1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Modeling and simulation of electron transport through nanoscale heterojunctions

147 567 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 147
Dung lượng 1,44 MB

Nội dung

Modeling and Simulation of Electron Transport through Nanoscale Heterojunctions Argo Nurbawono BEng. Hons. University of Bristol A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF PHYSICS NATIONAL UNIVERSITY OF SINGAPORE 2011 Acknowledgements I am mostly indebted to Dr. Chun Zhang, whose labour assistance has made this work possible. He is the man who helped me to tackle numerous dirty details which otherwise look too impossible to solve without resorting to his vast experience. I sincerely wish to thank Prof. Yuan Ping Feng for his kind assistance through out the years. I also thank him to let me access the computing clusters and to introduce me to various people on the first place. I thank everyone from various corners of the department who helped me in many occasions, the staff, friends and for those who taught me many advanced topics in physics. Last but not least, I thank Prof. Chong Kim Ong and Prof. Dagomir Kaszlikowski for their kind recommendations to the department during my initial PhD scholarship applications. Many thanks to all of you! Argo Nurbawono Singapore, 2011. i ii Contents Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of tables and figures . . . . . . . . . . . . . . . . . . . . . . . . . viii Literature reviews 1.1 1.2 Nanoscale heterojunctions . . . . . . . . . . . . . . . . . . . . . 1.1.1 Weakly correlated nano heterojunction . . . . . . . . . . . 1.1.2 Strongly correlated nano heterojunction . . . . . . . . . . An overview on quantum transport theory . . . . . . . . . . . . . Theoretical formalisms 2.1 2.2 2.3 2.4 11 Green’s function for quantum transport . . . . . . . . . . . . . . . 11 2.1.1 Equilibrium formalisms . . . . . . . . . . . . . . . . . . 11 2.1.2 Nonequilibrium formalisms . . . . . . . . . . . . . . . . 15 Resonant tunneling model . . . . . . . . . . . . . . . . . . . . . 19 2.2.1 Model Hamiltonian . . . . . . . . . . . . . . . . . . . . . 19 2.2.2 Current equation . . . . . . . . . . . . . . . . . . . . . . 21 Combining NEGF with DFT . . . . . . . . . . . . . . . . . . . . 23 2.3.1 General methods . . . . . . . . . . . . . . . . . . . . . . 23 2.3.2 DFT in LCAO basis sets . . . . . . . . . . . . . . . . . . 24 2.3.3 Density matrix and Hamiltonian of the centre region . . . 28 Superconductivity . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.4.1 Cooper pairing of the condensate . . . . . . . . . . . . . 31 2.4.2 Mean field BCS theory . . . . . . . . . . . . . . . . . . . 34 2.4.3 Josephson effects . . . . . . . . . . . . . . . . . . . . . . 36 iii Optical nanowelding of CNT-metal contacts 3.1 3.2 3.3 3.4 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.1.1 CNT for transistors . . . . . . . . . . . . . . . . . . . . . 41 3.1.2 Schottky barrier in CNT devices . . . . . . . . . . . . . . 42 3.1.3 Optical nanowelding . . . . . . . . . . . . . . . . . . . . 44 Model and simulation methods . . . . . . . . . . . . . . . . . . . 46 3.2.1 Simulation procedures . . . . . . . . . . . . . . . . . . . 46 3.2.2 Geometric set ups . . . . . . . . . . . . . . . . . . . . . . 48 Numerical results and discussions . . . . . . . . . . . . . . . . . 49 3.3.1 Interface properties . . . . . . . . . . . . . . . . . . . . . 49 3.3.2 Current-voltage (I-V) characteristics . . . . . . . . . . . . 51 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Conductance anomaly in SNS heterojunctions 4.1 4.2 4.3 4.4 57 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.1.1 Andreev reflections . . . . . . . . . . . . . . . . . . . . . 57 4.1.2 Prior theoretical models . . . . . . . . . . . . . . . . . . 60 Model for SNS junctions . . . . . . . . . . . . . . . . . . . . . . 62 4.2.1 Hamiltonian and potential symmetries . . . . . . . . . . . 62 4.2.2 Time dependent current formulation . . . . . . . . . . . . 64 4.2.3 Average current formulation . . . . . . . . . . . . . . . . 67 Numerical results and discussions . . . . . . . . . . . . . . . . . 69 4.3.1 General features of the supercurrent . . . . . . . . . . . . 