1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Engineered hepatocellular models for drug development

145 267 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 145
Dung lượng 5,85 MB

Nội dung

“ENGINEERED HEPATOCELLULAR MODELS FOR DRUG DEVELOPMENT" ABHISHEK ANANTHANARAYANAN B.TECH, SRMIST A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY NUS GRADUATE SCHOOL FOR INTEGRATIVE SCIENCES AND ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2013     DECLARATION I hereby declare that this thesis is my original work and has been written by me in entirety. I have duly acknowledged all sources of information which have been used in the thesis This thesis has not been submitted for any degree in any university previously Abhishek Ananthanarayanan 11th July 2013     Table of contents Page No Summary Acknowledgement List of figures List of tables List of symbols Chapter Introduction to drug development 11 1.1 Introduction to drug development process 1.2 Need for in vitro models 1.3 Structure function relationship of the liver and hepatocyte microenvironment 1.4 Cell types in the liver 1.4.1 Hepatocytes 1.4.2 Endothelial cells 1.4.3 Kupffer cells 1.4.4 Stellate cells 1.4.5 Oval cells 1.4.6 Pit cells 1.5 In vitro cellular models for drug development 1.6 Tissue engineering approaches and paradigms 1.7 Toolbox development for precision tissue engineering 1.7.1 Biomaterials for cellular assembly 1.7.2 Micro and nano- scale construct technologies 1.8 Purpose driven liver tissue engineering for applications 1.8.1 Cell models for pathogen testing 1.8.2 Hepatotoxicity testing Chapter Outline and specific aim of the thesis 2.1 Specific Aim 2.1.1 Hypothesis 2.1.2 Rationale 2.1.3 Experimental design 2.2 Specific Aim 2.2.1 Hypothesis 36     2.2.2 Rationale 2.2.3 Experimental design Chapter Scalable spheroid model of human hepatocytes to study HCV infection and replication 3.1 Introduction 3.2 Background 3.3 HCV and host interactions 3.4 Viral proteins mediating entry 3.4.1 CD-81 3.4.2 SCARB-1 3.4.3 Claudin-1 3.4.4 Occludin-1 3.5 Mechanism of entry 3.6 Hepatitis C replication 3.7 HCV proteases 3.7.1 NS2-3 3.7.2 NS3-4A 3.7.3 NS 4B 3.7.4 NS 5A 3.7.5 NS 5B 3.8 Viral replication complex 3.9 Packaging and assembly 3.10Evasion of host responses by the virus 3.11Methods 3.11.1 Huh 7.5 cell culture 3.11.2 Human hepatocyte culture 3.11.3 Cell seeding 3.11.4 Synthesis of cellulosic scaffold 3.11.5 Scanning electron microscope 3.11.6 Live/dead staining 3.11.7 Immunostaining 3.11.8 Real time PCR 3.11.9 HCVpp synthesis 3.11.10 HCVpp entry and inhibition assay 3.11.11 Quantifying viral replication 3.12 Results 3.12.1 Characterization of spheroids in the scaffold 3.12.2 Characterization of spheroids using SEM 3.12.3 Characterization of presence of apical and basolateral domain in spheroid cultured cells 41     3.12.4 Assessment of viability 3.12.5 Characterization of cellular phenotype 3.12.6 Expression of viral entry marker and pseudoparticle entry 3.12.7 HCV live viral replication 3.13 Discussion 3.14 Conclusion Chapter 81 Co-culture of rat hepatocytes and NIH 3T3 fibroblasts suppresses drug induced CYP 450 responses via TGF β1 mediated transcription factor inhibition 4.1 Introduction 4.2 Background 4.2.1 Factors eliciting toxicity 4.2.2 Liver enriched nuclear factors 4.2.3 CYP 450 enzymes 4.2.4 Phase II enzymes 4.2.5 Transporters 4.3 General mechanism of toxicity and liver injury 4.3.1 Aryl hydrocarbon receptor 4.3.2 Pregnane X receptor 4.3.3 Constitutive androstane receptor 4.3.4 Farsenoid X receptor 4.3.5 Peroxisome proliferator-activated receptor 4.4 Biotransformation, CYP induction and how it leads to toxicity 4.4.1 Phase I 4.4.2 Phase II 4.4.3 Phase III 4.5 APAP metabolism as an example for toxic metabolite mediated hepatotoxicity 4.6 Cytokines and their roles in liver disease 4.7 Materials and methods 4.7.1 NIH-3T3 culture 4.7.2 Rat hepatocyte isolation and culture 4.7.3 Hepatocyte synthetic function 4.7.4 CYP induction assay 4.7.5 RT-PCR 4.7.6 LC/MS measurement of CYP specific metabolites 4.7.7 Hepatocyte excretory function 4.7.8 TGF β1 pulldown     4.7.9 EROD assay 4.7.10Measurement of drug sensitivity 4.8 Results 4.8.1 Characterization of synthetic and metabolic function of sandwich and co-culture 4.8.2 Comparing drug sensitivity and drug induction between co-culture and sandwich culture 4.8.3 TGF β1 is an important regulator of hepatocyte function 4.8.4 TGF β1 is an important factor regulating CYP induction in co-culture 4.8.5 TGF β1 and co-culture enhance hepatocyte excretion 4.9 Discussion 4.10 Conclusion Chapter 119 Recommendations for future research 5.1 Liver tissue engineering 5.2 Hepatotoxicity testing and improving predictivity 5.3 Hepatitis C infections and drug development References 125     Summary: Primary hepatocytes of adult human and rodent origin are essential components for developing drugs against infectious pathogens and for studying drug mediated liver toxicity. One of the key drawbacks limiting the use of these primary hepatocytes in vitro is their rapid loss of differentiated function, polarity, inability to recapitulate drug responses accurately and failure to capture the life cycle of pathogens. Although multiple platforms have been developed to improve functional maintenance of hepatocytes in culture, there is little understanding on the utility of these models for applications like toxicology and infections by various liver specific pathogens. In this thesis we have studied the utility of spheroid cultures of human hepatocytes to support hepatitis C infection and replication and sandwich culture of rat hepatocytes and coculture of rat hepatocytes with fibroblasts for drug testing applications. Spheroid culture models of human hepatocytes and human hepatoma cells maintain and enhance liver specific functions, while localizing various liver specific proteins at domains similar to that found in vivo. These spheroid models maintain polarity over prolonged cultures and support glycoprotein mediated HCV entry. Huh 7.5 also support higher levels of replication of HCV virus in vitro. This makes it a suitable model to screen for drugs inhibiting HCV entry and replication. Rat hepatocyte culture with fibroblasts (co-culture) enhances hepatocyte specific synthetic and metabolic functions. However co-culture of hepatocytes with fibroblasts inhibits drug-induced CYP 450 responses. We found that TGFβ1 is an important cytokine in co-culture responsible for repression of drug-induced responses. Soluble factor mediated repression of drug-induced CYP 450 responses makes co-culture an unsuitable model to study drug induction/inhibition and drug-drug interactions.     We have analyzed the strengths of different hepatocyte culture models and demonstrated the strengths of different models for applications pertaining to drug development.     Acknowledgements: I am indebted to my supervisor Prof Hanry Yu for giving me independence and freedom to define my thesis and also execute it with tremendous amounts of support. The idea of doing this thesis came about after talks with different pharmaceutical industries like Johnson and Johnson and Hoffman La Roche pharmaceuticals who were interested like rest of the pharmaceutical world in the major points of focus in this thesis namely Hepatotoxicity and HCV replication in vitro. Prof Yu was instrumental in my visit and collaborative efforts with both these pharmaceutical giants to understand the needs of the industry. To my thesis advisor Dr Michael McMillian, I owe my deepest gratitude for many insightful discussions and making me understand the nuances of mechanistic toxicity and understanding the biology behind various toxic responses. To Dr Miriam Triyatni, Dr Surya Sankuratri and Dr Stefan Hart for discussions on characterization of the model for Hepatitis C infection and useful discussions on HCV biology and the problems the pharmaceutical industry is facing to combat this virus. I would like to also thank my colleagues Bramasta, Narmada, Justin, Inn Chuan, George Annene, Yee Han, Yi Chin and Derek Phan for all the wonderful discussions and support over the last years and making it a wonderful sojourn I would also like to thank all LCTE members and members at Institute at Bioengineering and Nanotechnology past and present for letting me to work with them over these years in a conducive lab environment. Finally I would like to thank my parents for being my advisors, friends, philosophers and guides all my life without which this dissertation would not be possible.     List of publications: 1. Ananthanarayanan.A. et al. 2011 “ Systems Biology in Biomaterials and Tissue Engineering”. Comprehensive Biomaterials. Elsevier 2. Ananthanarayanan.A., et al. 2011 “ Purpose driven biomaterials research in liver tissue engineering” 29 (8):110-8. Trends in Biotechnology (Cover March 2011) 3. Shufang Zhang, Wenhao Tong, Baixue Zheng, Thomas Adi Kurnia Susanto, Lei Xia, Chi Zhang, Abhishek Ananthanarayanan, Xiaoye Tuo, Sakbhan Rashidah Binte, Rui Rui Jia, Ciprian Iliescu, Kah Hin Chai, Michael McMillian, Shali Shen, Hwa Liang Leo, Hanry Yu. 2011. A robust high throughput sandwich cell based drug screening platform. 