Parameters and Heats of Adsorption through Desorption Measurements, Journal of Chemical & Engineering Data, 52, pp.2419-2424, 2007. Saha, B.B.; El-Sharkawy, I.I.; Habib, K.; Koyama, S.; Srinivasan, K. Adsorption of equal mass fraction near an azeotropic mixture of pentafluoroethane and 1,1,1trifluoroethane on activated carbon, Journal of Chemical & Engineering Data, 53, pp.1872-1876, 2008. Salem, M.M.K.; Braeuer, P.; Szombathely, M.v.; Heuchel, H.; Harting, P.; Quitzsch, K. Thermodynamics of high-pressure adsorption of Argon, Nitrogen, and Methane on microporous adsorbents, Langmuir, 14, pp.3376-3389, 1998. Sami, S.M. and Tribes, C. An improved model for predicting the dynamic behaviour of adsorption systems, Applied Thermal Engineering, 16(2), pp.149-161, 1996. Santos, J.C.; Marcondes, F.; Gurgel, J.M.; Performance analysis of a new tank configuration applied to the natural gas storage systems by adsorption, Applied Thermal Engineering, 29 pp.2365-2372, 2009. Seo, J.S.; Whang, D.; Lee, H.; Jun, S.I.; Oh, J.; Jeon, Y.J.; Kim, K.A. A homochiral metal-organic porous material for enantioselective separation and catalysis, Nature, 404, pp.982-986, 2000. Sircar, S. Isosteric heats of multicomponent gas adsorption on heterogeneous adsorbents, Langmuir, 7, pp.3065, 1991. 181 References Sircar, S.; Golden, T.C.; Rao, M.B. Activated carbon for gas separation and storage, Carbon, 34(1), pp. l-12, 1996. Setzmann, U. and Wagner, W. A new equation of state and tables of thermodynamic properties for methane covering the range from the melting line to 625 K at pressures up to 1000 MPa, Journal of Physical and Chemical Reference Data, 20(6), pp.1061-1151, 1991. Smith D.M. and Williams F.L., Adsorption and diffusion in western United States Coals, Coal Science and Chemistry (Edited by A. Volborth), Elsevier, pp.381, 1987. Sun, J.; Rood, M.J.; Rostam-Abadi, M.; Lizzio, A.A. Natural gas storage with activated carbon from a bituminous coal, Gas Separation & Purification, 10( 2), pp.91-96, 1996. Sun. J.; Brady, T.A.; Rood, M.J.; Lehmann, C.M.; Rostam-Abadi, M.; Lizzio, A.A. Adsorbed natural gas storage with activated carbons made from Illinois coals and scrap tires, Energy & Fuels, 11, pp.316-322, 1997. Sun, Y.; Liu, C.; Su, W.; Zhou, Y.; Zhou, L. Principles of methane adsorption and natural gas storage, Adsorption, 15, pp.133-137, 2009. Suzuki, M. Adsorption Engineering, Elsevier Science Publishers, Tokyo, 1990. Talu, O. An overview of adsorptive storage of natural gas, Fundamentals of Adsorption, Proceedings of 4th International Conference on Fundamentals of Adsorption, Kyoto, May, pp.17-22, 1992. Talu, O. and Myers, A.L. Molecular simulation of adsorption: Gibbs dividing surface and comparison with experiment, AIChE Journal, 47, pp.1160, 2001. 182 References Tien, C. Adsorption Calculation and Modeling, Series in Chemical Engineering, Butterworths-Heinemann, Boston, 1994. Vasiliev, L.L.; Kanonchik, L.E.; Mishkinis, D.A.; Rabetsky, M.I. Adsorbed natural gas storage and transportation vessels, International Journal of Thermal Sciences, 39, pp,1047-1055, 2000. Walton, K.S.; Cavalcante Jr., C.L.; LeVan, M.D. Adsorption equilibrium of alkanes on a high surface area activated carbon prepared from Brazilian coconut shells, Adsorption, 11, pp.107-111, 2005. Wang, X.; French, J.; Kandadai, S.; Chua, H.T.; Adsorption measurements of methane on activated carbon in the temperature range (281 to 343) K and pressures to 1.2 MPa, Journal of Chemical & Engineering Data, 55, pp.2700-2706, 2010. Wegrzyn, J. and Gurevich, M. Adsorbent Storage of Natural Gas, Applied Energy, 55(2), 77-83, 1996. Wu, H.; Simmons, J.M.; Liu, Y.; Brown, C.M.; Wang, X.S.; Ma, S.; Peterson, V.K.; Southon, P.D.; Kepert, C.J.; Zhou, H.C.; Yildirim, Y.; Zhou, W. Metal-organic frameworks with exceptionally high methane uptake: where and how is methane stored? Chemistry – A European Journal, 16(17) 5205-5214, 2010. Yang, R.T. Gas Separation by Adsorption Processes, Butterworths, Boston, 1987. Yang, X.D.; Zheng, Q.R.; Gu, A.Z.; Lu, X.S. Experimental studies of the performance of adsorbed natural gas storage system during discharge, Applied Thermal Engineering, 25, pp.591-601, 2005. Yeon, S.H.; Osswald, S.; Gogotsi, Y.; Singer, J.P.; Simmons, J.M.; Fischer, J.E.; LilloRódenas, M.A.; Linares-Solano, A. Enhanced methane storage of chemically and 183 References physically activated carbide-derived carbon, Journal of Power Sources, 191, pp. 560-567 2009. Young, D.M. and Crowell, A.D. Physical Adsorption of Gases, Chapter 3, Butterworths, London, 1962. Zhang, H.; Chen, J.; Guo, S. Preparation of natural gas adsorbents from high-sulfur petroleum coke, Fuel 87(3), pp.304-311, 2008. Zhang, S.Y.; Talu, O.; Hayhurst, D.T. High pressure adsorption of methane in NaX, MgX, CaX, SrX, and BaX, Journal of Physical Chemistry, 95, pp.1722-1726, 1991. Zhang, T.; Walawender, W.P.; Fan, L.T. Grain-based activated carbons for natural gas storage, Bioresource Technology, 101, pp.1983-1991, 2010. Zhou, Z. Thermal analysis of slow discharge from a pressurized natural gas storage tank, Applied Thermal Engineering, 17(11), pp.1099-1110, 1997. Zhou, L.; Zhou, Y.; Li, M.; Chen, P.; Wang, Y. Experimental and modeling study of the adsorption of supercritical methane on a high surface activated carbon, Langmuir, 16, pp.5955-5959, 2000. Zhou, L.; Li, M.; Sun, Y.; Zhou, Y. Effect of moisture in microporous activated carbon on the adsorption of methane, Carbon, 39, pp.771-785, 2001. Zhou, L.; Liu, J.; Su, W.; Sun, Y.; Zhou, Y. Progress in studies of natural gas storage with wet adsorbents, Energy & Fuels, 24, pp.3789-3795, 2010. 