69 4.3.2 The differential conductance anomaly . . . . . . . . . . . 71 4.3.3 S-N-N systems . . . . . . . . . . . . . . . . . . . . . . . 76 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 SNN heterojunction under radiations iv 41 79 5.1 Interactions with radiations . . . . . . . . . . . . . . . . . . . . . 79 5.2 Quantum dot under semiclassical fields . . . . . . . . . . . . . . 84 5.2.1 Hamiltonian in Floquet-Fourier basis . . . . . . . . . . . 84 5.2.2 Floquet quasienergies . . . . . . . . . . . . . . . . . . . . 88 5.2.3 Time averaged current . . . . . . . . . . . . . . . . . . . 90 5.3 Numerical results and discussions . . . . . . . . . . . . . . . . . 92 5.3.1 5.3.2 5.3.3 5.4 For A > and B = . . . . . . . . . . . . . . . . . . . . 92 For A = and B > . . . . . . . . . . . . . . . . . . . . 94 For both A, B > . . . . . . . . . . . . . . . . . . . . . 99 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Conclusions and future works 103 6.1 Optical Nanowelding of CNT-metal contacts . . . . . . . . . . . . 103 6.2 Superconducting nano heterojunctions . . . . . . . . . . . . . . . 104 A Abbreviations and Symbols 107 B Derivations of relevant equations 111 B.1 BCS free propagators . . . . . . . . . . . . . . . . . . . . . . . . 111 B.2 Time dependent current formulation . . . . . . . . . . . . . . . . 114 B.3 Equation of motion in Nambu space . . . . . . . . . . . . . . . . 115 B.4 Selfenergy in time domain . . . . . . . . . . . . . . . . . . . . . 117 B.5 Selfenergy in frequency domain . . . . . . . . . . . . . . . . . . 120 C Publications 125 References 127 v Summary The thesis discusses some transport aspects of nanoscale heterojunctions, the archetypal devices which constitute a considerable part of the rapidly growing nanotechnology and nanoscience today. It discusses two distinct types of nanoscale heterojunctions, namely weakly correlated and strongly correlated heterojunctions. The weakly correlated heterojunction employs normal metal for its leads, where the particles behave like typical 3D electron gas and the standard density functional theory allows rigorous ab initio analysis for such systems. On the other hand, the strongly correlated heterojunction employs superconductors for its leads, therefore appropriate models need to be used to describe the essential physics from which the transport properties are derived. The weakly correlated heterojunction consists of two normal metals and a carbon nanotube (CNT) in between, a ubiquitous system in nanoscale experimental devices. Despite of all its novel and great promises, a full exploitation of the device has so far been hindered by various problems, and one of them is the interface problems with the metal probes which typically produce considerable resistance. Schottky barriers formed at CNT-metal contacts have been well known to be crucial for the performance of CNT based field effect transistors (FETs). Through an extensive first principles calculations we show that an optical nanowelding process can drastically reduce the Schottky barriers at CNT-metal interfaces, resulting in significantly improved conductivity. Results presented may have great implications in future design CNT-based nanoelectronics. The strongly correlated heterojunction consists of two superconducting leads and a quantum dot in between. A phenomenon of so-called differential conductance anomaly is predicted to occur in such devices at high bias when the transport is theoretically linear. The phenomenon is caused by the potential symmetry which affects the pinning mechanisms of the localized level by the superconducting gaps of the leads. Due to this, we anticipate a counter intuitive phenomenon where the linear conductivity may be increasing as the coupling strength between the leads and the quantum dot is reduced. The phenomenon can be used to investigate the symmetry across the quantum dot which would otherwise be impossible to probe using other methods. A recent experiment may already indicate the exisvi tence of such effects. We then consider another hybrid superconducting system and study the effect of electron tunneling under external microwave radiations. The microwave