32 (4):1229-41. Biomaterials 4. Lei Xia, Yinghua Qu, Sakban Rashidah Binte, Xin Hong, Wenxia Zhang, Bramasta Nugraha, Wenhao Tong, Abhishek Ananthanarayanan, BaiXue Zheng, Ian Yin-Yan, Rui Rui Jia, Michael McMillian, Jose Silvia, Shanon Dallas, Hanry Yu. 2012“Tethered spheroids as a hepatocyte in vitro model for drug hepatotoxicity screening” 33 (7):2165-76 5. Hanry Yu and Abhishek Ananthanarayanan. “Introduction to Cellular and Tissue engineering”. 2013 Imaging in cellular and Tissue engineering. Taylor and Francis 6. Baixue Zheng and Abhishek Ananthanarayanan.2013”Confocal Microscopy for Cellular Imaging: High-Content Screening”. Imaging in cellular and Tissue engineering. Taylor and Francis 7. Ananthanarayanan. A et al. 2013. “Scalable spheroid model of human hepatocytes for HCV infection and replication” (Manuscript to be submitted) 8. Ananthanarayanan et al. 2013. “ Co-culture of rat hepatocytes with NIH 3T3 suppresses drug induced responses via TGF β1mediated transcription factor inhibition” (manuscript to be submitted)     levels of infection and persistent replication also allow for the study of the accurate drug responses that are activated by various strains of the virus. However the difficulty in obtaining high quality human hepatocytes from donors makes it very difficult to use in vitro systems with primary human hepatocytes for routine drug screening. We envision a future where we will obtain human hepatocytes from sources such as humanized mice where fresh human hepatocytes can be obtained from mice, which have been implanted with liver cells of human donors supporting HCV infection. Other alternatives can be iPS-derived hepatocytes, which can support HCV replication. This will allow us to screen for differences in metabolic capacities of different donors and also identify the differences in drug responses among different patient lines. This will help us estimate the efficacy of the drug among different ethnic groups/different patients well before the clinical trials. The 3D spheroid system, which allows for hepatitis C replication holds great promise for the future and the salient features of this system allow it to be scalable amenable to screening in 96 well plate format allowing for high throughput and routine screening of anti-viral drugs and also a system for basic biological research to understand hostvirus responses. The system can also be extrapolated for the study of HBV and characterized for infections by other pathogens. 124     References [1]  DiMasi  JA,  Hansen  RW,  Grabowski  HG.  The  price  of  innovation:  new  estimates   of  drug  development  costs.  J  Health  Econ.  2003;22:151-­‐85.   [2]  Burbaum  JJ,  Ohlmeyer  MH,  Reader  JC,  Henderson  I,  Dillard  LW,  Li  G,  et  al.  A   paradigm   for   drug   discovery   employing   encoded   combinatorial   libraries.   Proc   Natl  Acad  Sci  U  S  A.  1995;92:6027-­‐31.   [3]  Venkatesh  S,  Lipper  RA.  Role  of  the  development  scientist  in  compound  lead   selection  and  optimization.  J  Pharm  Sci.  2000;89:145-­‐54.   [4]   Jemnitz   K,   Veres   Z,   Monostory   K,   Kobori   L,   Vereczkey   L.   Interspecies   differences   in   acetaminophen   sensitivity   of   human,   rat,   and   mouse   primary   hepatocytes.  Toxicol  In  Vitro.  2008;22:961-­‐7.   [5]   Kubinyi   H.   Drug   research:   myths,   hype   and   reality.   Nat   Rev   Drug   Discov.   2003;2:665-­‐8.   [6]   Flint   M,   von   Hahn   T,   Zhang   J,   Farquhar   M,   Jones   CT,   Balfe   P,   et   al.   Diverse   CD81  proteins  support  hepatitis  C  virus  infection.  J  Virol.  2006;80:11331-­‐42.   [7]   Brass   V,   Moradpour   D,   Blum   HE.   Hepatitis   C   virus   infection:   in   vivo   and   in   vitro  models.  J  Viral  Hepat.  2007;14  Suppl  1:64-­‐7.   [8]   Lampertico   P,   Malter   JS,   Gerber   MA.   Development   and   application   of   an   in   vitro   model   for   screening   anti-­‐hepatitis   B   virus   therapeutics.   Hepatology.   1991;13:422-­‐6.   [9]  Nelson  DR,  Soldevila-­‐Pico  C,  Reed  A,  Abdelmalek  MF,  Hemming  AW,  Van  der   Werf   WJ,   et   al.   Anti-­‐interleukin-­‐2   receptor   therapy   in   combination   with   mycophenolate   mofetil   is   associated   with   more   severe   hepatitis   C   recurrence   after  liver  transplantation.  Liver  Transpl.  2001;7:1064-­‐70.   [10]   Hendriksen   CF.   Replacement,   reduction   and   refinement   alternatives   to   animal   use   in   vaccine   potency   measurement.   Expert   Rev   Vaccines.   2009;8:313-­‐ 22.   [11]   Jaeschke   H,   Gores   GJ,   Cederbaum   AI,   Hinson   JA,   Pessayre   D,   Lemasters   JJ.   Mechanisms  of  hepatotoxicity.  Toxicol  Sci.  2002;65:166-­‐76.   [12]   Rappaport   AM,   Borowy   ZJ,   Lougheed   WM,   Lotto   WN.   Subdivision   of   hexagonal   liver   lobules   into   a   structural   and   functional   unit;   role   in   hepatic   physiology  and  pathology.  Anat  Rec.  1954;119:11-­‐33.   [13]  Cunningham  CC,  Van  Horn  CG.  Energy  availability  and  alcohol-­‐related  liver   pathology.  Alcohol  Res  Health.  2003;27:291-­‐9.   [14]   Katz   NR.   Metabolic   heterogeneity   of   hepatocytes   across   the   liver   acinus.   J   Nutr.  1992;122:843-­‐9.   [15]   LeCluyse   EL,   Bullock   PL,   Parkinson   A,   Hochman   JH.   Cultured   rat   hepatocytes.  Pharm  Biotechnol.  1996;8:121-­‐59.   [16]  Wisse  E,  Braet  F,  Luo  D,  De  Zanger  R,  Jans  D,  Crabbe  E,  et  al.  Structure  and   function  of  sinusoidal  lining  cells  in  the  liver.  Toxicol  Pathol.  1996;24:100-­‐11.   [17]  Roberts  RA,  Ganey  PE,  Ju  C,  Kamendulis  LM,  Rusyn  I,  Klaunig  JE.  Role  of  the   Kupffer   cell   in   mediating   hepatic   toxicity   and   carcinogenesis.   Toxicol   Sci.   2007;96:2-­‐15.   [18]   Sleyster   EC,   Knook   DL.   Relation   between   localization   and   function   of   rat   liver  Kupffer  cells.  Lab  Invest.  1982;47:484-­‐90.   [19]   Sato   M,   Suzuki   S,   Senoo   H.   Hepatic   stellate   cells:   unique   characteristics   in   cell  biology  and  phenotype.  Cell  Struct  Funct.  2003;28:105-­‐12.   125     [20]   Wang   X,   Tang   X,   Gong   X,   Albanis   E,   Friedman   SL,   Mao   Z.   Regulation   of   hepatic   stellate   cell   activation   and   growth   by   transcription   factor   myocyte   enhancer  factor  2.  Gastroenterology.  2004;127:1174-­‐88.   [21]   Moreira   RK.   Hepatic   stellate   cells   and   liver   fibrosis.   Arch   Pathol   Lab   Med.   2007;131:1728-­‐34.   [22]  Lowes  KN,  Croager  EJ,  Olynyk  JK,  Abraham  LJ,  Yeoh  GC.  Oval  cell-­‐mediated   liver   regeneration:   Role   of   cytokines   and   growth   factors.   Journal   of   gastroenterology  and  hepatology.  2003;18:4-­‐12.   [23]  Newsome  PN,  Hussain  MA,  Theise  ND.  Hepatic  oval  cells:  helping  redefine  a   paradigm   in   stem   cell   biology.   Current   topics   in   developmental   biology.   2004;61:1-­‐28.   [24]  Nakatani  K,  Kaneda  K,  Seki  S,  Nakajima  Y.  Pit  cells  as  liver-­‐associated  natural   killer  cells:  morphology  and  function.  Med  Electron  Microsc.  2004;37:29-­‐36.   [25]  Bataller  R,  Brenner  DA.  Liver  fibrosis.  J  Clin  Invest.  2005;115:209-­‐18.   [26]  Ananthanarayanan  A,  Narmada  BC,  Mo  X,  McMillian  M,  Yu  H.  Purpose-­‐driven   biomaterials  research  in  liver-­‐tissue  engineering.  Trends  Biotechnol.29:110-­‐8.   [27]   Bayad   J,   Bagrel   D,   Sabolovic   N,   Magdalou   J,   Siest   G.   Expression   and   regulation  of  drug  metabolizing  enzymes  in  an  immortalized  rat  hepatocyte  cell   line.  Biochem  Pharmacol.  1991;42:1345-­‐51.   [28]  Carlile  DJ,  Zomorodi  K,  Houston  JB.  Scaling  factors  to  relate  drug  metabolic   clearance   in   hepatic   microsomes,   isolated   hepatocytes,   and   the   intact   liver:   studies   with   induced   livers   involving   diazepam.   Drug   Metab   Dispos.   1997;25:903-­‐11.   [29]  Brandon  EF,  Raap  CD,  Meijerman  I,  Beijnen  JH,  Schellens  JH.  An  update  on  in   vitro  test  methods  in  human  hepatic  drug  biotransformation  research:  pros  and   cons.  Toxicol  Appl  Pharmacol.  2003;189:233-­‐46.   [30]   Farkas   D,   Tannenbaum   SR.   In   vitro   methods   to   study   chemically-­‐induced   hepatotoxicity:  a  literature  review.  Curr  Drug  Metab.  2005;6:111-­‐25.   [31]   Sivaraman   A,   Leach   JK,   Townsend   S,   Iida   T,   Hogan   BJ,   Stolz   DB,   et   al.   A   microscale  in  vitro  physiological  model  of  the  liver:  predictive  screens  for  drug   metabolism  and  enzyme  induction.  Curr  Drug  Metab.  2005;6:569-­‐91.   [32]  LeCluyse  EL,  Alexandre  E,  Hamilton  GA,  Viollon-­‐Abadie  C,  Coon  DJ,  Jolley  S,   et   al.   Isolation   and   culture   of   primary   human   hepatocytes.   Methods   Mol   Biol.   2005;290:207-­‐29.   [33]   Foy   E,   Li   K,   Sumpter   R,   Jr.,   Loo   YM,   Johnson   CL,   Wang   C,   et   al.   Control   of   antiviral  defenses  through  hepatitis  C  virus  disruption  of  retinoic  acid-­‐inducible   gene-­‐I  signaling.  Proc  Natl  Acad  Sci  U  S  A.  2005;102:2986-­‐91.   [34]  Gebhardt  R,  Hengstler  JG,  Muller  D,  Glockner  R,  Buenning  P,  Laube  B,  et  al.   New   hepatocyte   in   vitro   systems   for   drug   metabolism:   metabolic   capacity   and   recommendations   for   application   in   basic   research   and   drug   development,   standard  operation  procedures.  