1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Reducing pathological accumulations of phosphorylated neurofilament h through modulation of pin1 activity implications in amyotrophic lateral sclerosis

228 181 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 228
Dung lượng 20,91 MB

Nội dung

REDUCING PATHOLOGICAL ACCUMULATIONS OF PHOSPHORYLATED NEUROFILAMENT-H THROUGH MODULATION OF PIN1 ACTIVITY: IMPLICATIONS IN AMYOTROPHIC LATERAL SCLEROSIS CHARLENE PRISCILLA POORE (B.Sc.(Hons.), Monash University) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF BIOCHEMISTRY NATIONAL UNIVERSITY OF SINGAPORE 2013 DECLARATION I hereby declare that this thesis is my original work and it has been written by me in its entirety I have duly acknowledged all the sources of information which have been used in the thesis This thesis has also not been submitted for any degree in any university previously CHARLENE PRISCILLA POORE i ACKNOWLEDGEMENT I would like to express my deepest gratitude to my supervisor, Dr Sashi Kesavapany for his guidance, support and much patience Thank you for mentoring me and teaching me the joy of science I would also like to thank my co-supervisor, Prof Markus Wenk for his insightful advice and guidance during my PhD I am grateful to my committee members, Prof Tang Bor Luen and Prof Soong Tuck Wah for sharing their knowledge and counsel during this journey I am also grateful to GlaxoSmithKline, Neural Pathways Discovery Performance Unit, Singapore for providing an excellent environment to research, where the staff are friendly and willing to help and I am glad for the opportunity to have been part of the team A special thanks to the staff and students at the Neurobiology Programme, Centre for Life Sciences and Department of Biochemistry (NUS) for their support and care I would also like to thank my past and current lab mates from NUS and GSK: Jeyapriya Sundaram, Noor Hazim, Chua Hui Wen, Peh Khong Ming, Tan Kin Hup, Vinupriya Ganapathy, Cornie Chua, Poh Kay Wee, Cheryl Tay and Alexander Stephan for their advice, encouragement, help and support as well as good company I would also like to thank the BRC staff, Yasmin and Yusuf who have helped me during my research I would also like to thank my parents and brother, who have always been supportive and encouraging Last but not least, I would like to thank Jared Lee for his patience and understanding, as well as for his strength when mine was failing ii TABLE OF CONTENTS DECLARATION PAGE……………………………………………… ……… i ACKNOWLEDGEMENTS……………………………………………… ……ii TABLE OF CONTENTS………………………………………………… … iii ABSTRACT…………………………………………………………………… ix LIST OF TABLES …………………………………………………………… x LIST OF FIGURES… ……………………………………………………….xiii ABBREVIATIONS……………………………………….………………… xvi CHAPTER 1: INTRODUCTION……………………………….…… ……….1 1.1 PEPTIDYL-PROLYL ISOMERASE PIN1……………… .1 1.1.1 Characterization of Pin1 Activity………………………… …………… 1.1.2 Biological Functions of Pin1…………………………… ……………….3 1.1.2.1 Pin1 and the coordination of the cell cycle……………………… 1.1.2.2 Pin1 role in oncogenesis……………… 1.1.2.3 Pin1 regulation of cellular stress…… 1.1.2.4 Pin1 in germ cell development……… 1.1.2.5 Role of Pin1 in telomere regulation ageing … 1.1.2.6 Pin1 modulation of the immune response……………….… .10 1.1.3 Role of Pin1 in neurons………………………… 11 1.1.4 Pin1 in neurodegeneration…………………… .12 1.1.4.1 1.1.4.2 Parkinson’s Disease…………………………………………… 15 1.1.4.3 1.2 Alzheimer’s Disease…………………………………………… 12 Amyotrophic Lateral Sclerosis……… 16 AMYOTROPHIC LATERAL SCLEROSIS……………… 17 1.2.1 Familial ALS…………………………………… 17 1.2.2 Molecular Pathways In ALS Pathogenesis…… 18 1.2.2.1 Oxidative damage in ALS…………… 20 1.2.2.2 Excitotoxicity………………………… .22 1.2.2.3 Mitochondrial dysfunction…………… .23 1.2.2.4 Protein Aggregation…………………… .25 1.2.2.5 Endoplasmic Reticulum Stress……… 27 iii 1.2.2.6 1.2.2.7 1.3 Impaired Axonal Transport………… 28 Non-cell Autonomous toxicity in ALS 30 NEUROFILAMENTS……………… .33 1.3.1 Molecular Biology of Neurofilaments… 33 1.3.1.1 Structure and assembly of neurofilaments… .33 1.3.1.2 Transport of Neurofilaments………………… 34 1.3.2 Neurofilament function…………… .36 1.3.2.1 Biological function of neurofilaments 36 1.3.2.2 Function of neurofilaments is regulated by phosphorylation… 36 1.3.3 Neurofilaments and Neurological Diseases…… .39 1.3.3.1 1.3.3.2 Alzheimer’s Disease…………………… 40 1.3.3.3 Parkinson’s Disease…………………… .40 1.3.3.4 1.4 Charcot-Marie-Tooth………………… .39 Amyotrophic Lateral Sclerosis……… 41 RNA INTERFERENCE THERAPEUTICS……………… 46 1.4.1 RNAi Pathway……………………………… 46 1.5 ADENO-ASSOCIATED VIRUS……………………………………… 