radiations stimulate interlevel quantum transitions on the multilevel quantum dot. We develop a method to combine Floquet theory and nonequilibrium Green’s function in order to describe supercurrent tunneling process through the heterojunction. We find that the effect of transition amplitude or the coupling between levels is reflected at the current-bias (I-V) curves only at Rabi frequency. The radiation splits the dc resonance and the separation between each splits is proportional to the coupling between the localized levels. The observation provides a possibility for an experimental inference of the interlevel coupling from simple time averaged measurements. In all parts of the transport analysis we employ nonequilibrium Green’s function method which is considered to be the most rigorous and systematic way to treat most quantum transport problems. Some other secondary and on going works are not included in this thesis in order to maintain a coherent picture of the presentation. vii List of tables and figures Tables: • Table 3.1 on page 51: Table of Schottky barrier reductions for various welding temperatures. Figures: • Figure 1.1 on page 8: Two dimensional electron gas diagram. • Figure 2.1 on page 16: Keldysh time contour integral. • Figure 2.2 on page 20: Resonant tunneling diagram. • Figure 2.3 on page 25: ATK model diagram. • Figure 2.4 on page 33: Photon and phonon mediated interactions. • Figure 2.5 on page 34: Cooper pair diagram in k-space. • Figure 3.1 on page 46: Optical nanowelding diagram. • Figure 3.2 on page 47: Approximate temperature profile for the welding simulation. • Figure 3.3 on page 48: Three different configurations for CNT attachments. • Figure 3.4 on page 49: Dipole moment at the interface before and after welding. • Figure 3.5 on page 50: Optimized structures and charge transfer diagrams of CNT devices. • Figure 3.6 on page 52: Plane average potential along transport axis. • Figure 3.7 on page 53: I-V curves for the system with aluminium and palladium leads. • Figure 3.8 on page 56: Comparison of the I-V curves for all three attachments. viii APPENDIX B. DERIVATIONS OF RELEVANT EQUATIONS i d ˆ ΞLi,k (t, t1 ) = − dt1 ˆ r (t, t1 )tˆ⋆ (t1 ) − Ξ ˆ Li,k (t, t1 ) G Li,l Ll l ǫk↑ −∆ ∆ −ǫk↓ Thus they are equivalent. So, finally we have gathered all the terms we need, ˆ r (t, t1 ) = g ˆjr (t, t1 ) + G i,j ˆ Li,k (t, t1 )tˆLj (t1 )ˆ Ξ gjr (t, t1 ) k ˆ Ri,k (t, t1 )tˆRj (t1 )ˆ Ξ gjr (t, t1 ) + k ˆjr (t, t1 ) + = g ˆ r (t, t2 )tˆ⋆ (t2 )ˆ G gkr (t2 , t1 )tˆLj (t1 )ˆ gjr (t, t1 ) i,l Ll dt2 l k ˆ r (t, t2 )tˆ⋆ (t2 )ˆ G gkr (t2 , t1 )tˆRj (t1 )ˆ gjr (t, t1 ) i,l Rl dt2 + l k ˆjr (t, t1 ) + = g ˆ r (t, t2 ) G i,l dt2 k l + ˆ r (t, t2 ) G i,l dt2 l ˆjr (t, t1 ) + = g ˆ jr (t, t1 ) tˆ⋆Ll (t2 )ˆ gkr (t2 , t1 )tˆLj (t1 ) g ˆjr (t, t1 ) tˆ⋆Rl (t2 )ˆ gkr (t2 , t1 )tˆRj (t1 ) g k ˆ r (t, t2 )Σ ˆ r (t2 , t1 )ˆ G gjr (t, t1 ) i,l Ll,j dt2 l + ˆ r (t, t2 )Σ ˆ r (t2 , t1 )ˆ G gjr (t, t1 ) i,l Rl,j dt2 l ˆjr (t, t1 ) + = g ˆ r (t, t2 )Σ ˆ r (t2 , t1 )ˆ G gjr (t, t1 ) i,l l,j dt2 l ˆr = Σ ˆ r +Σ ˆ r . For the lesser self-energy where the total selfenergy is simply Σ l,j Ll,j Rl,j < ˆ Σ , the process is essentially the same but would end up with (tˆ⋆ gˆ< tˆ) instead of (tˆ⋆ gˆr tˆ). This simple expression for the selfenergy is easily obtained because we have a non-interacting quantum dot. B.5 Selfenergy in frequency domain The explicit expressions for the selfenergies in frequency domain in chapter three can be obtained using resonant tunneling model, valid for non-interacting 120 B.5. SELFENERGY IN FREQUENCY DOMAIN quantum dot, r/< r/< ΣL/Rij (t, t1 ) = t∗L/Ri gL/Rk (t, t1 ) tL/Rj (B.25) k Using the expression for the BCS free propagator, the (11) component of the left retarded selfenergy (VL = 0) is, Σr(11)L;m,n (ǫ) = dtei(ǫ+mω)(t−t1 ) (−i)θ(t − t1 )ΓL βL (ǫ) dt1 ei(m−n)ωt1 ∞ dtei(ǫ+mω)(t−t1 ) (−i)ΓL βL (ǫ) dt1 ei(m−n)ωt1 = t1 ∞ d(t − t1 )ei(ǫ+mω)(t−t1 ) (−i)ΓL βL (ǫ) dt1 ei(m−n)ωt1 = = −i i(m−n)ωt1 dt1 e ∞ d(t − t1 )ei(ǫ+mω)(t−t1 ) ΓL βL (ǫ) −∞ i = − ΓL δm,n βL (ǫ + mω) i = − ΓL δm,n βL (ǫm ) where we introduce notation ǫm = (ǫ + mω). The (22) component is identical, while the (12) component is, Σr(12)L;m,n (ǫ) = i = dt1 ei(m−n)ωt1 