184 [...]... ANG storage system with internal thermal control of the activated carbon bed based on finned type heat exchanger Simulation is performed using the theoretical models developed to evaluate the thermal behavior and the storage capacity of the ANG storage system during its cyclic processes and f) to conduct experiments of an ANG storage prototype mainly for the charge and discharge processes The storage. .. Introduction 1.2 Motivation for this Research Due to the increasing demand of NG throughout the world, the ANG storage system has become popular in the field of developing efficient gas storage and transportation technologies Although the conventional storage techniques, such as the CNG and LNG methods, which are widely used for gas storage and transportation purposes, are associated operational complexity... the Storage Cylinder and AC Bed Heat Exchanger………………………………………………………… 195 x Summary Summary The extensive usage of the adsorbed natural gas (ANG) storage system is mainly hindered by the thermal effects during its cyclic operations due to the adsorption and desorption processes In this research, the ANG storage system is comprehensively studied both experimentally and theoretically for enhanced storage. .. 163 7.2 Limitations and Recommendations 166 References 168 Appendix A Determination of Regeneration Temperature for the Activated Carbons ………………………………………………………… 185 Appendix B Experimental Adsorption Uptake Data………………….…… 188 Appendix C Drawings and Dimensions of the Cryostat……………………… 191 Appendix D Drawings and Dimensions of the Storage Cylinder and AC Bed Heat Exchanger……………………………………………………... the storage capacity of the ANG storage system depends on the porous structure of the adsorbent material The most promising adsorbents are the microporous activated carbons with relatively high packing densities (Quinn and Macdonald, 1992; Alcãz-monge et al., 2009) and high specific surface area (Menon and Komarneni, 1998) Considerable efforts have been made for the development of suitable activated carbons. .. brief description of the adsorption fundamentals In the second section, developments of adsorbents for the ANG storage system are described following by a thorough review 7 Introduction of the activated carbons Finally, an extensive literature review on advances in the ANG storage system both in theory and experiment is provided Chapter 3 describes experimental details of measuring adsorption characteristics,... Chapter 5 provides a theoretical analysis for the thermodynamic quantities of an adsorption system The adsorption uptake data for methane /activated carbon systems are used in this chapter to evaluate the adsorbed phase thermodynamic quantities at various pressure, temperature and uptake conditions Chapter 6 presents the detailed theoretical study and experimental investigations of an ANG storage prototype... operating conditions during the charge and the discharge cycles 132 Table B.1 Experimental uptake data for adsorption of methane onto Maxsorb III 188 Table B.2 Experimental uptake data for adsorption of methane onto ACF (A-20) 189 Table B.3 Experimental uptake data for adsorption of methane onto Chemviron 190 xix Nomenclature Nomenclature A Adsorption potential [kJ/kg] C Adsorption equilibrium...Table of Contents 5.3.3 Heat of Adsorption 107 5.3.4 Adsorbed Phase Specific Heat Capacity 111 5.3.5 Adsorbed Phase Entropy and Enthalpy 113 5.4 Conclusions 115 Chatper 6 Theoretical and Experimental Study of the ANG Storage Prototype 117 6.1 Introduction 117 6.2 Theoretical Modeling of the ANG Storage System .118 6.2.1 Thermodynamic... years, adsorbed natural gas (ANG) storage system has attracted considerable attention as a possible alternative to the CNG and the LNG methods for energy storage and transportation purposes (Vasiliev et al., 2000; Bastos-Neto et al., 2005a; Mota, 2008) The ANG storage system provides high energy density but operates at much lower pressure (usually 2 to 4 MPa) than the CNG method Also, the ANG system . EXPERIMENTAL AND THEORETICAL STUDIES ON ADSORBED NATURAL GAS STORAGE SYSTEM USING ACTIVATED CARBONS KAZI AFZALUR RAHMAN NATIONAL UNIVERSITY OF SINGAPORE 2011 EXPERIMENTAL AND THEORETICAL STUDIES ON. Saha, W.G. Chun, K.C. Ng, Theoretical modeling and simulation for adsorbed natural gas storage system using activated carbon, Proceedings of the 9 th International Conference on Sustainable Energy. 14 2.3.2 Activated Carbons 15 2.3.2.1 Precursor materials and synthesis of activated carbons 16 2.3.2.2 Features of a good carbon adsorbent for natural gas storage 17 2.3.2.3 Types of activated carbons