49 1.5.1 AAV Delivery of shRNA…… 49 1.5.2 Clinical Trials using AAV…………… 51 1.6 OBJECTIVE OF STUDY 52 CHAPTER MATERIALS AND METHODS…………………………… 53 2.1 MATERIALS…………………………………………………… 53 2.1.1 Preparation of Plasmid Construct ……………… 53 2.1.2 Mammalian Cell Cultures …………………………… 54 2.1.3 Adeno-associated virus (AAV) Production…… .56 2.1.4 Immunostaining and Biochemical analyses… 58 2.1.5 Animal Studies……………………………………………… 65 2.2 METHODS…………………………………………………… 68 2.2.1 Preparation of Plasmid Construct……………… 68 2.2.1.1 Plasmid Construct………………………………………… 68 iv 2.2.1.2 Transformation of competent cells with plasmids……… 68 2.2.1.3 Plasmid DNA purification…………………………… .68 2.2.2 Cell cultures……………………………………………… .69 2.2.2.1 Preparation of primary cortical neuronal cultures…… .69 2.2.2.2 Preparation of HEK 293T/17 cultures 71 2.2.2.3 Cell transfections……………………………………… … 72 2.2.2.4 Transduction of primary cultures and HEK 293T/17 cells…… 73 2.2.3 Adeno-associated virus (AAV) Production……………… .74 2.2.3.1 Production of recombinant AAV (rAAV) using the AAV Helper- Free System……………………… .74 2.2.3.2 rAAV production performed by Vector Core Lab, UPENN………………………………………………………… .76 2.2.4 Immunostaining and Biochemical analyses ……………… …… 81 2.2.4.1 Immunocytochemistry…………………………………… 81 2.2.4.2 Immunohistochemistry…………………………………… 81 2.2.4.3 SDS-PAGE and Western Blotting…………………… .83 2.2.4.4 Real-time reverse transcription polymerase chain reaction (RTPCR)…… … 85 2.2.4.5 Protein Quantification (BCA assay)…………………… 88 2.2.5 Animal Studies…………………….………………………… 89 2.2.5.1 Animal models………………….………………………… 89 2.2.5.2 C57BL/6J WT mice ………………… .89 2.2.5.3 B6.Cg-Tg(SOD1*G93A)1Gur/J transgenic mice….…… 89 2.2.5.4 Genotyping of transgenic mice…………………….…… 89 2.2.5.5 Intramuscular injections…… ……………………… 90 2.2.5.6 Cardiac Perfusion……………………………… 91 2.2.5.7 Motor Function Studies…………… ………………… .92 2.2.6 Statistical analysis and presentation of data…………………… … 93 v CHAPTER VALIDATION OF PIN1 KNOCKDOWN USING THE PIN1 shRNA CONSTRUCT………… .…………….………………… … 94 3.1 BACKGROUND…………………………………………………… 94 3.2 METHODS………………………………………… .95 3.2.1 Production of Pin1 shRNA and Control shRNA plasmid DNA…… .95 3.2.2 Validation of Pin1 knockdown by transient transfections of the Pin1 shRNA construct……………………………………… .95 3.2.3 Immunocytochemistry to validate knockdown of Pin1 expression.… 95 3.2.4 SDS-PAGE and Western Blot to quantify knockdown of Pin1 protein levels………………………………………………………… 96 3.2.5 Real Time RT-PCR to determine reduction of Pin1 RNA levels…… 96 3.2.6 Stable Pin1 knockdown using AAV as the gene delivery tool…… 96 3.3 RESULTS…………………………………………………………….… 98 3.3.1 Validation of Pin1 knockdown by transient transfections of the Pin1 shRNA construct into HEK 293T/17 and primary cortical neurons… 98 3.3.2 Production of AAV2-Pin1 shRNA and AAV2-Control shRNA for efficient transduction HEK 293T/17 and primary cortical neurons… 102 3.4 DISCUSSION………………………………… .110 CHAPTER GENE DELIVERY OF AAV-PIN1 shRNA INTO THE MOTOR NEURONS OF THE SPINAL CORD…………………………….114 4.1 BACKGROUND…………………………………………………… 114 4.2 METHODS……………………………………… .…115 4.2.1 Production and purification of AAV2-Control shRNA and AAV2-Pin1 shRNA………………………………………………………… 115 4.2.2 Production and purification of AAV serotypes from Vector Core Lab…………………………………………………………………….115 4.2.3 Validation of transduction efficiency of various AAV serotypes in vitro in primary cortical neurons…………………………………………… 115 4.2.4 Intramuscular injections of AAV 115 vi 4.2.5 Immunohistochemistry to validate transduction efficiency and Pin1 knockdown in spinal motor neurons 116 4.3 RESULTS 117 4.3.1 Delivery of AAV2-Control shRNA and AAV2-Pin1 shRNA into the mouse spinal cord …………………………………………………… 117 4.3.2 Evaluation of the transduction efficiency of various AAV serotypes 119 4.3.3 Validation of stable gene expression of AAV into the spinal motor neurons in mice…………………………………… 124 4.3.4 Determination of AAV titer and Pin1 knockdown in transduced spinal motor neurons ……………………….……………………… .127 4.4 DISCUSSION………………………………….……………………… 131 CHAPTER KNOCKDOWN OF PIN1 AND REDUCTION OF p-NF-H ACCUMULATIONS IN THE ALS MOUSE MODEL………… 135 5.1 BACKGROUND…………………………………………………… 135 5.2 METHODS………………………………………… .136 5.2.1 Production and purification of AAV9-Pin1 shRNA and AAV9-Control shRNA from Vector Core Lab …………………………… .136 5.2.2 Administration of AAV9-Pin1 shRNA into WT and G93A SOD1 mice .136 5.2.3 Motor function studies………………………… 136 5.2.4 Histological analysis of pathological hallmarks in WT and G93A SOD1 mice………………………… .137 5.3 RESULTS 138 5.3.1 Evaluation on motor function dysfunction and pathological hallmarks in the G93A SOD1 mice ……………………………… 138 5.3.2 Effect of Pin1 silencing on p-NF-H accumulations and disease pathology in the G93A SOD1 mice ……… 145 5.4 DISCUSSION………………… ……….