dtei(ǫ+mω)(t−t1 ) θ(t − t1 )ΓL βL (ǫ) ∆L −iφL e ǫ ∆L −iφL i e ΓL δm,n βL (ǫm ) ǫm the (21) component is similar. For the right retarded self-energy we set VR = −V , and make use of the substitution V = ω/2 (from the Josephson frequency), Σr(11)R;m,n (ǫ) = dt1 ei(m−n)ωt1 dtei(ǫ+mω)(t−t1 ) (−i)θ(t − t1 )ΓR βR (ǫ)e−iV (t1 −t) 121 APPENDIX B. DERIVATIONS OF RELEVANT EQUATIONS ∞ dtei(ǫ+(m+ )ω)(t−t1 ) ΓR βR (ǫ) i(m−n)ωt1 = −i dt1 e t1 ∞ i = − d(t − t1 )ei(ǫ+(m+ )ω)(t−t1 ) ΓR βR (ǫ) i(m−n)ωt1 dt1 e −∞ i = − ΓR δm,n βR (ǫ + (m + )ω) 2 i = − ΓR δm,n βR (ǫm+1/2 ) The (12) component can be derived using a similar way, Σr(12)R;m,n (ǫ) = i dtei(ǫ+mω)(t−t1 ) θ(t − t1 )ΓR βR (ǫ) dt1 ei(m−n)ωt1 ∞ = i dtei(ǫ+(m+1/2)ω)(t−t1 ) ΓR βR (ǫ) i(m−n+1)ωt1 dt1 e ∆R −iφR iV (t1 +t) e e ǫ ∆R −iφR e ǫ t1 = i ∆R −iφR e ΓR δm,n−1 βR (ǫm+1/2 ) ǫm+1/2 and the rest of equation can be derived using the same way. The lesser selfenergy is given by, Σ< L/R;ij (t, t1 ) = i dǫ ˜ L/R ΓL/R fL/R (ǫ)Re[βL/R (ǫ)]e−iǫ(t−t1 ) Σ 2π The (11) component of left lesser selfenergy is, Σ< (11)L;m,n (ǫ) = dt1 ei(m−n)ωt1 dtei(ǫ+mω)(t−t1 ) iΓL fL (ǫ)Re[βL (ǫ)] = iΓL δm,n f (ǫm )Re[β(ǫm )] and for example the (12) component of the lesser right self-energy, Σ< (12)R;m,n (ǫ) = 122 dt1 ei(m−n)ωt1 dtei(ǫ+mω)(t−t1 ) iΓR fR (ǫ)Re[β(ǫ)] − ∆R −iφL iV (t1 +t) e e ǫ B.5. SELFENERGY IN FREQUENCY DOMAIN dtei(ǫ+mω)(t−t1 ) eiω(t1 +t−t1 +t1 )/2 iΓR fR (ǫ)Re[β(ǫ)] − = dt1 ei(m−n)ωt1 = dt1 ei(m−n+1)ωt1 dtei(ǫ+(m+1/2)ω)(t−t1 ) iΓR fR (ǫ)Re[β(ǫ)] − = iΓR δm,n−1 f (ǫm+1/2 )Re[β(ǫm+1/2 )] − ∆R ǫm+1/2 ∆R −iφL e ǫ ∆R −iφL e ǫ e−iφL Collecting all the terms we have for the SNS system selfenergies, i ΣrL;m,n (ǫ) = − ΓL δmn βL (ǫm ) ΣrR;m,n (ǫ) i = −i ΓR − ∆ǫmL e−iφL − ∆ǫmL eiφL −∆R −iφR e δm,n−1 βR (ǫm+1/2 ) ǫm+1/2 δmn βR (ǫm+1/2 ) −∆R iφR δm,n+1 βR (ǫm−1/2 ) ǫm−1/2 e Σ< L;m,n (ǫ) = iΓL δmn fL (ǫm )Re[βL (ǫm )] (B.26) − ∆ǫmL eiφL δmn βR (ǫm−1/2 ) (B.27) − ∆ǫmL e−iφL (B.28) Σ< R;m,n (ǫ) = iΓR δmn fR (ǫm+1/2 )Re[βR (ǫm+1/2 )] −∆R −iφR e δm,n−1 fR (ǫm+1/2 )Re[βR (ǫm+1/2 )] ǫm+1/2 −∆R iφR δm,n+1 fR (ǫm−1/2 )Re[βR (ǫm−1/2 )] ǫm−1/2 e δmn fR (ǫm−1/2 )Re[βR (ǫm−1/2 )] (B.29) 123 APPENDIX B. DERIVATIONS OF RELEVANT EQUATIONS 124 Appendix C Publications 1. Optical nanowelding of CNT-metal contacts: An effective way to control Schottky barrier and performance of CNT-based transistors, A. Nurbawono, A. Zhang, Y. Cai, et al., submitted to ACS Nano - under review. 2. Manipulating absorption and diffusion of hydrogen atom on graphene by mechanical strain, M. Yang, A. Nurbawono, C. Zhang, et al., submitted to American Institute of Physics (AIP) Advances 1, 032109 (2011). 3. C-doped ZnO Nanowires: electronic structures, magnetic properties, and a possible spintronic device, Z. Dai, A. Nurbawono, A. Zhang, et al., Journal of Chemical Physics 134, 104706 (2011). Selected for Vir. J. Nan. Sci. & Tech. 23, 11 (2011). 4. The roles of potential symmetry in transport properties of superconducting quantum point contacts, A. Nurbawono , Y. P. Feng and C. Zhang, Journal of Computational and Theoretical Nanoscience 7, 2448 (2010). 5. Electron tunneling through a hybrid superconducting-normal mesoscopic junction under microwave radiation, A. Nurbawono A, Y. P. Feng and C. Zhang, Physical Review B 82, 014535 (2010). Selected for Vir. J. Appl. Supercond. 19, (2010). 6. Two-dimensional graphene superlattice made with partial hydrogenation, M. Yang, A. Nurbawono, C. Zhang, et al., Applied Physics Letters 96, 125 APPENDIX C. PUBLICATIONS 193115 (2010). 7. Differential conductance anomaly in superconducting quantum point contacts, A. Nurbawono, Y. P. Feng, E. Zhao, et al., Physical Review B 80, 184516 (2009). Selected for Vir. J. Appl. Supercond. 17, 11 (2009). 