Drug  Metab  Rev.  2003;35:145-­‐213.   [35]   Dunn   JC,   Yarmush   ML,   Koebe   HG,   Tompkins   RG.   Hepatocyte   function   and   extracellular   matrix   geometry:   long-­‐term   culture   in   a   sandwich   configuration.   FASEB  J.  1989;3:174-­‐7.   [36]   Griffith   LG,   Naughton   G.   Tissue   engineering-­‐-­‐current   challenges   and   expanding  opportunities.  Science.  2002;295:1009-­‐14.   [37]   MacNeil   S.   Progress   and   opportunities   for   tissue-­‐engineered   skin.   Nature.   2007;445:874-­‐80.   126     [38]  Sauer  IM,  Obermeyer  N,  Kardassis  D,  Theruvath  T,  Gerlach  JC.  Development   of  a  hybrid  liver  support  system.  Ann  N  Y  Acad  Sci.  2001;944:308-­‐19.   [39]   Bruns   H,   Kneser   U,   Holzhuter   S,   Roth   B,   Kluth   J,   Kaufmann   PM,   et   al.   Injectable   liver:   a   novel   approach   using   fibrin   gel   as   a   matrix   for   culture   and   intrahepatic  transplantation  of  hepatocytes.  Tissue  Eng.  2005;11:1718-­‐26.   [40]   Hollister   SJ.   Porous   scaffold   design   for   tissue   engineering.   Nat   Mater.   2005;4:518-­‐24.   [41]   Roelandt   P,   Pauwelyn   KA,   Sancho-­‐Bru   P,   Subramanian   K,   Ordovas   L,   Vanuytsel   K,   et   al.   Human   embryonic   and   rat   adult   stem   cells   with   primitive   endoderm-­‐like   phenotype   can   be   fated   to   definitive   endoderm,   and   finally   hepatocyte-­‐like  cells.  PLoS  One.  2010;5:e12101.   [42]   Williams   DF.   On   the   nature   of   biomaterials.   Biomaterials.   2009;30:5897-­‐ 909.   [43]   Khademhosseini   A,   Langer   R.   Microengineered   hydrogels   for   tissue   engineering.  Biomaterials.  2007;28:5087-­‐92.   [44]   Khademhosseini   A,   Langer   R,   Borenstein   J,   Vacanti   JP.   Microscale   technologies   for   tissue   engineering   and   biology.   Proc   Natl   Acad   Sci   U   S   A.   2006;103:2480-­‐7.   [45]   Du   Y,   Lo   E,   Ali   S,   Khademhosseini   A.   Directed   assembly   of   cell-­‐laden   microgels   for   fabrication   of   3D   tissue   constructs.   Proc   Natl   Acad   Sci   U   S   A.   2008;105:9522-­‐7.   [46]  Tsuda  Y,  Morimoto  Y,  Takeuchi  S.  Monodisperse  cell-­‐encapsulating  peptide   microgel  beads  for  3D  cell  culture.  Langmuir.  2010;26:2645-­‐9.   [47]   Liu   Tsang   V,   Chen   AA,   Cho   LM,   Jadin   KD,   Sah   RL,   DeLong   S,   et   al.   Fabrication   of  3D  hepatic  tissues  by  additive  photopatterning  of  cellular  hydrogels.  FASEB  J.   2007;21:790-­‐801.   [48]  Zhao  D,  Ong  SM,  Yue  Z,  Jiang  Z,  Toh  YC,  Khan  M,  et  al.  Dendrimer  hydrazides   as  multivalent  transient  inter-­‐cellular  linkers.  Biomaterials.  2008;29:3693-­‐702.   [49]  Yang  J,  Yamato  M,  Kohno  C,  Nishimoto  A,  Sekine  H,  Fukai  F,  et  al.  Cell  sheet   engineering:   recreating   tissues   without   biodegradable   scaffolds.   Biomaterials.   2005;26:6415-­‐22.   [50]   Ong   SM,   He   L,   Thuy   Linh   NT,   Tee   YH,   Arooz   T,   Tang   G,   et   al.   Transient   inter-­‐ cellular  polymeric  linker.  Biomaterials.  2007;28:3656-­‐67.   [51]  Mo  X,  Li  Q,  Yi  Lui  LW,  Zheng  B,  Kang  CH,  Nugraha  B,  et  al.  Rapid  construction   of   mechanically-­‐   confined   multi-­‐   cellular   structures   using   dendrimeric   intercellular  linker.  Biomaterials.  2010;31:7455-­‐67.   [52]   Ohashi   K,   Yokoyama   T,   Yamato   M,   Kuge   H,   Kanehiro   H,   Tsutsumi   M,   et   al.   Engineering   functional   two-­‐   and   three-­‐dimensional   liver   systems   in   vivo   using   hepatic  tissue  sheets.  Nat  Med.  2007;13:880-­‐5.   [53]  Tsuda  Y,  Kikuchi  A,  Yamato  M,  Nakao  A,  Sakurai  Y,  Umezu  M,  et  al.  The  use  of   patterned   dual   thermoresponsive   surfaces   for   the   collective   recovery   as   co-­‐ cultured  cell  sheets.  Biomaterials.  2005;26:1885-­‐93.   [54]  Toh  YC,  Zhang  C,  Zhang  J,  Khong  YM,  Chang  S,  Samper  VD,  et  al.  A  novel  3D   mammalian   cell   perfusion-­‐culture   system   in   microfluidic   channels.   Lab   Chip.   2007;7:302-­‐9.   [55]   Zhang   C,   Zhao   Z,   Abdul   Rahim   NA,   van   Noort   D,   Yu   H.   Towards   a   human-­‐on-­‐ chip:   culturing   multiple   cell   types   on   a   chip   with   compartmentalized   microenvironments.  Lab  Chip.  2009;9:3185-­‐92.   127     [56]  V.N  Goral  YCH,  O.N.  Petzold,  J.S.  Clark,  P.k.  Yuen,  R.A.  Faris.  Perfusion  based   microfluidic   device   for   3D   dynamic   primary   human   hepatocyte   culture   in   absence  of  biological  or  synthetic  matrices  or  coagulants.    MicroTas.  Groningen,   Netherlands2010.   [57]   Hui   EE,   Bhatia   SN.   Micromechanical   control   of   cell-­‐cell   interactions.   Proc   Natl  Acad  Sci  U  S  A.  2007;104:5722-­‐6.   [58]   Khetani   SR,   Bhatia   SN.   Microscale   culture   of   human   liver   cells   for   drug   development.  Nat  Biotechnol.  2008;26:120-­‐6.   [59]   Zhang   S,   Xia   L,   Kang   CH,   Xiao   G,   Ong   SM,   Toh   YC,   et   al.   Microfabricated   silicon   nitride   membranes   for   hepatocyte   sandwich   culture.   Biomaterials.   2008;29:3993-­‐4002.   [60]   Feng   ZQ,   Chu   XH,   Huang   NP,   Leach   MK,   Wang   G,   Wang   YC,   et   al.   Rat   hepatocyte   aggregate   formation   on   discrete   aligned   nanofibers   of   type-­‐I   collagen-­‐coated  poly(L-­‐lactic  acid).  Biomaterials.  2010;31:3604-­‐12.   [61]  Ghibaudo  M,  Trichet  L,  Le  Digabel  J,  Richert  A,  Hersen  P,  Ladoux  B.  Substrate   topography  induces  a  crossover  from  2D  to  3D  behavior  in  fibroblast  migration.   Biophys  J.  2009;97:357-­‐68.   [62]   Ng   S,   Han   R,   Chang   S,   Ni   J,   Hunziker   W,   Goryachev   AB,   et   al.   Improved   hepatocyte  excretory  function  by  immediate  presentation  of  polarity  cues.  Tissue   Eng.  2006;12:2181-­‐91.   [63]   Mee   CJ,   Grove   J,   Harris   HJ,   Hu   K,   Balfe   P,   McKeating   JA.   Effect   of   cell   polarization  on  hepatitis  C  virus  entry.  J  Virol.  2008;82:461-­‐70.   [64]  Harris  HJ,  Farquhar  MJ,  Mee  CJ,  Davis  C,  Reynolds  GM,  Jennings  A,  et  al.  CD81   and   claudin     coreceptor   association:   role   in   hepatitis   C   virus   entry.   J   Virol.   2008;82:5007-­‐20.   [65]   Chong   TW,   Smith   RL,   Hughes   MG,   Camden   J,   Rudy   CK,   Evans   HL,   et   al.   Primary   human   hepatocytes   in   spheroid   formation   to   study   hepatitis   C   infection.   J  Surg  Res.  2006;130:52-­‐7.   [66]   Ploss   A,   Khetani   SR,   Jones   CT,   Syder   AJ,   Trehan   K,   Gaysinskaya   VA,   et   al.   Persistent   hepatitis   C   virus   infection   in   microscale   primary   human   hepatocyte   cultures.  Proc  Natl  Acad  Sci  U  S  A.  2010;107:3141-­‐5.   [67]   Bissig   KD,   Wieland   SF,   Tran   P,   Isogawa   M,   Le   TT,   Chisari   FV,   et   al.   Human   liver   chimeric   mice   provide   a   model   for   hepatitis   B   and   C   virus   infection   and   treatment.  J  Clin  Invest.  2010;120:924-­‐30.   [68]   Yang   PL,   Althage   A,   Chung   J,   Chisari   FV.   Hydrodynamic   injection   of   viral   DNA:  a  mouse  model  of  acute  hepatitis  B  virus  infection.  Proc  Natl  Acad  Sci  U  S  A.   2002;99:13825-­‐30.   [69]  Brophy  CM,  Luebke-­‐Wheeler  JL,  Amiot  BP,  Khan  H,  Remmel  RP,  Rinaldo  P,  et   al.  Rat  hepatocyte  spheroids  formed  by  rocked  technique  maintain  differentiated   hepatocyte  gene  expression  and  function.  Hepatology.  2009;49:578-­‐86.   [70]  Kienhuis  AS,  Wortelboer  HM,  Maas  WJ,  van  Herwijnen  M,  Kleinjans  JC,  van   Delft   JH,   et   al.   A   sandwich-­‐cultured   rat   hepatocyte   system   with   increased   metabolic   competence   evaluated   by   gene   expression   profiling.   Toxicol   In   Vitro.   2007;21:892-­‐901.   [71]   Keum   YS,   Han   YH,   Liew   C,   Kim   JH,   Xu   C,   Yuan   X,   et   al.   Induction   of   heme   oxygenase-­‐1   (HO-­‐1)   and   NAD[P]H:   quinone   oxidoreductase     (NQO1)   by   a   phenolic   antioxidant,   butylated   hydroxyanisole   (BHA)   and   its   metabolite,   tert-­‐ butylhydroquinone   (tBHQ)   in   primary-­‐cultured   human   and   rat   hepatocytes.   Pharm  Res.  2006;23:2586-­‐94.   128     [72]   Williams   DP.   Toxicophores:   investigations   in   drug   safety.   Toxicology.   2006;226:1-­‐11.   [73]   Obach   RS,   Kalgutkar   AS,   Soglia   JR,   Zhao   SX.   Can   in   vitro   metabolism-­‐ dependent   covalent   binding   data   in   liver   microsomes   distinguish   hepatotoxic   from   nonhepatotoxic   drugs?   An   analysis   of   18   drugs   with   consideration   of   intrinsic  clearance  and  daily  dose.  Chem  Res  Toxicol.  2008;21:1814-­‐22.   [74]  Dykens  JA,  Will  Y.  The  significance  of  mitochondrial  toxicity  testing  in  drug   development.  Drug  Discovery  Today.  2007;12:777-­‐85.   [75]   Seidle   T,   Robinson   S,   Holmes   T,   Creton   S,   Prieto   P,   Scheel   J,   et   al.   Cross-­‐ Sector   Review   of   Drivers   and   Available   3Rs   Approaches   for   Acute   Systemic   Toxicity  Testing.  Toxicological  Sciences.  2010;116:382-­‐96.   [76]   Allen   JW,   Khetani   SR,   Bhatia   SN.   