………………… ……… 161 vii CHAPTER CONCLUSION AND FUTURE STUDIES 166 BIBILIOGRAPHY……………………….……………………… 172 APPENDICES ………………………….…………………… …A1 viii ABSTRACT One of the pathological hallmarks of motor neuron death in Amyotrophic Lateral Sclerosis (ALS) is the abnormal accumulations of phosphorylated neurofilaments in the neuronal cell body Previous reports suggested that Pin1, a prolyl-isomerase that catalyses the cis-trans isomerisation of the phosphorylated serine/threonineproline motifs, may be responsible for the aberrant accumulations of phosphorylated neurofilament heavy chain (p-NF-H) in neurons, which are observed during neurotoxicity The aim of this thesis is to investigate the reduction of aberrant p-NF-H accumulations through knockdown of Pin1 activity using recombinant adeno-associated virus (AAV)-mediated transduction of Pin1 shRNA in vivo in the G93A SOD1 ALS mouse model This was achieved using the Pin1 shRNA construct, which showed effective and stable knockdown of Pin1 in HEK 293T/17 cells and in primary neuronal cultures To produce an in vivo gene delivery system into the spinal motor neurons by intramuscular route of administration, the transduction efficiencies of AAV serotypes 1, 2, 5, 6, and were compared AAV9 yielded the highest level of motor neuron transduction in the spinal cord and was used for Pin1 shRNA gene delivery Accumulations of pNF-H in the spinal motor neurons of G93A SOD1 transgenic mice were observed prior to motor neuron cell death, astrocyte activation and behavioural deficits This suggested that early prevention of p-NF-H accumulations may be beneficial The spinal motor neurons transduced with AAV9-Pin1 shRNA showed significant reduction in aberrant p-NF-H accumulations indicating the Pin1 knockdown strategy may be of therapeutic potential in reducing the neurotoxic accumulations in ALS ix regulation of Pin1 in Alzheimer's disease hippocampus: A redox proteomics analysis Neurobiol Aging 27:918-925 Summerford C, Samulski RJ (1998) Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type virions J Virol 72:1438-1445 Summerford C, Bartlett JS, Samulski RJ (1999) AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type infection Nat Med 5:78-82 Takeuchi H, Kobayashi Y, Ishigaki S, Doyu M, Sobue G (2002) Mitochondrial localization of mutant superoxide dismutase triggers caspase-dependent cell death in a cellular model of familial amyotrophic lateral sclerosis J Biol Chem 277:50966-50972 Tenenbaum L, Lehtonen E, Monahan PE (2003) Evaluation of risks related to the use of adeno-associated virus-based vectors Curr Gene Ther 3:545-565 Teng BL, Hacker KE, Chen S, Means AR, Rathmell WK (2011) Tumor suppressive activity of prolyl isomerase Pin1 in renal cell carcinoma Mol Oncol 5:465-474 Thompson N, Lyons J (2005) Recent progress in targeting the Raf/MEK/ERK pathway with inhibitors in cancer drug discovery Curr Opin Pharmacol 5:350-356 Thorpe JR, Morley SJ, Rulten SL (2001) Utilizing the peptidyl-prolyl cis-trans isomerase pin1 as a probe of its phosphorylated target proteins Examples of binding to nuclear proteins in a human kidney cell line and to tau in Alzheimer's diseased brain J Histochem Cytochem 49:97-108 Tortarolo M, Veglianese P, Calvaresi N, Botturi A, Rossi C, Giorgini A, Migheli A, Bendotti C (2003) Persistent activation of p38 mitogen-activated protein kinase in a mouse model of familial amyotrophic lateral sclerosis correlates with disease progression Mol Cell Neurosci 23:180-192 Towne C, Schneider BL, Kieran D, Redmond DE, Jr., Aebischer P (2010) Efficient transduction of non-human primate motor neurons after intramuscular delivery of recombinant AAV serotype Gene Ther 17:141-146 Trimmer PA, Borland MK, Keeney PM, Bennett JP, Jr., Parker WD, Jr (2004) Parkinson's disease transgenic mitochondrial cybrids generate Lewy inclusion bodies J Neurochem 88:800-812 Trotti D, Rolfs A, Danbolt NC, Brown RH, Jr., Hediger MA (1999) SOD1 mutants linked to amyotrophic lateral sclerosis selectively inactivate a glial glutamate transporter Nat Neurosci 2:848 Tu PH, Raju P, Robinson KA, Gurney ME, Trojanowski JQ, Lee VM (1996) Transgenic mice carrying a human mutant superoxide dismutase transgene develop neuronal cytoskeletal pathology resembling human amyotrophic lateral sclerosis lesions Proc Natl Acad Sci U S A 93:3155-3160 Tummala H, Jung