126 REFERENCES References [1] J. Kong et al., Science 287, 622 (2000). [2] P.G. Collins et al., Science 287, 1801 (2000). [3] M. F. Islam et al., Phys. Rev. Lett. 93, 037404 (2004). [4] D. A. Stewart and F. L´eonard, Phys. Rev. Lett. 93, 107401 (2004). [5] D. S. Hecht et al., Nano Letters 6, 2031 (2006). [6] H. Sugie et al., Applied Physics Letters 78, 2578 (2001). [7] J. Zhang et al., Applied Physics Letters 86, 184104 (2005). [8] A tunable carbon nanotube electromechanical oscillator, V. Sazonova et al., Nature 431, 284 (2004). [9] J. U. Lee et al., Applied Physics Letters 85, 145 (2004). [10] K. Bosnick et al., Applied Physics Letters 89, 163121 (2006). [11] See reviews such as: The physics of carbon nanotube devices, F. L´eonard, William Andrew Publishing, NY, USA (2009). [12] C. Zhou, J. Kong, E. Yenilmez and H. Dai, Science 290, 1552 (2000). [13] S. Tans, A. Verschueren and C. Dekker, Nature 393 49 (1998). [14] M. L¨uders et al. Ab initio theory of superconductivity. I. Density functional formalism and approximate functionals. Phys. Rev. B 2005, 72, 024545. 127 REFERENCES [15] M. A. Marques et al., Ab initio theory of superconductivity. II. Application to elemental metals. Phys. Rev. B 2005, 72, 024546. [16] R. J. Soulen et al., Science 282, 85 (1998). [17] P. M. Tedrow et al., Physics Report 238, 173 (1994). [18] P. D. Johnson et al., Core level spectroscopies for magnetic phenomena. NATO Advanced Study Institute, Series B: Physics Vol. 345, PLenum Press, New York 1995. [19] I. I. Mazin et al., Journal of Applied Physics 89, 7576 (2001). [20] G. J. Strijkers, Phys. Rev. B 63, 104510 (2001). [21] See for example, Sensing with superconducting point contacts, A. Nurbawono and Chun Zhang, Journal of Sensors (MDPI Publishing, Basel, Switzerland), invited review paper to be published in 2012. [22] E. Scheer et al., Phys. Rev. Lett. 78, 3535 (1997). [23] J. C. Cuevas et al., Phys. Rev. Lett. 80, 1066 (1998). [24] S. -H. Ji et al., Phys. Rev. Lett. 100, 226801 (2008). [25] See eg. Fundamentals of carrier transport, Mark Lundstrom, Cambridge University Press, New York (2000). [26] Progress in Nonequilibrium Green’s Functions II, M. Bonitz and D. Semkat (Eds.), World Scientific, New Jersey (2003). [27] Progress in Nonequilibrium Green’s Functions III, M. Bonitz and A. Filinov (Eds.), J. Phys.: Conf. Ser. 35 (2006). [28] Quantum Statistical Mechanics, Leo P. Kadanoff and Gordon Baym, W. A. Benjamin, Inc., New York (1962). [29] G. Baym and L. P. Kadanoff, Phys Rev. 124, 287 (1961). [30] L. V. Keldysh, ZhETF 47, 1515 (1964) or Sov. Phys.-JETP 20, 235 (1965). 128 REFERENCES [31] Paul C. Martin and Julian Schwinger, Phys. Rev. 115, 1342 (1959). [32] R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957). Rep. Prog. Phys. 29, 255 (1966). [33] T. Matsubara, Prog. Theor. Phys. 14, 351-378 (1955). [34] Quantum Kinetics in Transport and Optics of Semiconductors, H. Haug and A. -P. Jauho, Springer New York (2008). [35] Mesoscopic Phenomena in Solids, B. L. Altshuler, P. A. Lee and R. A. Webb, Elsevier, Amsterdam (1991). [36] P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985). [37] B. J. van Wees, H. van Houten et al. Phys. Rev. Lett. 60, 848 (1988). [38] See for example, Quantum theory of many-particle systems, A. L. Fetter and J. D. Walecka, Dover Publications (2003), or Many-particle physics, Gerald D. Mahan, Plenum, New York (1981), or Many-body quantum theory in condensed matter physics, Henrik Bruus and Karsten Flensberg, Oxford University Press (2002). [39] Electrical transport in Nanoscale systems, Massimiliano Di Ventra, Cambridge University Press, 2008. ISBN 978-0-521-89634-4. [40] P. Danielewicz, Annals of Physics 152, 239-304 (1984). [41] Antti-Pekka Jauho, Ned S. Wingreen and Yigal Meir, Phys. Rev. B, 50, 5528 (1994). [42] Numerical studies of electronic transport through graphene nanoribbons with disorder, Petra Dietl, diploma thesis, Karlsruhe Universitat (2009). [43] D. S. Fisher and P. A. Lee, Phys. Rev. B, 23, 6851 (1981). [44] Pablo Ordejon, Emilio Artacho and Jos M. Soler, Phys. Rev. B 53, R10441 (1996). 