In   vitro   zonation   and   toxicity   in   a   hepatocyte  bioreactor.  Toxicol  Sci.  2005;84:110-­‐9.   [77]   Chao   P,   Maguire   T,   Novik   E,   Cheng   KC,   Yarmush   ML.   Evaluation   of   a   microfluidic  based  cell  culture  platform  with  primary  human  hepatocytes  for  the   prediction  of  hepatic  clearance  in  human.  Biochem  Pharmacol.  2009;78:625-­‐32.   [78]   Du   Y,   Han   R,   Ng   S,   Ni   J,   Sun   W,   Wohland   T,   et   al.   Identification   and   characterization   of   a   novel   prespheroid   3-­‐dimensional   hepatocyte   monolayer   on   galactosylated  substratum.  Tissue  Eng.  2007;13:1455-­‐68.   [79]  Cosgrove  BD,  King  BM,  Hasan  MA,  Alexopoulos  LG,  Farazi  PA,  Hendriks  BS,   et   al.   Synergistic   drug-­‐cytokine   induction   of   hepatocellular   death   as   an   in   vitro   approach   for   the   study   of   inflammation-­‐associated   idiosyncratic   drug   hepatotoxicity.  Toxicol  Appl  Pharmacol.  2009;237:317-­‐30.   [80]   Dash   A   IW,   Hoffmaster   K,   Sevidal   S,   Kelly   J,   Obach   RS,   Griffith   LG,   Tannebaum  SR.  Liver  tissue  engineering  in  the  evaluation  of  drug  safety.  Expert   Opinion  on  Drug  Metabolism  &  Toxicology.  2009;5:1159-­‐74.   [81]   Ploss   A,   Khetani   SR,   Jones   CT,   Syder   AJ,   Trehan   K,   Gaysinskaya   VA,   et   al.   Persistent   hepatitis   C   virus   infection   in   microscale   primary   human   hepatocyte   cultures.  Proc  Natl  Acad  Sci  U  S  A.107:3141-­‐5.   [82]   Nugraha   B,   Hong   X,   Mo   X,   Tan   L,   Zhang   W,   Chan   PM,   et   al.   Galactosylated   cellulosic  sponge  for  multi-­‐well  drug  safety  testing.  Biomaterials.32:6982-­‐94.   [83]   Farkas   D,   Tannenbaum   SR.   Characterization   of   chemically   induced   hepatotoxicity   in   collagen   sandwiches   of   rat   hepatocytes.   Toxicol   Sci.   2005;85:927-­‐34.   [84]   Chia   SM,   Lin   PC,   Yu   H.   TGF-­‐beta1   regulation   in   hepatocyte-­‐NIH3T3   co-­‐ culture   is   important   for   the   enhanced   hepatocyte   function   in   3D   microenvironment.  Biotechnol  Bioeng.  2005;89:565-­‐73.   [85]  Zeisel  MB,  Fofana  I,  Fafi-­‐Kremer  S,  Baumert  TF.  Hepatitis  C  virus  entry  into   hepatocytes:   molecular   mechanisms   and   targets   for   antiviral   therapies.   J   Hepatol.54:566-­‐76.   [86]  Blight  KJ,  McKeating  JA,  Rice  CM.  Highly  permissive  cell  lines  for  subgenomic   and  genomic  hepatitis  C  virus  RNA  replication.  J  Virol.  2002;76:13001-­‐14.   [87]   Wakita   T,   Pietschmann   T,   Kato   T,   Date   T,   Miyamoto   M,   Zhao   Z,   et   al.   Production   of   infectious   hepatitis   C   virus   in   tissue   culture   from   a   cloned   viral   genome.  Nat  Med.  2005;11:791-­‐6.   [88]  Zhong  J,  Gastaminza  P,  Cheng  G,  Kapadia  S,  Kato  T,  Burton  DR,  et  al.  Robust   hepatitis  C  virus  infection  in  vitro.  Proc  Natl  Acad  Sci  U  S  A.  2005;102:9294-­‐9.   [89]  Vinken  M,  Vanhaecke  T,  Rogiers  V.  Primary  hepatocyte  cultures  as  in  vitro   tools  for  toxicity  testing:  quo  vadis?  Toxicol  In  Vitro.26:541-­‐4.   129     [90]   Xia   L,   Ng   S,   Han   R,   Tuo   X,   Xiao   G,   Leo   HL,   et   al.   Laminar-­‐flow   immediate-­‐ overlay   hepatocyte   sandwich   perfusion   system   for   drug   hepatotoxicity   testing.   Biomaterials.  2009;30:5927-­‐36.   [91]  Du  Y,  Han  R,  Wen  F,  Ng  San  San  S,  Xia  L,  Wohland  T,  et  al.  Synthetic  sandwich   culture  of  3D  hepatocyte  monolayer.  Biomaterials.  2008;29:290-­‐301.   [92]   Chisari   FV.   Unscrambling   hepatitis   C   virus-­‐host   interactions.   Nature.   2005;436:930-­‐2.   [93]  Oze  T,  Hiramatsu  N,  Song  C,  Yakushijin  T,  Iio  S,  Doi  Y,  et  al.  Reducing  Peg-­‐IFN   doses   causes   later   virologic   response   or   no   response   in   HCV   genotype     patients   treated  with  Peg-­‐IFN  alfa-­‐2b  plus  ribavirin.  J  Gastroenterol.47:334-­‐42.   [94]  Oze  T,  Hiramatsu  N,  Yakushijin  T,  Mochizuki  K,  Imanaka  K,  Yamada  A,  et  al.   The   efficacy   of   extended   treatment   with   pegylated   interferon   plus   ribavirin   in   patients   with   HCV   genotype     and   slow   virologic   response   in   Japan.   J   Gastroenterol.46:944-­‐52.   [95]  Brown  RS.  Hepatitis  C  and  liver  transplantation.  Nature.  2005;436:973-­‐8.   [96]  Hoofnagle  JH.  Course  and  outcome  of  hepatitis  C.  Hepatology.  2002;36:S21-­‐ 9.   [97]  Alter  MJ.  Prevention  of  spread  of  hepatitis  C.  Hepatology.  2002;36:S93-­‐8.   [98]  Sulkowski  MS,  Mast  EE,  Seeff  LB,  Thomas  DL.  Hepatitis  C  virus  infection  as   an   opportunistic   disease   in   persons   infected   with   human   immunodeficiency   virus.  Clin  Infect  Dis.  2000;30  Suppl  1:S77-­‐84.   [99]  Choo  QL,  Kuo  G,  Weiner  AJ,  Overby  LR,  Bradley  DW,  Houghton  M.  Isolation   of  a  cDNA  clone  derived  from  a  blood-­‐borne  non-­‐A,  non-­‐B  viral  hepatitis  genome.   Science.  1989;244:359-­‐62.   [100]   Lohmann   V,   Koch   JO,   Bartenschlager   R.   Processing   pathways   of   the   hepatitis  C  virus  proteins.  J  Hepatol.  1996;24:11-­‐9.   [101]   Penin   F,   Dubuisson   J,   Rey   FA,   Moradpour   D,   Pawlotsky   JM.   Structural   biology  of  hepatitis  C  virus.  Hepatology.  2004;39:5-­‐19.   [102]  Nielsen  SU,  Bassendine  MF,  Burt  AD,  Martin  C,  Pumeechockchai  W,  Toms   GL.   Association   between   hepatitis   C   virus   and   very-­‐low-­‐density   lipoprotein   (VLDL)/LDL  analyzed  in  iodixanol  density  gradients.  J  Virol.  2006;80:2418-­‐28.   [103]   Seigneuret   M.   Complete   predicted   three-­‐dimensional   structure   of   the   facilitator   transmembrane   protein   and   hepatitis   C   virus   receptor   CD81:   conserved   and   variable   structural   domains   in   the   tetraspanin   superfamily.   Biophys  J.  2006;90:212-­‐27.   [104]   Pileri   P,   Uematsu   Y,   Campagnoli   S,   Galli   G,   Falugi   F,   Petracca   R,   et   al.   Binding  of  hepatitis  C  virus  to  CD81.  Science.  1998;282:938-­‐41.   [105]   Bartosch   B,   Dubuisson   J,   Cosset   FL.   Infectious   hepatitis   C   virus   pseudo-­‐ particles   containing   functional   E1-­‐E2   envelope   protein   complexes.   J   Exp   Med.   2003;197:633-­‐42.   [106]  Bartosch  B,  Vitelli  A,  Granier  C,  Goujon  C,  Dubuisson  J,  Pascale  S,  et  al.  Cell   entry   of   hepatitis   C   virus   requires   a   set   of   co-­‐receptors   that   include   the   CD81   tetraspanin  and  the  SR-­‐B1  scavenger  receptor.  J  Biol  Chem.  2003;278:41624-­‐30.   [107]  Zhang  J,  Randall  G,  Higginbottom  A,  Monk  P,  Rice  CM,  McKeating  JA.  CD81   is   required   for   hepatitis   C   virus   glycoprotein-­‐mediated   viral   infection.   J   Virol.   2004;78:1448-­‐55.   [108]   Boucheix   C,   Rubinstein   E.   Tetraspanins.   Cell   Mol   Life   Sci.   2001;58:1189-­‐ 205.   130     [109]   Rocha-­‐Perugini   V,   Montpellier   C,   Delgrange   D,   Wychowski   C,   Helle   F,   Pillez   A,  et  al.  The  CD81  partner  EWI-­‐2wint  inhibits  hepatitis  C  virus  entry.  PLoS  One.   2008;3:e1866.   [110]   Brazzoli   M,   Bianchi   A,   Filippini   S,   Weiner   A,   Zhu   Q,   Pizza   M,   et   al.   CD81   is   a   central   regulator   of   cellular   events   required   for   hepatitis   C   virus   infection   of   human  hepatocytes.  J  Virol.  2008;82:8316-­‐29.   [111]   Tseng   CT,   Klimpel   GR.   Binding   of   the   hepatitis   C   virus   envelope   protein   E2   to  CD81  inhibits  natural  killer  cell  functions.  J  Exp  Med.  2002;195:43-­‐9.   [112]  Rhainds  D,  Brissette  L.  The  role  of  scavenger  receptor  class  B  type  I  (SR-­‐BI)   in   lipid   trafficking.   defining   the   rules   for   lipid   traders.   Int   J   Biochem   Cell   Biol.   2004;36:39-­‐77.   [113]   Rigotti   A,   Trigatti   B,   Babitt   J,   Penman   M,   Xu   S,   Krieger   M.   Scavenger   receptor   BI-­‐-­‐a   cell   surface   receptor   for   high   density   lipoprotein.   Curr   Opin   Lipidol.  1997;8:181-­‐8.   [114]  Trigatti  BL,  Rigotti  A,  Braun  A.  Cellular  and  physiological  roles  of  SR-­‐BI,  a   lipoprotein   receptor   which   mediates   selective   lipid   uptake.   Biochim   Biophys   Acta.  2000;1529:276-­‐86.   [115]  Scarselli  E,  Ansuini  H,  Cerino  R,  Roccasecca  RM,  Acali  S,  Filocamo  G,  et  al.   The  human  scavenger  receptor  class  B  type  I  is  a  novel  candidate  receptor  for  the   hepatitis  C  virus.  EMBO  J.  2002;21:5017-­‐25.   [116]   Bartosch   B,   Verney   G,   Dreux   M,   Donot   P,   Morice   Y,   Penin   F,   et   al.   An   interplay   between   hypervariable   region     of   the   hepatitis   C   virus   E2   glycoprotein,   the   scavenger   receptor   BI,   and   high-­‐density   lipoprotein   promotes   both   enhancement   of   infection   and   protection   against   neutralizing   antibodies.   J   Virol.  2005;79:8217-­‐29.   [117]   Voisset   C,   Callens   N,   Blanchard   E,   Op   De   Beeck   A,   Dubuisson   J,   Vu-­‐Dac   N.   High   density   lipoproteins   facilitate   hepatitis   C   virus   entry   through   the   scavenger   receptor  class  B  type  I.  