C, Tiwari A, Higgins CM, Hayward LJ, Xu Z (2005) Inhibition of chaperone activity is a shared property of several Cu,Zn-superoxide dismutase mutants that cause amyotrophic lateral sclerosis J Biol Chem 280:17725-17731 Urushitani M, Kurisu J, Tsukita K, Takahashi R (2002) Proteasomal inhibition by misfolded mutant superoxide dismutase induces selective motor neuron death in familial amyotrophic lateral sclerosis J Neurochem 83:1030-1042 Valori CF, Ning K, Wyles M, Mead RJ, Grierson AJ, Shaw PJ, Azzouz M (2010) Systemic delivery of scAAV9 expressing SMN prolongs survival in a model of spinal muscular atrophy Sci Transl Med 2:35ra42 Van Damme P, Dewil M, Robberecht W, Van Den Bosch L (2005) Excitotoxicity and amyotrophic lateral sclerosis Neurodegener Dis 2:147-159 van Es MA, Van Vught PW, Blauw HM, Franke L, Saris CG, Andersen PM, Van Den Bosch L, de Jong SW, van 't Slot R, Birve A, Lemmens R, de Jong V, Baas F, Schelhaas HJ, Sleegers K, Van Broeckhoven C, Wokke JH, Wijmenga C, 194 Robberecht W, Veldink JH, Ophoff RA, van den Berg LH (2007) ITPR2 as a susceptibility gene in sporadic amyotrophic lateral sclerosis: a genome-wide association study Lancet Neurol 6:869-877 van Es MA, van Vught PW, Blauw HM, Franke L, Saris CG, Van den Bosch L, de Jong SW, de Jong V, Baas F, van't Slot R, Lemmens R, Schelhaas HJ, Birve A, Sleegers K, Van Broeckhoven C, Schymick JC, Traynor BJ, Wokke JH, Wijmenga C, Robberecht W, Andersen PM, Veldink JH, Ophoff RA, van den Berg LH (2008) Genetic variation in DPP6 is associated with susceptibility to amyotrophic lateral sclerosis Nat Genet 40:29-31 Vance C, Rogelj B, Hortobagyi T, De Vos KJ, Nishimura AL, Sreedharan J, Hu X, Smith B, Ruddy D, Wright P, Ganesalingam J, Williams KL, Tripathi V, Al-Saraj S, Al-Chalabi A, Leigh PN, Blair IP, Nicholson G, de Belleroche J, Gallo JM, Miller CC, Shaw CE (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type Science 323:1208-1211 Vande Velde C, Miller TM, Cashman NR, Cleveland DW (2008) Selective association of misfolded ALS-linked mutant SOD1 with the cytoplasmic face of mitochondria Proc Natl Acad Sci U S A 105:4022-4027 Varga Z, Bene L, Pieri C, Damjanovich S, Gaspar R, Jr (1996) The effect of juglone on the membrane potential and whole-cell K+ currents of human lymphocytes Biochem Biophys Res Commun 218:828-832 Veeranna, Lee JH, Pareek TK, Jaffee H, Boland B, Vinod KY, Amin N, Kulkarni AB, Pant HC, Nixon RA (2008) Neurofilament tail phosphorylation: identity of the RT-97 phosphoepitope and regulation in neurons by cross-talk among prolinedirected kinases J Neurochem 107:35-49 Vukosavic S, Stefanis L, Jackson-Lewis V, Guegan C, Romero N, Chen C, DuboisDauphin M, Przedborski S (2000) Delaying caspase activation by Bcl-2: A clue to disease retardation in a transgenic mouse model of amyotrophic lateral sclerosis J Neurosci 20:9119-9125 Walling AD (1999) Amyotrophic lateral sclerosis: Lou Gehrig's disease Am Fam Physician 59:1489-1496 Wang H, Mao Y, Chen AY, Zhou N, LaVoie EJ, Liu LF (2001) Stimulation of topoisomerase II-mediated DNA damage via a mechanism involving protein thiolation Biochemistry 40:3316-3323 Wang J, Xu G, Borchelt DR (2002a) High molecular weight complexes of mutant superoxide dismutase 1: age-dependent and tissue-specific accumulation Neurobiol Dis 9:139-148 Wang J, Slunt H, Gonzales V, Fromholt D, Coonfield M, Copeland NG, Jenkins NA, Borchelt DR (2003) Copper-binding-site-null SOD1 causes ALS in transgenic mice: aggregates of non-native SOD1 delineate a common feature Hum Mol Genet 12:2753-2764 Wang L, Ho CL, Sun D, Liem RK, Brown A (2000) Rapid movement of axonal neurofilaments interrupted by prolonged pauses Nat Cell Biol 2:137-141 Wang LJ, Lu YY, Muramatsu S, Ikeguchi K, Fujimoto K, Okada T, Mizukami H, Matsushita T, Hanazono Y, Kume A, Nagatsu T, Ozawa K, Nakano I (2002b) Neuroprotective effects of glial cell line-derived neurotrophic factor mediated by an adeno-associated virus vector in a transgenic animal model of amyotrophic lateral sclerosis J Neurosci 22:6920-6928 Wataya T, Nunomura A, Smith MA, Siedlak SL, Harris PL, Shimohama S, Szweda LI, Kaminski MA, Avila J, Price DL, Cleveland DW, Sayre LM, Perry G (2002) High molecular weight neurofilament proteins are physiological substrates of 195 adduction by the lipid peroxidation product hydroxynonenal J Biol Chem 277:4644-4648 Weiwad M, Kullertz G, Schutkowski M, Fischer G (2000) Evidence that the substrate backbone conformation is critical to phosphorylation by p42 MAP kinase FEBS Lett 478:39-42 Wiedemann FR, Manfredi G, Mawrin C, Beal MF, Schon