129 REFERENCES [45] For ab-initio transport formalism see J. M. Soler et al. J. Phys: Condensed Matter 14, 2745 (2002); M. Brandbyge et al. Phys. Rev. B 65, 165401 (2002); J. Taylor et al. Phys. Rev. B 63, 245407 (2001). [46] For an introduction see eg. Density functional theory of atoms and molecules, R. G. Parr and W. Yang, Oxford University Press, New York (1989) or A primer in density functional theory, C. Fiolhais, F. Nogueira, M. Marques, Springer, New York (2003). [47] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992). [48] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981). [49] S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys. 58, 1200 (1980). [50] O. F. Sankey and D. J. Niklewski, Phys. Rev. B, 40, 3979 (1989). [51] J. Bardeen, L. N. Cooper and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957). [52] For a review see eg. Introduction to superconductivity, Michael Tinkham, McGraw Hill, New York (1996). [53] Yoichiro Nambu, Phys. Rev. 117, 648 (1960). [54] B. D. Josephson, Phys. Lett. 1, 251 (1962); Adv. Phys. 14, 419 (1965); Rev. Mod. Phys. 36, 216 (1964). [55] A. F. Andreev, Sov. Phys. JETP 19, 1228 (1964). [56] L. P. Gor’kov, Zh. Eksp. Teor. Fiz. 36, 1918 (1959). Sov. Phys. JETP 36, 1364 (1959). [57] The Feynman Lectures on Physics, Vol. III, chapter 21. Richard P. Feyman, Robert B. Leighton and Matthew Sands. Addison Wesley, 1989. [58] Carbon nanotube was apparently discovered long before Ijima’s 1991 paper: Helical microtubules of graphitic carbon, Nature 354, 56 (1991). An example of a prior work before Ijima was by Oberlin: Filamentous growth of carbon through benzene decomposition, Journal of Crystal Growth 32, 335 (1976) 130 REFERENCES and even a Russian scientist claimed to have found it in 1951. However we shall defer from discussing this lengthy issue. [59] For a brief review, see eg. R.H. Baughman, A. A. Zakhidov and W. A. de Heer, Science 297, 787 (2002), and the references therein. [60] A. Javey, R. Tu, D. B. Farmer, J. Guo, R. G. Gordon and H. Dai, Nano Letters 5, 345 (2005). [61] J. U. Lee, P. P. Gipp and C. M. Heller, Appl. Phys. Lett. 85, 145 (2004). [62] Wenjie Liang, Marc Bockrath, Dolores Bozovic, Jason H. Hafner, M. Tinkham and Hongkun Park, Nature 411, 665 (2001). [63] Zhen Yao, Charles L. Kane, and Cees Dekker, Phys. Rev. Lett. 84, 2941 (2000). [64] Z. Yao et al., Top. Appl. Phys. 80, 147 (2001). [65] R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and Ph. Avouris, Appl. Phys. Lett. 73, 2447 (1998). [66] Hyongsok T. Soh, Calvin F. Quate, Alberto F. Morpurgo, Charles M. Marcus, Jing Kong, and Hongjie Dai, Appl. Phys. Lett. 75, 627 (1999). [67] Ali Javey, Jing Guo, Damon B. Farmer, Qian Wang, Erhan Yenilmez, Roy G. Gordon, Mark Lundstrom, and Hongjie Dai, Nano Letters 4, 1319 (2004). [68] R. V. Seidel, A. P. Graham, J. Kretz, B. Rajasekharan, G. S. Duesberg, M. Liebau, E. Unger, F. Kreupl, and W. Hoenlein, Nano Letters 5, 147 (2005). [69] K. Zhang, G. M. Stocks and J. Zhong, Nanotechnology 18, 285703 (2007). [70] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). [71] Liu Yang and Jie Han, Phys. Rev. Lett. 85, 154 (2000). [72] E. D. Minot, Yuval Yaish, Vera Sazonova, Ji-Yong Park, Markus Brink, and Paul L. McEuen, Phys. Rev. Lett. 90, 156401 (2003). 131 REFERENCES [73] Liu Yang, M. P. Anantram, Jie Han, and J. P. Lu, Phys. Rev. B 60, 13874 (1999). [74] Electronic Structure : Basic Theory and Practical Methods, Richard M. Martin, Cambridge University Press, New York (2004). [75] Raymond T. Tung, Materials Science and Engineering R 35, 1-318 (2001). [76] W. Schottky, Z. Physik 113, 367 (1939). [77] N. F. Mott, Proc. Roy. Soc. (London) 171, 27 (1939). [78] A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, Nature 424, 654 (2003). [79] Y. Yaish, J.-Y. Park, S. Rosenblatt, V. Sazonova, M. Brink, and P. L. McEuen, Phys. Rev. Lett. 92, 046401 (2004). [80] Zhihong Chen, Joerg Appenzeller, Joachim Knoch, Yu-ming Lin, and Phaedon Avouris, Nano Letters 5, 7, 1497 (2005). [81] A. Javey, Q. Wang, W. Kim, and H. Dai, IEDM Technical Digest, Piscataway, NJ: IEEE Press, 2003, pp. 31.2.1-4. [82] Johannes Svensson, Abdelrahim A Sourab, Yury Tarakanov, Dong Su Lee, Seung Joo Park, Seung Jae Baek, Yung Woo Park, and Eleanor E B Campbell, Nanotechnology 20, 175204 (2009). [83] S Jejurikar, D Casterman, P B Pillai, O Petrenko, M M De Souza, A Tahraoui, C Durkan and W I Milne, Nanotechnology 21, 215202 (2010). [84] V. Vitale, A. Curioni and W. Andreoni, JACS Communications 130, 5848 (2008) [85] C. A. Mead and W. G. Spitzer, Phys. Rev. 134, A713 (1964). [86] F. Leonard and J. Tersoff, Phys. Rev. Lett. 84, 4693 (2000). [87] F. Leonard and A. A. Talin, Phys. Rev. Lett. 97, 026804 (2006). 