J  Biol  Chem.  2005;280:7793-­‐9.   [118]  Burlone  ME,  Budkowska  A.  Hepatitis  C  virus  cell  entry:  role  of  lipoproteins   and  cellular  receptors.  J  Gen  Virol.  2009;90:1055-­‐70.   [119]   Evans   MJ,   von   Hahn   T,   Tscherne   DM,   Syder   AJ,   Panis   M,   Wolk   B,   et   al.   Claudin-­‐1   is   a   hepatitis   C   virus   co-­‐receptor   required   for   a   late   step   in   entry.   Nature.  2007;446:801-­‐5.   [120]   Furuse   M,   Shinichi   W,   Suyama   Y,   Takahashi   K,   Kajikawa   H.   Ischaemia-­‐ induced   vascular   vulnerability   resulting   in   intracerebral   haemorrhage   with   ipsilateral  internal  carotid  artery  occlusion.  Neurol  Sci.  2008;29:367-­‐9.   [121]   Krause   G,   Winkler   L,   Mueller   SL,   Haseloff   RF,   Piontek   J,   Blasig   IE.   Structure   and  function  of  claudins.  Biochim  Biophys  Acta.  2008;1778:631-­‐45.   [122]  Meertens  L,  Bertaux  C,  Cukierman  L,  Cormier  E,  Lavillette  D,  Cosset  FL,  et   al.   The   tight   junction   proteins   claudin-­‐1,   -­‐6,   and   -­‐9   are   entry   cofactors   for   hepatitis  C  virus.  J  Virol.  2008;82:3555-­‐60.   [123]   Ploss   A,   Evans   MJ,   Gaysinskaya   VA,   Panis   M,   You   H,   de   Jong   YP,   et   al.   Human  occludin  is  a  hepatitis  C  virus  entry  factor  required  for  infection  of  mouse   cells.  Nature.  2009;457:882-­‐6.   [124]   Cocquerel   L,   Voisset   C,   Dubuisson   J.   Hepatitis   C   virus   entry:   potential   receptors  and  their  biological  functions.  J  Gen  Virol.  2006;87:1075-­‐84.   [125]   Feldman   GJ,   Mullin   JM,   Ryan   MP.   Occludin:   structure,   function   and   regulation.  Adv  Drug  Deliv  Rev.  2005;57:883-­‐917.   131     [126]  Benedicto  I,  Molina-­‐Jimenez  F,  Bartosch  B,  Cosset  FL,  Lavillette  D,  Prieto  J,   et   al.   The   tight   junction-­‐associated   protein   occludin   is   required   for   a   postbinding   step  in  hepatitis  C  virus  entry  and  infection.  J  Virol.  2009;83:8012-­‐20.   [127]  Benedicto  I,  Molina-­‐Jimenez  F,  Barreiro  O,  Maldonado-­‐Rodriguez  A,  Prieto   J,  Moreno-­‐Otero  R,  et  al.  Hepatitis  C  virus  envelope  components  alter  localization   of  hepatocyte  tight  junction-­‐associated  proteins  and  promote  occludin  retention   in  the  endoplasmic  reticulum.  Hepatology.  2008;48:1044-­‐53.   [128]  Lavillette  D,  Bartosch  B,  Nourrisson  D,  Verney  G,  Cosset  FL,  Penin  F,  et  al.   Hepatitis   C   virus   glycoproteins   mediate   low   pH-­‐dependent   membrane   fusion   with  liposomes.  J  Biol  Chem.  2006;281:3909-­‐17.   [129]  Roohvand  F,  Maillard  P,  Lavergne  JP,  Boulant  S,  Walic  M,  Andreo  U,  et  al.   Initiation   of   hepatitis   C   virus   infection   requires   the   dynamic   microtubule   network:  role  of  the  viral  nucleocapsid  protein.  J  Biol  Chem.  2009;284:13778-­‐91.   [130]   Spahn   CM,   Kieft   JS,   Grassucci   RA,   Penczek   PA,   Zhou   K,   Doudna   JA,   et   al.   Hepatitis   C   virus   IRES   RNA-­‐induced   changes   in   the   conformation   of   the   40s   ribosomal  subunit.  Science.  2001;291:1959-­‐62.   [131]  Andrade  RJ,  Lucena  MI,  Fernandez  MC,  Pelaez  G,  Pachkoria  K,  Garcia-­‐Ruiz   E,   et   al.   Drug-­‐induced   liver   injury:   an   analysis   of   461   incidences   submitted   to   the   Spanish  registry  over  a  10-­‐year  period.  Gastroenterology.  2005;129:512-­‐21.   [132]  Pavlovic  D,  Neville  DC,  Argaud  O,  Blumberg  B,  Dwek  RA,  Fischer  WB,  et  al.   The  hepatitis  C  virus  p7  protein  forms  an  ion  channel  that  is  inhibited  by  long-­‐ alkyl-­‐chain  iminosugar  derivatives.  Proc  Natl  Acad  Sci  U  S  A.  2003;100:6104-­‐8.   [133]   Branch   AD,   Stump   DD,   Gutierrez   JA,   Eng   F,   Walewski   JL.   The   hepatitis   C   virus   alternate   reading   frame   (ARF)   and   its   family   of   novel   products:   the   alternate   reading   frame   protein/F-­‐protein,   the   double-­‐frameshift   protein,   and   others.  Semin  Liver  Dis.  2005;25:105-­‐17.   [134]   Moradpour   D,   Penin   F,   Rice   CM.   Replication   of   hepatitis   C   virus.   Nat   Rev   Microbiol.  2007;5:453-­‐63.   [135]  Pietschmann  T,  Kaul  A,  Koutsoudakis  G,  Shavinskaya  A,  Kallis  S,  Steinmann   E,   et   al.   Construction   and   characterization   of   infectious   intragenotypic   and   intergenotypic   hepatitis   C   virus   chimeras.   Proc   Natl   Acad   Sci   U   S   A.   2006;103:7408-­‐13.   [136]   Grakoui   A,   McCourt   DW,   Wychowski   C,   Feinstone   SM,   Rice   CM.   A   second   hepatitis  C  virus-­‐encoded  proteinase.  Proc  Natl  Acad  Sci  U  S  A.  1993;90:10583-­‐7.   [137]   Hijikata   M,   Mizushima   H,   Akagi   T,   Mori   S,   Kakiuchi   N,   Kato   N,   et   al.   Two   distinct   proteinase   activities   required   for   the   processing   of   a   putative   nonstructural  precursor  protein  of  hepatitis  C  virus.  J  Virol.  1993;67:4665-­‐75.   [138]  Wolk  B,  Sansonno  D,  Krausslich  HG,  Dammacco  F,  Rice  CM,  Blum  HE,  et  al.   Subcellular   localization,   stability,   and   trans-­‐cleavage   competence   of   the   hepatitis   C  virus  NS3-­‐NS4A  complex  expressed  in  tetracycline-­‐regulated  cell  lines.  J  Virol.   2000;74:2293-­‐304.   [139]  Lamarre  D,  Anderson  PC,  Bailey  M,  Beaulieu  P,  Bolger  G,  Bonneau  P,  et  al.   An  NS3  protease  inhibitor  with  antiviral  effects  in  humans  infected  with  hepatitis   C  virus.  Nature.  2003;426:186-­‐9.   [140]  Li  K,  Foy  E,  Ferreon  JC,  Nakamura  M,  Ferreon  AC,  Ikeda  M,  et  al.  Immune   evasion  by  hepatitis  C  virus  NS3/4A  protease-­‐mediated  cleavage  of  the  Toll-­‐like   receptor  3  adaptor  protein  TRIF.  Proc  Natl  Acad  Sci  U  S  A.  2005;102:2992-­‐7.   132     [141]   Meylan   E,   Curran   J,   Hofmann   K,   Moradpour   D,   Binder   M,   Bartenschlager   R,   et  al.  Cardif  is  an  adaptor  protein  in  the  RIG-­‐I  antiviral  pathway  and  is  targeted   by  hepatitis  C  virus.  Nature.  2005;437:1167-­‐72.   [142]   Johnson   CL,   Gale   M,   Jr.   CARD   games   between   virus   and   host   get   a   new   player.  Trends  Immunol.  2006;27:1-­‐4.   [143]   Levin   MK,   Gurjar   M,   Patel   SS.   A   Brownian   motor   mechanism   of   translocation  and  strand  separation  by  hepatitis  C  virus  helicase.  Nat  Struct  Mol   Biol.  2005;12:429-­‐35.   [144]   Frick   DN,   Rypma   RS,   Lam   AM,   Gu   B.   The   nonstructural   protein     protease/helicase   requires   an   intact   protease   domain   to   unwind   duplex   RNA   efficiently.  J  Biol  Chem.  2004;279:1269-­‐80.   [145]   Egger   D,   Wolk   B,   Gosert   R,   Bianchi   L,   Blum   HE,   Moradpour   D,   et   al.   Expression   of   hepatitis   C   virus   proteins   induces   distinct   membrane   alterations   including  a  candidate  viral  replication  complex.  J  Virol.  2002;76:5974-­‐84.   [146]   Ago   H,   Adachi   T,   Yoshida   A,   Yamamoto   M,   Habuka   N,   Yatsunami   K,   et   al.   Crystal   structure   of   the   RNA-­‐dependent   RNA   polymerase   of   hepatitis   C   virus.   Structure.  1999;7:1417-­‐26.   [147]   Lyle   JM,   Bullitt   E,   Bienz   K,   Kirkegaard   K.   Visualization   and   functional   analysis  of  RNA-­‐dependent  RNA  polymerase  lattices.  Science.  2002;296:2218-­‐22.   [148]  Gosert  R,  Egger  D,  Lohmann  V,  Bartenschlager  R,  Blum  HE,  Bienz  K,  et  al.   Identification   of   the   hepatitis   C   virus   RNA   replication   complex   in   Huh-­‐7   cells   harboring  subgenomic  replicons.  J  Virol.  2003;77:5487-­‐92.   [149]   Ye   J,   Wang   C,   Sumpter   R,   Jr.,   Brown   MS,   Goldstein   JL,   Gale   M,   Jr.   Disruption   of   hepatitis   C   virus   RNA   replication   through   inhibition   of   host   protein   geranylgeranylation.  Proc  Natl  Acad  Sci  U  S  A.  2003;100:15865-­‐70.   [150]   Watashi   K,   Ishii   N,   Hijikata   M,   Inoue   D,   Murata   T,   Miyanari   Y,   et   al.   Cyclophilin  B  is  a  functional  regulator  of  hepatitis  C  virus  RNA  polymerase.  Mol   Cell.  2005;19:111-­‐22.   [151]   Andre   P,   Perlemuter   G,   Budkowska   A,   Brechot   C,   Lotteau   V.   Hepatitis   C   virus  particles  and  lipoprotein  metabolism.  Semin  Liver  Dis.  2005;25:93-­‐104.   [152]   Molina-­‐Jimenez   F,   Benedicto   I,   Dao   Thi   VL,   Gondar   V,   Lavillette   D,   Marin   JJ,   et  al.  Matrigel-­‐embedded  3D  culture  of  Huh-­‐7  cells  as  a  hepatocyte-­‐like  polarized   system  to  study  hepatitis  C  virus  cycle.  Virology.425:31-­‐9.   [153]   Hamilton   G.   Multicellular   spheroids   as   an   in   vitro   tumor   model.   Cancer   Lett.  1998;131:29-­‐34.   [154]  Mitry  RR,  Hughes  RD,  Dhawan  A.  Progress  in  human  hepatocytes:  isolation,   culture  &  cryopreservation.  Semin  Cell  Dev  Biol.  2002;13:463-­‐7.   [155]  Liu  S,  Yang  W,  Shen  L,  Turner  JR,  Coyne  CB,  Wang  T.  Tight  junction  proteins   claudin-­‐1   and   occludin   control   hepatitis   C   virus   entry   and   are   downregulated   during  infection  to  prevent  superinfection.  J  Virol.  2009;83:2011-­‐4.   [156]   Molina-­‐Jimenez   F,   Benedicto   I,   Dao   Thi   VL,   Gondar   V,   Lavillette   D,   Marin   JJ,   et  al.  Matrigel-­‐embedded  3D  culture  of  Huh-­‐7  cells  as  a  hepatocyte-­‐like  polarized   system  to  study  hepatitis  C  virus  cycle.  Virology.  2012;425:31-­‐9.   [157]  Sainz  B,  Jr.,  TenCate  V,  Uprichard  SL.  Three-­‐dimensional  Huh7  cell  culture   system  for  the  study  of  Hepatitis  C  virus  infection.  Virol  J.  2009;6:103.   [158]  Streetz  K,  Fregien  B,  Plumpe  J,  Korber  K,  Kubicka  S,  Sass  G,  et  al.  Dissection   of   the   intracellular   pathways   in   hepatocytes   suggests   a   role   for   Jun   kinase   and   IFN   regulatory   factor-­‐1   in   Con   A-­‐induced   liver   failure.   J   Immunol.   2001;167:514-­‐ 23.   133     [159]  Jones  CT,  Catanese  MT,  Law  LM,  Khetani  SR,  Syder  AJ,  Ploss  A,  et  al.  Real-­‐ time  imaging  of  hepatitis  C  virus  infection  using  a  fluorescent  cell-­‐based  reporter   system.  Nat  Biotechnol.  2010;28:167-­‐71.   [160]   Hantz   O,   Parent   R,   Durantel   D,   Gripon   P,   Guguen-­‐Guillouzo   C,   Zoulim   F.   Persistence   of   the   hepatitis   B   virus   covalently   closed   circular   DNA   in   HepaRG   human  hepatocyte-­‐like  cells.  J  Gen  Virol.  2009;90:127-­‐35.   [161]   Schwartz   RE,   Trehan   K,   Andrus   L,   Sheahan   TP,   Ploss   A,   Duncan   SA,   et   al.   Modeling   hepatitis   C   virus   infection   using   human   induced   pluripotent   stem   cells.   Proc  Natl  Acad  Sci  U  S  A.  2012;109:2544-­‐8.   [162]   Xia   L,   Sakban   RB,   Qu   Y,   Hong   X,   Zhang   W,   Nugraha   B,   et   al.   Tethered   spheroids   as   an   in   vitro   hepatocyte   model   for   drug   safety   screening.   Biomaterials.33:2165-­‐76.   [163]   Zhang   S,   Tong   W,   Zheng   B,   Susanto   TA,   Xia   L,   Zhang   C,   et   al.   A   robust   high-­‐ throughput  sandwich  cell-­‐based  drug  screening  platform.  Biomaterials.32:1229-­‐ 41.   [164]   Bhatia   SN,   Balis   UJ,   Yarmush   ML,   Toner   M.   Microfabrication   of   hepatocyte/fibroblast  co-­‐cultures:  role  of  homotypic  cell  interactions.  Biotechnol   Prog.  1998;14:378-­‐87.   [165]   Riccalton-­‐Banks   L,   Liew   C,   Bhandari   R,   Fry   J,   Shakesheff   K.   Long-­‐term   culture   of   functional   liver   tissue:   three-­‐dimensional   coculture   of   primary   hepatocytes  and  stellate  cells.  Tissue  Eng.  2003;9:401-­‐10.   [166]  Zinchenko  YS,  Schrum  LW,  Clemens  M,  Coger  RN.  Hepatocyte  and  kupffer   cells   co-­‐cultured   on   micropatterned   surfaces   to   optimize   hepatocyte   function.   Tissue  Eng.  2006;12:751-­‐61.   [167]   Tuschl   G,   Hrach   J,   Walter   Y,   Hewitt   PG,   Mueller   SO.   Serum-­‐free   collagen   sandwich   cultures   of   adult   rat   hepatocytes   maintain   liver-­‐like   properties   long   term:   a   valuable   model   for   in   vitro   toxicity   and   drug-­‐drug   interaction   studies.   Chem  Biol  Interact.  2009;181:124-­‐37.   [168]  Zhang  P,  Tian  X,  Chandra  P,  Brouwer  KL.  Role  of  glycosylation  in  trafficking   of  Mrp2  in  sandwich-­‐cultured  rat  hepatocytes.  Mol  Pharmacol.  2005;67:1334-­‐41.   [169]   Annaert   PP,   Turncliff   RZ,   Booth   CL,   Thakker   DR,   Brouwer   KL.   P-­‐ glycoprotein-­‐mediated   in   vitro   biliary   excretion   in   sandwich-­‐cultured   rat   hepatocytes.  Drug  Metab  Dispos.  2001;29:1277-­‐83.   [170]  Chandra  P,  Lecluyse  EL,  Brouwer  KL.  Optimization  of  culture  conditions  for   determining   hepatobiliary   disposition   of   taurocholate   in   sandwich-­‐cultured   rat   hepatocytes.  In  Vitro  Cell  Dev  Biol  Anim.  2001;37:380-­‐5.   [171]   Olson   H,   Betton   G,   Robinson   D,   Thomas   K,   Monro   A,   Kolaja   G,   et   al.   Concordance  of  the  toxicity  of  pharmaceuticals  in  humans  and  in  animals.  Regul   Toxicol  Pharmacol.  2000;32:56-­‐67.   [172]   Larson   AM,   Polson   J,   Fontana   RJ,   Davern   TJ,   Lalani   E,   Hynan   LS,   et   al.   Acetaminophen-­‐induced   acute   liver   failure:   results   of   a   United   States   multicenter,  prospective  study.  Hepatology.  2005;42:1364-­‐72.   [173]  Mehendale  HM.  Tissue  repair:  an  important  determinant  of  final  outcome   of  toxicant-­‐induced  injury.  Toxicol  Pathol.  2005;33:41-­‐51.   [174]  Lee  WM.  Drug-­‐induced  hepatotoxicity.  N  Engl  J  Med.  2003;349:474-­‐85.   [175]   Boelsterli   UA.   Disease-­‐related   determinants   of   susceptibility   to   drug-­‐ induced   idiosyncratic   hepatotoxicity.   Curr   Opin   Drug   Discov   Devel.   2003;6:81-­‐ 91.   134     [176]  Ostapowicz  G,  Fontana  RJ,  Schiodt  FV,  Larson  A,  Davern  TJ,  Han  SH,  et  al.   Results  of  a  prospective  study  of  acute  liver  failure  at  17  tertiary  care  centers  in   the  United  States.  Ann  Intern  Med.  2002;137:947-­‐54.   [177]  Tam  YK.  Individual  variation  in  first-­‐pass  metabolism.  Clin  Pharmacokinet.   1993;25:300-­‐28.   [178]   Schwabe   RF,   Brenner   DA.   Mechanisms   of   Liver   Injury.   I.   TNF-­‐alpha-­‐ induced   liver   injury:   role   of   IKK,   JNK,   and   ROS   pathways.   Am   J   Physiol   Gastrointest  Liver  Physiol.  2006;290:G583-­‐9.   [179]  Jaeschke  H,  Bajt  ML.  Intracellular  signaling  mechanisms  of  acetaminophen-­‐ induced  liver  cell  death.  Toxicol  Sci.  2006;89:31-­‐41.   [180]   Schrem   H,   Klempnauer   J,   Borlak   J.   Liver-­‐enriched   transcription   factors   in   liver   function   and   development.   Part   I:   the   hepatocyte   nuclear   factor   network   and  liver-­‐specific  gene  expression.  Pharmacol  Rev.  2002;54:129-­‐58.   [181]   Xu   L,   Hui   L,   Wang   S,   Gong   J,   Jin   Y,   Wang   Y,   et   al.   Expression   profiling   suggested   a   regulatory   role   of   liver-­‐enriched   transcription   factors   in   human   hepatocellular  carcinoma.  Cancer  Res.  2001;61:3176-­‐81.   [182]   Donato   MT,   Castell   JV.   Strategies   and   molecular   probes   to   investigate   the   role   of   cytochrome   P450   in   drug   metabolism:   focus   on   in   vitro   studies.   Clin   Pharmacokinet.  2003;42:153-­‐78.   [183]  Wrighton  SA,  Stevens  JC.  The  human  hepatic  cytochromes  P450  involved  in   drug  metabolism.  Crit  Rev  Toxicol.  1992;22:1-­‐21.   [184]   Li   P,   Wang   GJ,   Robertson   TA,   Roberts   MS.   Liver   transporters   in   hepatic   drug  disposition:  an  update.  Curr  Drug  Metab.  2009;10:482-­‐98.   [185]   Faber   KN,   Muller   M,   Jansen   PL.   Drug   transport   proteins   in   the   liver.   Adv   Drug  Deliv  Rev.  2003;55:107-­‐24.   [186]   Pang   KS.   Safety   testing   of   metabolites:   Expectations   and   outcomes.   Chem   Biol  Interact.  2009;179:45-­‐59.   [187]   Hewitt   NJ,   Lechon   MJ,   Houston   JB,   Hallifax   D,   Brown   HS,   Maurel   P,   et   al.   Primary   hepatocytes:   current   understanding   of   the   regulation   of   metabolic   enzymes   and   transporter   proteins,   and   pharmaceutical   practice   for   the   use   of   hepatocytes   in   metabolism,   enzyme   induction,   transporter,   clearance,   and   hepatotoxicity  studies.  Drug  Metab  Rev.  2007;39:159-­‐234.   [188]   Willson   TM,   Kliewer   SA.   PXR,   CAR   and   drug   metabolism.   Nat   Rev   Drug   Discov.  2002;1:259-­‐66.   [189]   Quattrochi   LC,   Vu   T,   Tukey   RH.   The   human   CYP1A2   gene   and   induction   by   3-­‐methylcholanthrene.   A   region   of   DNA   that   supports   AH-­‐receptor   binding   and   promoter-­‐specific  induction.  J  Biol  Chem.  1994;269:6949-­‐54.   [190]   Whitlock   JP,   Jr.   Induction   of   cytochrome   P4501A1.   Annu   Rev   Pharmacol   Toxicol.  1999;39:103-­‐25.   [191]   Mimura   J,   Fujii-­‐Kuriyama   Y.   Functional   role   of   AhR   in   the   expression   of   toxic  effects  by  TCDD.  Biochim  Biophys  Acta.  2003;1619:263-­‐8.   [192]  Kazlauskas  A,  Poellinger  L,  Pongratz  I.  Evidence  that  the  co-­‐chaperone  p23   regulates   ligand   responsiveness   of   the   dioxin   (Aryl   hydrocarbon)   receptor.   J   Biol   Chem.  1999;274:13519-­‐24.   [193]   Hankinson   O,   Brooks   BA,   Weir-­‐Brown   KI,   Hoffman   EC,   Johnson   BS,   Nanthur  J,  et  al.  Genetic  and  molecular  analysis  of  the  Ah  receptor  and  of  Cyp1a1   gene  expression.  Biochimie.  1991;73:61-­‐6.   135     [194]  Brunnberg  S,  Andersson  P,  Lindstam  M,  Paulson  I,  Poellinger  L,  Hanberg  A.   The   constitutively   active   Ah   receptor   (CA-­‐Ahr)   mouse   as   a   potential   model   for   dioxin  exposure-­‐-­‐effects  in  vital  organs.  Toxicology.  2006;224:191-­‐201.   [195]   Swanson   HI,   Bradfield   CA.   The   AH-­‐receptor:   genetics,   structure   and   function.  Pharmacogenetics.  1993;3:213-­‐30.   [196]   Gonzalez-­‐Fraguela   ME,   Cespedes   EM,   Arencibia   R,   Broche   F,   Gomez   AA,   Castellano   O,   et   al.   [Indicators   of   oxidative   stress   and   the   effect   of   antioxidant   treatment  in  patients  with  primary  Parkinson  disease].  Rev  Neurol.  1998;26:28-­‐ 33.   [197]   Zaher   H,   Fernandez-­‐Salguero   PM,   Letterio   J,   Sheikh   MS,   Fornace   AJ,   Jr.,   Roberts  AB,  et  al.  