EA (2002) Mitochondrial DNA and respiratory chain function in spinal cords of ALS patients J Neurochem 80:616-625 Wijsman EM, Daw EW, Yu CE, Payami H, Steinbart EJ, Nochlin D, Conlon EM, Bird TD, Schellenberg GD (2004) Evidence for a novel late-onset Alzheimer disease locus on chromosome 19p13.2 Am J Hum Genet 75:398-409 Williams TL, Day NC, Ince PG, Kamboj RK, Shaw PJ (1997) Calcium-permeable alphaamino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors: a molecular determinant of selective vulnerability in amyotrophic lateral sclerosis Ann Neurol 42:200-207 Williamson TL, Cleveland DW (1999) Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons Nat Neurosci 2:50-56 Winkler KE, Swenson KI, Kornbluth S, Means AR (2000) Requirement of the prolyl isomerase Pin1 for the replication checkpoint Science 287:1644-1647 Wong PC, Waggoner D, Subramaniam JR, Tessarollo L, Bartnikas TB, Culotta VC, Price DL, Rothstein J, Gitlin JD (2000) Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase Proc Natl Acad Sci U S A 97:2886-2891 Wood JD, Beaujeux TP, Shaw PJ (2003) Protein aggregation in motor neurone disorders Neuropathol Appl Neurobiol 29:529-545 Wu DC, Re DB, Nagai M, Ischiropoulos H, Przedborski S (2006) The inflammatory NADPH oxidase enzyme modulates motor neuron degeneration in amyotrophic lateral sclerosis mice Proc Natl Acad Sci U S A 103:12132-12137 Wulf G, Garg P, Liou YC, Iglehart D, Lu KP (2004) Modeling breast cancer in vivo and ex vivo reveals an essential role of Pin1 in tumorigenesis Embo J 23:3397-3407 Wulf GM, Liou YC, Ryo A, Lee SW, Lu KP (2002) Role of Pin1 in the regulation of p53 stability and p21 transactivation, and cell cycle checkpoints in response to DNA damage J Biol Chem 277:47976-47979 Wulf GM, Ryo A, Wulf GG, Lee SW, Niu T, Petkova V, Lu KP (2001) Pin1 is overexpressed in breast cancer and cooperates with Ras signaling in increasing the transcriptional activity of c-Jun towards cyclin D1 Embo J 20:3459-3472 Xia CH, Roberts EA, Her LS, Liu X, Williams DS, Cleveland DW, Goldstein LS (2003) Abnormal neurofilament transport caused by targeted disruption of neuronal kinesin heavy chain KIF5A J Cell Biol 161:55-66 Xiao J, Monteiro MJ (1994) Identification and characterization of a novel (115 kDa) neurofilament-associated kinase J Neurosci 14:1820-1833 Xu YX, Manley JL (2007) The prolyl isomerase Pin1 functions in mitotic chromosome condensation Mol Cell 26:287-300 Xu Z, Cork LC, Griffin JW, Cleveland DW (1993) Increased expression of neurofilament subunit NF-L produces morphological alterations that resemble the pathology of human motor neuron disease Cell 73:23-33 Yabe JT, Pimenta A, Shea TB (1999) Kinesin-mediated transport of neurofilament protein oligomers in growing axons J Cell Sci 112 ( Pt 21):3799-3814 Yabe JT, Jung C, Chan WK, Shea TB (2000) Phospho-dependent association of neurofilament proteins with kinesin in situ Cell Motil Cytoskeleton 45:249-262 196 Yabe JT, Chylinski T, Wang FS, Pimenta A, Kattar SD, Linsley MD, Chan WK, Shea TB (2001) Neurofilaments consist of distinct populations that can be distinguished by C-terminal phosphorylation, bundling, and axonal transport rate in growing axonal neurites J Neurosci 21:2195-2205 Yaffe MB, Schutkowski M, Shen M, Zhou XZ, Stukenberg PT, Rahfeld JU, Xu J, Kuang J, Kirschner MW, Fischer G, Cantley LC, Lu KP (1997) Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism Science 278:1957-1960 Yang Y, Hentati A, Deng HX, Dabbagh O, Sasaki T, Hirano M, Hung WY, Ouahchi K, Yan J, Azim AC, Cole N, Gascon G, Yagmour A, Ben-Hamida M, PericakVance M, Hentati F, Siddique T (2001) The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis Nat Genet 29:160-165 Yeh E, Cunningham M, Arnold H, Chasse D, Monteith T, Ivaldi G, Hahn WC, Stukenberg PT, Shenolikar S, Uchida T, Counter CM, Nevins JR, Means AR, Sears R (2004) A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells Nat Cell Biol 6:308-318 Yeh ES, Lew BO, Means AR (2006) The loss of PIN1 deregulates cyclin E and sensitizes mouse embryo fibroblasts to genomic instability J Biol Chem 281:241-251 Yoshihara T, Yamamoto M, Hattori N, Misu K, Mori K, Koike H, Sobue G (2002) Identification of novel sequence variants in the neurofilament-light gene in a Japanese population: analysis of Charcot-Marie-Tooth disease patients and normal individuals J Peripher Nerv Syst 7:221-224 Yu L, Mohamed AJ, Vargas L, Berglof A, Finn G, Lu KP, Smith CI (2006) Regulation of Bruton tyrosine kinase by the peptidylprolyl isomerase Pin1 J Biol Chem 281:18201-18207 Zacchi P, Gostissa M, Uchida