132 REFERENCES [88] H. H. Richardson, Z. N. Hickman, A. O. Govorov,A. C. Thomas, W. Zhang, M. E. Kordesch, M. E. Nano Letters 6, 783, (2006). [89] P. Mohrke, J. Rhensius, J. -U. Thiele, L. J. Heyderman, M. Klaui, Solid State Communications 150, 489 (2010). [90] V. Heine, Phys. Rev. 138, A1689 (1965); S. G. Louie and M. L. Cohen, Phys. Rev. B 13, 2461 (1976); C. Tejedor et al. J. Phys. C 10, 2163 (1977). [91] Raymond T. Tung, Phys. Rev. B 64 205310 (2001). [92] R. G. Dandrea and C. B. Duke, J. Vac. Sci. Technol. A Vol. 11, No. 4, pp. 848 (1993). [93] Changxin Chen, Lijun Yan, Eric Siu-Wai Kong and Yafei Zhang, Nanotechnology 17, 2192 (2006). [94] Dorte Norgaard Madsen, Kristian Molhave, Ramona Mateiu, Anne Marie Rasmussen, Michael Brorson, Claus J. H. Jacobsen, and Peter Boggild, Nano Letters 3, 1, 47 (2003). [95] Min-Feng Yu, Oleg Lourie, Mark J. Dyer, Katerina Moloni, Thomas F. Kelly, and Rodney S. Ruoff, Science 287, 637 (2000). [96] J. Muster et al. J. Vac. Sci. Technol. B Vol. 16, No. 5, pp. 2796 (1998). [97] L. Chico, Vincent H. Crespi, Lorin X. Benedict, Steven G. Louie, and Marvin L. Cohen, Phys. Rev. Lett. 76, 971 (1996). [98] M. Octavio, M. Tinkham, G. E. Blonder and T. M. Klapwijk, Phys. Rev. B, 27, 6739 (1983); E. N. Bratus, V. S. Shumeiko and G. Wendin, Phys. Rev. Lett. 74, 2110 (1995); D. V. Averin and A. Bardas, Phys. Rev. Lett. 75, 1831 (1995). [99] G. E. Blonder, M. Tinkham and T. M. Klapwijk, Phys. Rev. B, 25, 4515 (1982). [100] Qing-feng Sun, Jian Wang and Tsung-han Lin, Phys. Rev. B, 59, 13126 (1998). 133 REFERENCES [101] N. S. Wingreen, K. W. Jacobsen and J. W. Wilkins, Phys. Rev. B, 40, 11834 (1989). [102] J. C. Cuevas, A. Martin-Rodero and A. Levy Yeyati, Phys. Rev. B, 54, 7366 (1996). [103] D. Rogovin and D. J. Scalapino, Annals of Physics, 86, (1974). [104] N. van der Post, E. T. Peters, I. K. Yanson and J. M. van Ruitenbeek, Phys. Rev. Lett. 73, 2611 (1994). [105] B. J. Vleeming, C. J. Muller, M. C. Koops, and R. de Bruyn Ouboter, Phys. Rev. B 50, 16741 (1994). [106] Hideaki Takayanagi, Tatsushi Akazaki and Junsaku Nitta, Phys. Rev. Lett. 75, 3533 (1995). [107] Shuai-Hua Ji, Tong Zhang, Ying-Shuang Fu, Xi Chen, Xu-Cun Ma, Jia Li, Wen-Hui Duan, Jin-Feng Jia and Qi-Kun Xue1, Phys. Rev. Lett. 100, 226801 (2008). [108] Alexei Marchenkov, Zhenting Dai, Brandon Donehoo, Robert N. Barnett and Uzi Landman, Nature Nanotechnology 2, 481 (2007). [109] R. Landauer, Philos. Mag. 21, 823 (1970). [110] Electronic transport in mesoscopic systems, Supriyo Datta, Cambridge University Press (1995). [111] Qing-feng Sun, Hong Guo and Jian Wang, Phys. Rev. B, 65, 075315 (2002). [112] A. L. Yeyati, J. C. Cuevas, A. Lopez-Dalavos and A. Martin-Rodero, Phys. Rev. B, 55, R6137 (1997). [113] C. A. Stafford and Ned S. Wingreen, Phys. Rev. Lett. 76, 1916 (1996). [114] I. Franco, M. Shapiro and P. Brummer. Phys. Rev. Lett. 99, 126802 (2007). [115] P. Makk, Sz. Csonka and A. Halbritter, Phys. Rev. B, 78, 045414 (2008). 134 REFERENCES [116] S. Shapiro, Phys. Rev. Lett. 11, 80 (1963). [117] M. Chauvin, P. vom Stein, H. Pothier, P. Joyez, M. E. Huber, D. Esteve and C. Urbina, Phys. Rev. Lett. 97, 067006 (2006). [118] J. C. Cuevas, J. Heurich, A. Martin-Rodero, A. Levy Yeyati, and G. Schon, Phys. Rev. Lett. 88, 157001 (2002). [119] G. Floquet, Ann. l’Ecol. Norm. Sup. 12, 47 (1883). [120] John H. Shirley, Phys. Rev. 138, B979 (1965). [121] C. Cohen-Tannoudji and S. Haroche, J. Phys. (Paris) 30, 153 (1969). [122] P. K. Tien and J. P. Gordon, Phys. Rev. 129, 647 (1963). [123] Qing-feng Sun, Jian Wang and Tsung-han Lin, Phys. Rev. B, 59, 13126 (1998). [124] Y. Avishai, A. Golub and A. D. Zaikin, Europhysics Letters, 54, 640 (2001). [125] H. Drexler, D. Leonard, W. Hansen, J. P. Kotthaus and P. M. Petroff, Phys. Rev. Lett. 73, 2252 (1994). 135 [...]