The  involvement  of  aryl  hydrocarbon  receptor  in  the  activation   of  transforming  growth  factor-­‐beta  and  apoptosis.  Mol  Pharmacol.  1998;54:313-­‐ 21.   [198]  Fallone  F,  Villard  PH,  Seree  E,  Rimet  O,  Nguyen  QB,  Bourgarel-­‐Rey  V,  et  al.   Retinoids   repress   Ah   receptor   CYP1A1   induction   pathway   through   the   SMRT   corepressor.  Biochem  Biophys  Res  Commun.  2004;322:551-­‐6.   [199]   Androutsopoulos   VP,   Tsatsakis   AM,   Spandidos   DA.   Cytochrome   P450   CYP1A1:   wider   roles   in   cancer   progression   and   prevention.   BMC   Cancer.   2009;9:187.   [200]   Kliewer   SA,   Goodwin   B,   Willson   TM.   The   nuclear   pregnane   X   receptor:   a   key  regulator  of  xenobiotic  metabolism.  Endocr  Rev.  2002;23:687-­‐702.   [201]   Lehmann   JM,   McKee   DD,   Watson   MA,   Willson   TM,   Moore   JT,   Kliewer   SA.   The   human   orphan   nuclear   receptor   PXR   is   activated   by   compounds   that   regulate   CYP3A4   gene   expression   and   cause   drug   interactions.   J   Clin   Invest.   1998;102:1016-­‐23.   [202]  Pascussi  JM,  Jounaidi  Y,  Drocourt  L,  Domergue  J,  Balabaud  C,  Maurel  P,  et   al.   Evidence   for   the   presence   of   a   functional   pregnane   X   receptor   response   element   in   the   CYP3A7   promoter   gene.   Biochem   Biophys   Res   Commun.   1999;260:377-­‐81.   [203]   Pascussi   JM,   Gerbal-­‐Chaloin   S,   Fabre   JM,   Maurel   P,   Vilarem   MJ.   Dexamethasone  enhances  constitutive  androstane  receptor  expression  in  human   hepatocytes:  consequences  on  cytochrome  P450  gene  regulation.  Mol  Pharmacol.   2000;58:1441-­‐50.   [204]   Staudinger   J,   Liu   Y,   Madan   A,   Habeebu   S,   Klaassen   CD.   Coordinate   regulation  of  xenobiotic  and  bile  acid  homeostasis  by  pregnane  X  receptor.  Drug   Metab  Dispos.  2001;29:1467-­‐72.   [205]   Dussault   I,   Lin   M,   Hollister   K,   Wang   EH,   Synold   TW,   Forman   BM.   Peptide   mimetic  HIV  protease  inhibitors  are  ligands  for  the  orphan  receptor  SXR.  J  Biol   Chem.  2001;276:33309-­‐12.   [206]   Drocourt   L,   Pascussi   JM,   Assenat   E,   Fabre   JM,   Maurel   P,   Vilarem   MJ.   Calcium  channel  modulators  of  the  dihydropyridine  family  are  human  pregnane   X   receptor   activators   and   inducers   of   CYP3A,   CYP2B,   and   CYP2C   in   human   hepatocytes.  Drug  Metab  Dispos.  2001;29:1325-­‐31.   [207]  Moore  LB,  Goodwin  B,  Jones  SA,  Wisely  GB,  Serabjit-­‐Singh  CJ,  Willson  TM,   et  al.  St.  John's  wort  induces  hepatic  drug  metabolism  through  activation  of  the   pregnane  X  receptor.  Proc  Natl  Acad  Sci  U  S  A.  2000;97:7500-­‐2.   [208]   Sueyoshi   T,   Negishi   M.   Phenobarbital   response   elements   of   cytochrome   P450   genes   and   nuclear   receptors.   Annu   Rev   Pharmacol   Toxicol.   2001;41:123-­‐ 43.   136     [209]   Watt   AJ,   Garrison   WD,   Duncan   SA.   HNF4:   a   central   regulator   of   hepatocyte   differentiation  and  function.  Hepatology.  2003;37:1249-­‐53.   [210]  Handschin  C,  Meyer  UA.  Induction  of  drug  metabolism:  the  role  of  nuclear   receptors.  Pharmacol  Rev.  2003;55:649-­‐73.   [211]  Tzameli  I,  Pissios  P,  Schuetz  EG,  Moore  DD.  The  xenobiotic  compound  1,4-­‐ bis[2-­‐(3,5-­‐dichloropyridyloxy)]benzene   is   an   agonist   ligand   for   the   nuclear   receptor  CAR.  Mol  Cell  Biol.  2000;20:2951-­‐8.   [212]   Zhang   J,   Huang   W,   Chua   SS,   Wei   P,   Moore   DD.   Modulation   of   acetaminophen-­‐induced  hepatotoxicity  by  the  xenobiotic  receptor  CAR.  Science.   2002;298:422-­‐4.   [213]   Forman   BM,   Goode   E,   Chen   J,   Oro   AE,   Bradley   DJ,   Perlmann   T,   et   al.   Identification  of  a  nuclear  receptor  that  is  activated  by  farnesol  metabolites.  Cell.   1995;81:687-­‐93.   [214]   Kostadinova   R,   Wahli   W,   Michalik   L.   PPARs   in   diseases:   control   mechanisms  of  inflammation.  Curr  Med  Chem.  2005;12:2995-­‐3009.   [215]  Mehendale  HM.  PPAR-­‐alpha:  a  key  to  the  mechanism  of  hepatoprotection   by  clofibrate.  Toxicol  Sci.  2000;57:187-­‐90.   [216]   Kane   CD,   Francone   OL,   Stevens   KA.   Differential   regulation   of   the   cynomolgus,   human,   and   rat   acyl-­‐CoA   oxidase   promoters   by   PPARalpha.   Gene.   2006;380:84-­‐94.   [217]   Keller   BJ,   Yamanaka   H,   Thurman   RG.   Inhibition   of   mitochondrial   respiration   and   oxygen-­‐dependent   hepatotoxicity   by   six   structurally   dissimilar   peroxisomal  proliferating  agents.  Toxicology.  1992;71:49-­‐61.   [218]   Corton   JC,   Lapinskas   PJ,   Gonzalez   FJ.   Central   role   of   PPARalpha   in   the   mechanism   of   action   of   hepatocarcinogenic   peroxisome   proliferators.   Mutat   Res.   2000;448:139-­‐51.   [219]   Wakabayashi   K,   Tamura   A,   Saito   H,   Onishi   Y,   Ishikawa   T.   Human   ABC   transporter  ABCG2  in  xenobiotic  protection  and  redox  biology.  Drug  Metab  Rev.   2006;38:371-­‐91.   [220]   Guastadisegni   C,   Balduzzi   M,   Mancuso   MT,   Di   Consiglio   E.   Liver   mitochondria   alterations   in   chloroform-­‐treated   Sprague-­‐Dawley   rats.   J   Toxicol   Environ  Health  A.  1999;57:415-­‐29.   [221]   Kukielka   E,   Cederbaum   AI.   NADPH-­‐   and   NADH-­‐dependent   oxygen   radical   generation   by   rat   liver   nuclei   in   the   presence   of   redox   cycling   agents   and   iron.   Arch  Biochem  Biophys.  1990;283:326-­‐33.   [222]   James   LP,   Mayeux   PR,   Hinson   JA.   Acetaminophen-­‐induced   hepatotoxicity.   Drug  Metab  Dispos.  2003;31:1499-­‐506.   [223]   Thummel   KE,   Lee   CA,   Kunze   KL,   Nelson   SD,   Slattery   JT.   Oxidation   of   acetaminophen   to   N-­‐acetyl-­‐p-­‐aminobenzoquinone   imine   by   human   CYP3A4.   Biochem  Pharmacol.  1993;45:1563-­‐9.   [224]  Kitteringham  NR,  Powell  H,  Clement  YN,  Dodd  CC,  Tettey  JN,  Pirmohamed   M,   et   al.   Hepatocellular   response   to   chemical   stress   in   CD-­‐1   mice:   induction   of   early  genes  and  gamma-­‐glutamylcysteine  synthetase.  Hepatology.  2000;32:321-­‐ 33.   [225]   Johansson   I,   Ekstrom   G,   Scholte   B,   Puzycki   D,   Jornvall   H,   Ingelman-­‐ Sundberg  M.  Ethanol-­‐,  fasting-­‐,  and  acetone-­‐inducible  cytochromes  P-­‐450  in  rat   liver:  regulation  and  characteristics  of  enzymes  belonging  to  the  IIB  and  IIE  gene   subfamilies.  Biochemistry.  1988;27:1925-­‐34.   137     [226]   Goeptar   AR,   Scheerens   H,   Vermeulen   NP.   Oxygen   and   xenobiotic   reductase   activities  of  cytochrome  P450.  Crit  Rev  Toxicol.  1995;25:25-­‐65.   [227]   Gibson   JD,   Pumford   NR,   Samokyszyn   VM,   Hinson   JA.   Mechanism   of   acetaminophen-­‐induced  hepatotoxicity:  covalent  binding  versus  oxidative  stress.   Chem  Res  Toxicol.  1996;9:580-­‐5.   [228]  Park  BK,  Kitteringham  NR,  Maggs  JL,  Pirmohamed  M,  Williams  DP.  The  role   of   metabolic   activation   in   drug-­‐induced   hepatotoxicity.   Annu   Rev   Pharmacol   Toxicol.  2005;45:177-­‐202.   [229]   Gao   B.   Cytokines,   STATs   and   liver   disease.   Cell   Mol   Immunol.   2005;2:92-­‐ 100.   [230]   Poynard   T,   Leroy   V,   Cohard   M,   Thevenot   T,   Mathurin   P,   Opolon   P,   et   al.   Meta-­‐analysis  of  interferon  randomized  trials  in  the  treatment  of  viral  hepatitis   C:  effects  of  dose  and  duration.  Hepatology.  1996;24:778-­‐89.   [231]   Weng   HL,   Ciuclan   L,   Liu   Y,   Hamzavi   J,   Godoy   P,   Gaitantzi   H,   et   al.   Profibrogenic   transforming   growth   factor-­‐beta/activin   receptor-­‐like   kinase     signaling   via   connective   tissue   growth   factor   expression   in   hepatocytes.   Hepatology.  2007;46:1257-­‐70.   [232]   Rodriguez-­‐Antona   C,   Donato   MT,   Pareja   E,   Gomez-­‐Lechon   MJ,   Castell   JV.   Cytochrome   P-­‐450   mRNA   expression   in   human   liver   and   its   relationship   with   enzyme  activity.  Arch  Biochem  Biophys.  2001;393:308-­‐15.   [233]   Jasmund   I,   Bader   A.   Bioreactor   developments   for   tissue   engineering   applications   by   the   example   of   the   bioartificial   liver.   Adv   Biochem   Eng   Biotechnol.  2002;74:99-­‐109.   [234]  Wang  WW,  Khetani  SR,  Krzyzewski  S,  Duignan  DB,  Obach  RS.  Assessment   of   a   micropatterned   hepatocyte   coculture   system   to   generate   major   human   excretory  and  circulating  drug  metabolites.  Drug  Metab  Dispos.38:1900-­‐5.   [235]   Kang   IK,   Kim   GJ,   Kwon   OH,   Ito   Y.   Co-­‐culture   of   hepatocytes   and   fibroblasts   by   micropatterned   immobilization   of   beta-­‐galactose   derivatives.   Biomaterials.   2004;25:4225-­‐32.   [236]   Qian   L,   Krause   DS,   Saltzman   WM.   Enhanced   growth   and   hepatic   differentiation  of  fetal  liver  epithelial  cells  through  combinational  and  temporal   adjustment  of  soluble  factors.  Biotechnol  J.7:440-­‐8.   [237]  Donato  MT,  Castell  JV,  Gomez-­‐Lechon  MJ.  Co-­‐cultures  of  hepatocytes  with   epithelial-­‐like   cell   lines:   expression   of   drug-­‐biotransformation   activities   by   hepatocytes.  