T, Salvagno C, Avolio F, Volinia S, Ronai Z, Blandino G, Schneider C, Del Sal G (2002) The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults Nature 419:853-857 Zhai J, Lin H, Julien JP, Schlaepfer WW (2007) Disruption of neurofilament network with aggregation of light neurofilament protein: a common pathway leading to motor neuron degeneration due to Charcot-Marie-Tooth disease-linked mutations in NFL and HSPB1 Hum Mol Genet 16:3103-3116 Zhang B, Tu P, Abtahian F, Trojanowski JQ, Lee VM (1997) Neurofilaments and orthograde transport are reduced in ventral root axons of transgenic mice that express human SOD1 with a G93A mutation J Cell Biol 139:1307-1315 Zhao C, Takita J, Tanaka Y, Setou M, Nakagawa T, Takeda S, Yang HW, Terada S, Nakata T, Takei Y, Saito M, Tsuji S, Hayashi Y, Hirokawa N (2001) CharcotMarie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta Cell 105:587-597 Zheng H, Qiao C, Wang CH, Li J, Li J, Yuan Z, Zhang C, Xiao X (2010) Efficient retrograde transport of adeno-associated virus type to spinal cord and dorsal root ganglion after vector delivery in muscle Hum Gene Ther 21:87-97 Zheng H, You H, Zhou XZ, Murray SA, Uchida T, Wulf G, Gu L, Tang X, Lu KP, Xiao ZX (2002) The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response Nature 419:849-853 Zheng YL, Li BS, Veeranna, Pant HC (2003) Phosphorylation of the head domain of neurofilament protein (NF-M): a factor regulating topographic phosphorylation of NF-M tail domain KSP sites in neurons J Biol Chem 278:24026-24032 197 Zhou XZ, Kops O, Werner A, Lu PJ, Shen M, Stoller G, Kullertz G, Stark M, Fischer G, Lu KP (2000) Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins Mol Cell 6:873-883 Zhu Q, Lindenbaum M, Levavasseur F, Jacomy H, Julien JP (1998) Disruption of the NF-H gene increases axonal microtubule content and velocity of neurofilament transport: relief of axonopathy resulting from the toxin beta,beta'iminodipropionitrile J Cell Biol 143:183-193 Zhu S, Stavrovskaya IG, Drozda M, Kim BY, Ona V, Li M, Sarang S, Liu AS, Hartley DM, Wu DC, Gullans S, Ferrante RJ, Przedborski S, Kristal BS, Friedlander RM (2002) Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice Nature 417:74-78 Zhu X, Liu Y, Yin Y, Shao A, Zhang B, Kim S, Zhou J (2009) MSC p43 required for axonal development in motor neurons Proc Natl Acad Sci U S A 106:1594415949 Zhu YB, Sheng ZH (2011) Increased axonal mitochondrial mobility does not slow amyotrophic lateral sclerosis (ALS)-like disease in mutant SOD1 mice J Biol Chem 286:23432-23440 Zincarelli C, Soltys S, Rengo G, Rabinowitz JE (2008) Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection Mol Ther 16:1073-1080 Zita MM, Marchionni I, Bottos E, Righi M, Del Sal G, Cherubini E, Zacchi P (2007) Post-phosphorylation prolyl isomerisation of gephyrin represents a mechanism to modulate glycine receptors function Embo J 26:1761-1771 Zolotukhin S, Byrne BJ, Mason E, Zolotukhin I, Potter M, Chesnut K, Summerford C, Samulski RJ, Muzyczka N (1999) Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield Gene Ther 6:973-985 198 APPENDICES Sma I (32) Sma I (43) ITR human U6 promoter BsrBI (5033) BsrBI (4792) NdeI (379) TATA Origin BsrBI (450) shRNA Pin1 Mlu I (503) NdeI (748) CMV promoter 5103 bp EGFP Amp-R BsrBI (2991) Origin I (4219) Bpm SV40 late polyadenylation signal ITR Sma I (2241) Sma I (2252) BsrBI (2546) SmaI (32) SmaI (43) ITR MscI (107) SmaI (203) human U6 promoter EcoRI (658) hairpin loop CMV promoter NcoI (1137) 5558 bp NcoI (1403) Amp-R EGFP Bpm I (1849) Bpm I (2089) SV40 late polyadenylation signal MscI (2632) ITR SmaI (2696) SmaI (2707) A1 Appendix Figure Construct backbone of Pin1 shRNA (top) and Control shRNA (bottom) indicating restriction digest sites, ampicillin resistance (Amp-R), ITRs, promoter regions and polyadenylation site Appendix Figure Immunostaining of lumbar of G93A SOD1 Pin1 shRNA treated mouse at 135 days old with anti-GFP (green) and co-stained with antiGFAP (A) and anti-p-NF-H antibodies (B) Nuclear counterstaining was performed using DAPI (blue) Arrows indicate transduced motor neurons and arrowheads indicate non-transduced motor neurons Scale bars represent 200m Appendix Figure Small portion of astrocytes were transduced by AAV9 intramuscular injections into mice Immunostaining of lumbar of AAV9-Pin1 shRNA treated G93A SOD1 mouse with anti-GFP (green) and co-stained with anti-GFAP (red) Nuclear counterstaining was performed using DAPI (blue) Arrowheads indicate transduced astrocytes Scale bars represent 200m A2 Appendix Table Mean values and SEM of