... (bio)chemical sensors [1,2] , optoelectronic devices [5,3,4] , field emission devices [6,7] , electromechanicals [8] and electronic devices [9,10] An overview of its basic properties is available in many good review articles and books [11] , and we 2 1.1 NANOSCALE HETEROJUNCTIONS shall only discuss some relevant aspects related to electronic devices The simplest realization of a CNT electronics is perhaps a... 4 1.1 NANOSCALE HETEROJUNCTIONS that individual transmissions of a quantum contact were ever determined experimentally, since its prediction fifty years ago by Landauer [109] Since then, the microscopic Hamiltonian theory is becoming the mainstream in the subsequent development of superconducting transport A typical nanoscale contact consists only of a small number of eigenchannels and each of them... second type of nanoscale heterojunction is a hybrid superconductingnormal nanoscale junction, where one or both of the leads are superconducting Superconductivity is the result of the instability of the Fermi surface from which a completely new phase of the system appears under the influence of strong correlations between the particles The quasiparticles are called Cooper pairs, which are pairs of electrons... review of the literature on the recent developments in experimental and theoretical works of nanoscale heterojunctions, especially for carbon nanotube (CNT) and superconducting point contacts A list of abbreviations and symbols used in the thesis can be found in appendix A 1.1 Nanoscale heterojunctions While the efforts to miniaturize electronic devices continue in order to cram ever more components... polarization of the normal leads The BTK theory basically extends the Bogoliubov de Gennes equation and adapts certain boundary conditions at the interface between superconductor and normal metal Derivations of the BTK formalisms and its experimental applications can also be found in some review papers [21] An important landmark in the development of quantum mechanical theory of superconducting transport. .. density of integrated circuits doubles every two years 1 CHAPTER 1 LITERATURE REVIEWS regions with the desired optical properties In this thesis we are going to discuss specifically about nanoscale heterojunctions, a topic of quite significant portion in the development of nanotechnology and nanoscience today The relevant physical scales for the heterojunctions is determined by the phase coherence and it... The transport analysis in this system may be conveniently simulated with the available ab initio or first principle method based on density functional theory (DFT) It basically relies only on a few assumptions such as Born-Oppenheimer and pseudopotentials, and it computes the electronic properties directly based on the detailed atomic character of the constituents Most of the nano heterojunctions are of. .. Hamiltonians such as systems under the influence of external field or with dissipative process From the early works of Kadanoff, Baym [28,29] and Keldysh [30] , the NEGF method has made substantial contributions to the development of quantum kinetics of interacting many-body systems in general Along with important contributions from Martin and Schwinger [31] , and also Kubo [32] , the early NEGF method successfully... approach [34] Problems related to dissipations and memory effects have since been overcome, and the NEGF provides satisfactory information on the statistical and dynamical behaviours for systems with inherent quantum behaviours Applications of NEGF in the area of quantum transport typically focus on the regimes of extremely short length scales (∼1 nm) and extremely short time scales (∼1 fs) where the... nanotubes, they can be hundreds of nanometers and electrons travel effectively under ballistic transport throughout the entire tubes, and decoherence by scattering only takes place at the very end at 7 CHAPTER 1 LITERATURE REVIEWS 6 2 Vg metal QPC Conductance (2e /h) metal QPC 2DEG 2DEG 4 2 Vg 0 metal QPC metal QPC 0 2 4 6 8 Gate voltage Figure 1.1: Example of two dimensional electron gases (2DEG) on a . Modeling and Simulation of Electron Transport through Nanoscale Heterojunctions Argo Nurbawono BEng. Hons. University of Bristol A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT. subsequent development of superconducting transport. A typical nanoscale contact consists only of a small number of eigenchannels and each of them is characterized by a transmission coefficient τ n . Each of them. electromechanicals [8] and electronic devices [9,10] . An overview of its basic properties is available in many good review articles and books [ 11] , and we 2 1.1. NANOSCALE HETEROJUNCTIONS shall

Ngày đăng: 10/09/2015, 15:48

TỪ KHÓA LIÊN QUAN