Cell  Biol  Toxicol.  1991;7:1-­‐14.   [238]  Kidambi  S,  Yarmush  RS,  Novik  E,  Chao  P,  Yarmush  ML,  Nahmias  Y.  Oxygen-­‐ mediated   enhancement   of   primary   hepatocyte   metabolism,   functional   polarization,   gene   expression,   and   drug   clearance.   Proc   Natl   Acad   Sci   U   S   A.   2009;106:15714-­‐9.   [239]  Gramatzki  D,  Pantazis  G,  Schittenhelm  J,  Tabatabai  G,  Kohle  C,  Wick  W,  et   al.   Aryl   hydrocarbon   receptor   inhibition   downregulates   the   TGF-­‐beta/Smad   pathway  in  human  glioblastoma  cells.  Oncogene.  2009;28:2593-­‐605.   [240]  Muller  GF,  Dohr  O,  El-­‐Bahay  C,  Kahl  R,  Abel  J.  Effect  of  transforming  growth   factor-­‐beta1   on   cytochrome   P450   expression:   inhibition   of   CYP1   mRNA   and   protein  expression  in  primary  rat  hepatocytes.  Arch  Toxicol.  2000;74:145-­‐52.   [241]   Schuster   N,   Krieglstein   K.   Mechanisms   of   TGF-­‐beta-­‐mediated   apoptosis.   Cell  Tissue  Res.  2002;307:1-­‐14.   138     [242]   Zhang   C,   Chia   SM,   Ong   SM,   Zhang   S,   Toh   YC,   van   Noort   D,   et   al.   The   controlled   presentation   of   TGF-­‐beta1   to   hepatocytes   in   a   3D-­‐microfluidic   cell   culture  system.  Biomaterials.  2009;30:3847-­‐53.   [243]  Pocar  P,  Fischer  B,  Klonisch  T,  Hombach-­‐Klonisch  S.  Molecular  interactions   of   the   aryl   hydrocarbon   receptor   and   its   biological   and   toxicological   relevance   for  reproduction.  Reproduction.  2005;129:379-­‐89.   [244]  Southam  AD,  Easton  JM,  Stentiford  GD,  Ludwig  C,  Arvanitis  TN,  Viant  MR.   Metabolic   changes   in   flatfish   hepatic   tumours   revealed   by   NMR-­‐based   metabolomics   and   metabolic   correlation   networks.   J   Proteome   Res.   2008;7:5277-­‐85.   [245]   Janakiraman   V,   Sastry   S,   Kadambi   JR,   Baskaran   H.   Experimental   investigation   and   computational   modeling   of   hydrodynamics   in   bifurcating   microchannels.  Biomed  Microdevices.  2008;10:355-­‐65.   [246]  Di  Ventura  B,  Lemerle  C,  Michalodimitrakis  K,  Serrano  L.  From  in  vivo  to  in   silico  biology  and  back.  Nature.  2006;443:527-­‐33.   [247]  Howe  K,  Gibson  GG,  Coleman  T,  Plant  N.  In  silico  and  in  vitro  modeling  of   hepatocyte  drug  transport  processes:  importance  of  ABCC2  expression  levels  in   the  disposition  of  carboxydichlorofluroscein.  Drug  Metab  Dispos.  2009;37:391-­‐9.   [248]  Cosgrove  BD,  Alexopoulos  LG,  Hang  TC,  Hendriks  BS,  Sorger  PK,  Griffith  LG,   et  al.  Cytokine-­‐associated  drug  toxicity  in  human  hepatocytes  is  associated  with   signaling  network  dysregulation.  Mol  Biosyst.6:1195-­‐206.   [249]   Billiar   TR,   Curran   RD,   Ferrari   FK,   Williams   DL,   Simmons   RL.   Kupffer   cell:hepatocyte  cocultures  release  nitric  oxide  in  response  to  bacterial  endotoxin.   J  Surg  Res.  1990;48:349-­‐53.   [250]   Groneberg   DA,   Grosse-­‐Siestrup   C,   Fischer   A.   In   vitro   models   to   study   hepatotoxicity.  Toxicol  Pathol.  2002;30:394-­‐9.   [251]  Pennie  WD,  Tugwood  JD,  Oliver  GJ,  Kimber  I.  The  principles  and  practice  of   toxigenomics:  applications  and  opportunities.  Toxicol  Sci.  2000;54:277-­‐83.   [252]   Ellinger-­‐Ziegelbauer   H,   Stuart   B,   Wahle   B,   Bomann   W,   Ahr   HJ.   Characteristic  expression  profiles  induced  by  genotoxic  carcinogens  in  rat  liver.   Toxicol  Sci.  2004;77:19-­‐34.   [253]   McMillian   M,   Nie   A,   Parker   JB,   Leone   A,   Kemmerer   M,   Bryant   S,   et   al.   Drug-­‐ induced  oxidative  stress  in  rat  liver  from  a  toxicogenomics  perspective.  Toxicol   Appl  Pharmacol.  2005;207:171-­‐8.   [254]   Kong   AN,   Owuor   E,   Yu   R,   Hebbar   V,   Chen   C,   Hu   R,   et   al.   Induction   of   xenobiotic   enzymes   by   the   MAP   kinase   pathway   and   the   antioxidant   or   electrophile  response  element  (ARE/EpRE).  Drug  Metab  Rev.  2001;33:255-­‐71.   [255]   Pawlotsky   JM,   Germanidis   G,   Neumann   AU,   Pellerin   M,   Frainais   PO,   Dhumeaux   D.   Interferon   resistance   of   hepatitis   C   virus   genotype   1b:   relationship   to  nonstructural  5A  gene  quasispecies  mutations.  J  Virol.  1998;72:2795-­‐805.   [256]   Saito   T,   Hirai   R,   Loo   YM,   Owen   D,   Johnson   CL,   Sinha   SC,   et   al.   Regulation   of   innate  antiviral  defenses  through  a  shared  repressor  domain  in  RIG-­‐I  and  LGP2.   Proc  Natl  Acad  Sci  U  S  A.  2007;104:582-­‐7.     139     [...]... Brenner [25]) 1.5 In vitro cellular models for drug development The choice of the cell type to be used for drug development application depends mainly on factors such as application and cost In vitro cellular models are mainly used for early screening of toxic events and mechanistic evaluations of drug toxicity and propagation of liver specific pathogens [26] However in vitro models have significant disadvantages... xenobiotics (e.g drugs and pathogens) Here is discussed the trends in these two areas, for rational tissue engineering approach for better maintenance of liver phenotype for the above mentioned applications 1.7 Toolbox development for precision liver tissue engineering in vitro Engineering microtissue constructs with bottom-up approaches for in vivo and in vitro applications requires the development of... cure chronic hepatitis C of genotype 1 and 2 1.2 Need for in vitro models From these pitfalls observed with the current strategy, there is a huge unmet need for in vitro models for developing new drug entities and predictive toxicology The concept of fail early, fail cheap will have considerable economic value to pharmaceutical companies These models could also have tremendous implications by contributing... level and also aid in identification of novel targets and leads [8] For various toxicology applications these models could aid in understanding mechanisms of toxicity and can aid in understanding the toxicity detected during preclinical studies This information can be then obtained and rational drug design can be performed [9] These models can also 14     be used to ascertain human risk during preclinical... and absence of TGF β1 normalized to uninduced controls Figure 39: Hepatocyte excretory function 6     List of Tables: Table 1: Various cellular models for drug development and their advantages and disadvantages Table 2: Integration of various tissue engineered models into applications Table 3: Viral evasion strategies Table 4: Human hepatocyte specific primers Table 5: Characterization of spheroid number... physiologically relevant as possible Over the years many models have 21     been developed or utilized for studying liver toxicity and to study the life cycle of the hepatitis C virus in vitro Below is a schematic of the different in vitro models and the characterization of these based on application and practicality Figure 8 :In vitro and in vivo models used in drug development (Adapted with permission from Brandon... even today for covering the wound and preventing infection, without concerns for finer skin-features, such as wrinkles or hair follicles, that are important for aesthetics and perspiration, as reviewed by McNeil [37] Liver tissue engineering research began with the development of hybrid liver-support systems [38] and cell-seeded scaffolds for stimulating liver regeneration [39] These initial efforts employed...List of figures: Figure 1 Schematic of drug discovery process Figure 2: Reasons for drug failure Figure 3 Global in vitro toxicology market estimates Figure 4: Various liver functions Figure 5: Lobular model of the liver Figure 6: Acinar model of the liver Figure 7: Various liver cells and their arrangement Figure 8: in vitro and in vivo models used in drug development Figure 9: Various technologies... makes it a very time consuming and expensive process [1] Figure 1: Schematic of drug discovery process (Adapted from www.gsdpharmaconsulting.com) The discovery phase starts with identification of the best targets specific to a disease Identification of drug targets allows for chemists and biologists to perform targeted drug discovery by high throughput screening of existing chemical or biological libraries... number of compounds from early phases of drug discovery to compounds entering clinical trials It is less than 0.1% of the compounds developed initially are suitable for testing on human subjects [3] Due to such stringent control and safety and efficacy assessment it takes between 6-9 years for one 12     compound to enter the market as a marketable drug [1] It can therefore be observed that there is a huge . ! ! ENGINEERED HEPATOCELLULAR MODELS FOR DRUG DEVELOPMENT& quot; ABHISHEK ANANTHANARAYANAN B.TECH, SRMIST A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY. In vitro cellular models for drug development 1.6 Tissue engineering approaches and paradigms 1.7 Toolbox development for precision tissue engineering 1.7.1 Biomaterials for cellular assembly. List of symbols 8 Chapter 1 Introduction to drug development 11 1.1 Introduction to drug development process 1.2 Need for in vitro models 1.3 Structure function relationship of the

Ngày đăng: 10/09/2015, 09:12