immunoblot quantification and levels of Pin1 mRNA of Control shRNA and Pin1 shRNA transfected HEK 293/T17 samples as presented in the graphs in Figure 3.3.1 Mean values and SEM of percentage Pin1 shRNA/tubulin protein levels normalized Control shRNA/tubulin (%) Days Mean values SEM 82.5 10.1 79.4 9.0 37.2 3.6 56.9 10.1 Mean values and SEM of percentage Pin1 RNA expression of Pin1 shRNA/Control shRNA (%) Days Mean values SEM 51.7 3.3 54.0 9.4 29.5 1.2 36.4 4.2 Appendix Table Mean values and SEM of immunoblot quantification and levels of Pin1 mRNA of AAV2-Control shRNA and AAV2-Pin1 shRNA transduced HEK 293/T17 samples as presented in the graphs in Figure 3.3.3 Mean values and SEM of percentage Pin1 shRNA/tubulin protein levels normalized Control shRNA/tubulin (%) Days Mean values SEM 47.4 14.7 54.2 9.2 48.6 14.2 11 71.1 16.9 14 Mean values and SEM of percentage Pin1 RNA expression of Pin1 shRNA/Control shRNA (%) Days Mean values SEM 39.1 6.1 48.8 11.3 59.8 8.7 11 64.9 4.8 14 A3 Appendix Table Mean values and SEM of percentage number of AAV2Control shRNA and AAV2-Pin1 shRNA transduced cortical neurons over total number of neurons as presented in the graph in Figure 3.3.4B Mean values and SEM of percentage number of transduced Control shRNA and Pin1 shRNA cortical neurons over total number of neurons (%) Days AAV2-Control shRNA AAV2-Pin1 shRNA Mean values SEM Mean values SEM 11 14 36.7 39.4 52.2 48.5 2.6 3.1 2.5 1.5 25.8 28.8 43.0 45.9 0.8 3.3 4.2 2.4 Appendix Table Mean values and SEM of immunoblot quantification and levels of Pin1 mRNA of AAV2-Control shRNA and AAV2-Pin1 shRNA transduced cortical neuron samples as presented in the graphs in Figure 3.3.4D and E Mean values and SEM of percentage Pin1 shRNA/tubulin protein levels normalized Control shRNA/tubulin (%) Days Mean values SEM 51.3 8.8 69.0 1.8 50.9 3.8 11 46.4 5.0 14 Mean values and SEM of percentage Pin1 RNA expression of Pin1 shRNA/Control shRNA (%) Days Mean values SEM 57.3 6.8 30.4 7.7 52.9 3.6 11 32.8 5.4 14 A4 Appendix Table Mean values and standard deviation of percentage transduction efficiency of different AAV serotypes in vitro in cortical neurons as presented in Figure 4.3.2B Mean values of percentage transduction efficiency (%) Days AAV1 AAV2 AAV5 AAV6 AAV8 AAV9 42.8 12.4 6.4 22.1 36.0 34.9 64.0 21.3 7.8 54.4 49.2 37.1 86.9 33.0 11.7 55.8 71.6 64.9 11 77.9 51.4 17.6 69.8 80.8 77.2 14 Standard deviation of percentage transduction efficiency (%) Days AAV1 AAV2 AAV5 AAV6 AAV8 AAV9 1.7 3.5 2.5 7.5 5.5 3.9 7.9 8.8 4.9 9.4 3.8 5.5 4.9 0.9 8.2 8.3 5.5 1.8 11 1.0 7.9 4.8 5.0 2.3 11.0 14 Appendix Table Mean values and standard deviation of percentage transduction efficiency of AAV1- and AAV9-Pin1 shRNA at different virus titers as presented in Figure 4.3.5B AAV particles/injection 5x1011 1x1012 2x1012 AAV1-Pin1 shRNA Mean values Standard (%) deviation 6.9 5.8 9.2 8.9 14.5 10.5 A5 AAV9-Pin1 shRNA Mean values Standard (%) deviation 0.7 1.4 8.6 5.1 23.4 12.6 Appendix Table Mean values and standard deviation for rotarod, grip strength and gait analysis graphs presented in Figure 5.3.1 Mean values and standard deviation of stride time (ms) from gait analysis WT G93A SOD1 Days old Mean values Standard Mean values Standard deviation deviation 221 27.5 240 27.3 60 205 30.6 201 23.9 90 230 43.5 220 46.5 120 205 20.0 341 36.5 150 Mean values and standard deviation of stride length (mm) from gait analysis WT G93A SOD1 Days old Mean values Standard Mean values Standard deviation deviation 66 2.3 69 4.4 60 70 7.1 68 4.3 90 71 11.3 65 6.2 120 65 11.1 36 6.7 150 Mean values and standard deviation of grip strength (g) of forelimb WT G93A SOD1 Days old Mean values Standard Mean values Standard deviation deviation 45 9.2 49 11.7 60 58 17.6 62 12.9 90 57 7.9 45 14.9 120 63 11.3 35 6.5 150 Mean values and standard deviation of grip strength (g) of forelimb/hindlimb WT G93A SOD1 Days old Mean values Standard Mean values Standard deviation deviation 158 24.2 144 25.8 60 137 24.8 140 27.6 90 183 11.4 93 11.1 120 199 36.3 68 10.1 150 Mean values and standard deviation of latency to fall (sec) from rotarod WT G93A SOD1 Days old Mean values Standard Mean values Standard deviation deviation A6 60 90 120 150 300 279 283 294 0.0 32.2 13.5 10.2 280 257 158 74 16.1 45.6 48.7 12.4 Appendix Table Mean values and standard deviation for quantification of average number of large motor neurons per section presented in Figure 5.3.2E WT Days old Mean values 60 90 120 150 20 23 25 27 Standard deviation 3.7 2.9 1.0 1.0 G93A SOD1 Mean values Standard deviation 20 5.0 13 1.4 12 3.5 1.5 Appendix Table Mean values and standard deviation for quantification of the percentage of ventral horn motor neurons with p-NF-H accumulation in the cell bodies presented in Figure 5.3.3B WT Days old 60 90 120 150 Mean values (%) 0.0 1.3 2.1 2.5 Standard deviation 0.0 2.8 3.6 5.0 G93A SOD1 Mean values Standard (%) deviation 6.5 5.5 32.0 16.4 33.0 8.9 37.0 9.3 Appendix Table 10 Mean values and standard deviation for rotarod, grip strength and gait analysis studies performed in the WT saline, G93A SOD1 saline, WT Pin1 shRNA, G93A SOD1 Control shRNA and G93A SOD1 Pin1 shRNA treatment groups presented in Figure 5.3.4 Days old 60 75 90 105 120 Mean values of grip strength (g) of forelimb WT Saline G93ASOD1 WT G93ASOD1 Saline Pin1 shRNA Control shRNA 73 64 62 72 77 56 79 58 74 61 69 51 75 54 59 51 76 45 66 51 A7 G93ASOD1 Pin1 shRNA 60 54 59 54 51 135 150 Days old 60 75 90 105 120 135 150 74 35 50 44 63 32 61 39 Standard deviation of grip strength (g) of forelimb WT Saline G93ASOD1 WT G93ASOD1 Saline Pin1 shRNA Control shRNA 23.3 12.4 17.2 13.6 13.3 12.1 15.1 8.6 12.4 12.7 16.3 13.2 35.0 13.8 18.9 14.8 4.6 1.2 5.9 2.7 23.0 6.1 9.1 7.0 11.3 4.2 2.9 2.9 30 26 G93ASOD1 Pin1 shRNA 8.1 12.8 14.6 20.7 4.9 10.7 6.4 Mean values of grip strength (g) of forelimb/hindlimb WT Saline G93ASOD1 WT G93ASOD1 G93ASOD1 Days old Saline Pin1 shRNA Control Pin1 shRNA shRNA 232 183 225 177 182 60 234 198 223 192 186 75 248 203 243 181 201 90 257 176 234 176 178 105 293 148 269 160 160 120 288 119 287 139 109 135 295 90 282 111 91 150 Standard deviation of grip strength (g) of forelimb/hindlimb WT Saline G93ASOD1 WT G93ASOD1 G93ASOD1 Days old Saline Pin1 shRNA Control Pin1 shRNA shRNA 47.4 7.0 48.6 8.2 17.6 60 35.2 2.8 24.5 8.5 13.8 75 34.9 6.9 17.4 10.2 3.2 90 33.2 22.1 15.1 22.0 9.3 105 34.0 18.9 25.6 14.3 13.1 120 27.1 3.0 44.1 11.9 41.2 135 56.0 5.8 30.6 11.3 2.9 150 Days old 60 75 90 105 Mean values of latency to fall (sec) from rotarod WT Saline G93ASOD1 WT G93ASOD1 Saline Pin1 shRNA Control shRNA 291 287 290 288 295 275 292 272 291 265 279 247 286 257 286 243 A8 G93ASOD1 Pin1 shRNA 285 279 271 263 120 135 150 Days old 60 75 90 105 120 135 150 280 197 275 200 196 285 92 270 140 106 264 29 263 78 Standard deviation of latency to fall (sec) from rotarod WT Saline G93ASOD1 WT G93ASOD1 G93ASOD1 Saline Pin1 shRNA Control Pin1 shRNA shRNA 14.1 15.4 11.8 11.8 10.2 7.7 25.0 17.1 6.7 11.6 10.6 30.5 25.5 19.5 22.8 19.0 32.7 25.9 42.7 18.0 17.8 41.3 27.8 65.2 40.7 11.9 25.5 36.9 10.6 35.4 13.8 20.5 29.2 28.0 8.7 Appendix Table 11 Mean values and standard deviation for quantification of average number of large motor neurons per section in the WT saline, G93A SOD1 saline, WT Pin1 shRNA, G93A SOD1 Control shRNA and G93A SOD1 Pin1 shRNA treatment groups presented in Figure 5.3.6B Mean values of number of large motor neurons per section WT Saline G93ASOD1 WT G93ASOD1 G93ASOD1 Days old Saline Pin1 shRNA Control Pin1 shRNA shRNA 20 11 22 13 11 90 17 22 120 20 22 150 Standard deviation of number of large motor neurons per section WT Saline G93ASOD1 WT G93ASOD1 G93ASOD1 Days old Saline Pin1 shRNA Control Pin1 shRNA shRNA 2.3 2.1 4.0 3.6 1.2 90 2.5 4.1 7.6 2.2 2.1 120 7.3 2.6 3.4 4.8 2.9 150 A9 Appendix Table 12 Mean values and standard deviation for percentage of transduced cells with no p-NF-H accumulations in the cell bodies in the WT Pin1 shRNA, G93A SOD1 Control shRNA and G93A SOD1 Pin1 shRNA treatment groups presented in Figure 5.3.7D Mean percentage of transduced cells without perikaryal p-NF-H accumulations (%) Days old WT G93ASOD1 G93ASOD1 Pin1 Pin1 shRNA Control shRNA shRNA 90 77 86 90 96 48 68 120 97 49 54 150 Standard deviation of the percentage of transduced cells without perikaryal p-NF-H accumulations (%) Days old WT G93ASOD1 G93ASOD1 Pin1 Pin1 shRNA Control shRNA shRNA 12.3 17.4 20.5 90 6.7 11.8 9.7 120 7.3 6.8 16.9 150 A10 ... S phase (Ekholm-Reed et al., 2004) Pin1 regulates the turnover of Cyclin E, where Pin1- /MEF showed higher levels of Cyclin E resulting in the impairment of the progression through the G1-S phase... to inhibit or increase the activity of Cdc25, which is the activating phosphatase of the Cdc2-Cyclin B complex that is required for the entry into the mitotic phase depending on the phosphorylation... al., 2007) The authors then hypothesized that the presence of Pin1 facilitates the accumulation of p-NF -H in the spinal cord of ALS patients, which is one of the key pathological events in ALS (Kesavapany

Ngày đăng: 10/09/2015, 09:29

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w