1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Development of environmentally friendly dispersive liquid liquid microextraction techniques

149 167 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 149
Dung lượng 2,26 MB

Nội dung

DEVELOPMENT OF ENVIRONMENTALLY FRIENDLY DISPERSIVE LIQUID-LIQUID MICROEXTRACTION TECHNIQUES ZHANG YUFENG NATIONAL UNIVERSITY OF SINGAPORE 2013 DEVELOPMENT OF ENVIRONMENTALLY FRIENDLY DISPERSIVE LIQUID-LIQUID MICROEXTRACTION TECHNIQUES ZHANG YUFENG 2013 DEVELOPMENT OF ENVIRONMENTALLY FRIENDLY DISPERSIVE LIQUID-LIQUID MICROEXTRACTION TECHNIQUES ZHANG YUFENG (B.Sc., SHANDONG UNIVERSITY) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMISTRY NATIONAL UNIVERSITY OF SINGAPORE 2013 DECLARATION I hereby declare that the thesis is my original work and it has been written by me in its entirely. I have duly acknowledged all the sources of information which have been used in the thesis. This thesis has also not been submitted for any degree in any university previously. Zhang Yufeng 29 January 2013 ACKNOWLEDGEMENTS First and foremost, I would like to take this opportunity to express my deepest gratitude to my supervisor, Professor Lee Hian Kee, for his guidance, unconditional support and encouragement throughout my Ph.D. research and study. I am also thankful to Dr. Liu Qiping and many other laboratory officers of the Department of Chemistry for their kind help and assistance. I would like to thank all my labmates, Dr. Lee Jingyi, Zhang Hong, Xu Ruyi, Ge Dandan, Seyed Mohammad Majedi, Lim Tze Han, Nyi Nyi Naing and Huang Zhenzhen, for creating such a harmonious, encouraging, and helpful working environment. My special thanks go to Dr. Shi Zhiguo for his assistance and friendship. The scholarship provided by the National University of Singapore during my Ph.D. candidature is also greatly appreciated. Last but not least, I thank all my friends in Singapore who helped me during my Ph.D. study here. i Table of Contents Acknowledgements……………………………………………………………i Table of Contents……………………………………… .ii Summary…………………………………………………………………….vii List of Tables…………………………………………………………… .x List of Figures…………………………………………………………… xi Nomenclatures…………………………………………………………… .xiv Chapter Introduction………………………………………………………1 1.1 Sample preparation techniques………………………………………….3 1.2 Liquid-phase microextraction (LPME) techniques…………………… 1.2.1 Single drop microextraction (SDME)…………………………… .7 1.2.2 Continuous-flow microextraction (CFME)……………………….12 1.2.3 Hollow fiber-protected liquid-phase microextraction (HF- LPME)………………………………………………………………… 14 1.2.4 Dispersive liquid-liquid microextraction (DLLME)…………… .17 1.2.4.1 Temperature-controlled ionic liquid dispersive liquid-phase microextraction (Tempreture-controlled ILDLLME)………………… .20 1.2.4.2 Ultrasound-assisted dispersive liquid-liquid microextraction (USA-DLLME)………………………………………………………… 21 1.2.4.3 Vortex-assisted dispersive liquid-liquid microextraction (VADLLME)…………………………………………………………….23 1.2.4.4 Surfactant-assisted dispersive liquid-liquid microextraction (SADLLME)…………………………………………………………… 24 ii 1.3 Principle of DLLME………………………………………………… 25 1.4 This work: Objective and organization……………………………… 27 Chapter Vortex-assisted dispersive liquid-liquid microextraction of ultraviolet filters from water samples…………………… …………… 31 2.1 Introduction………………………………………………………………….31 2.2 Experimental……………………………………………………………… .33 2.2.1 Reagents and materials……………………………………………… 33 2.2.2 Instrumentation……………………………………………………35 2.2.3 VADLLME procedure……………………………………………36 2.2.4 Derivatization step……………………………………………… .37 2.3 Results and discussion…………………………………………………37 2.3.1 Derivatization…………………………………………………… 37 2.3.2 Optimization of extraction performance………………………….40 2.3.2.1 Extraction solvent……………………………………………40 2.3.2.2 Effect of extraction solvent volume………………………… 41 2.3.2.3 Vortex time………………………………………………… .42 2.3.2.4 Effect of the salt…………………………………………… .43 2.3.2.5 Effect of the pH………………………………………………44 2.3.3 Further perspectives…………………………………………… 45 2.3.4 Method validation…………………………………………………46 2.3.5 Analysis of real samples………………………………………… 47 2.3.6 Comparison of VADLLME with other sample preparation techniques……………………………………………………………….48 2.4 Conclusion…………………………………………………………… 51 iii Chapter Ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction of ultraviolet filters from environmental water samples………………………………………………………………………52 3.1 Introduction……………………………………………………………52 3.2 Experimental………………………………………………………… 53 3.2.1 Reagents and materials……………………………………………53 3.2.2 Instrumentation……………………………………………………55 3.2.3 Ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction (IL-USA-DLLME) procedure…………………………56 3.3 Results and discussion…………………………………………………57 3.3.1 Optimization of IL-USA-DLLME……………………………… 57 3.3.1.1 Effect of type and volume of the extraction solvents……… .57 3.3.1.2 Effect of type and volume of the dispersive solvent………….60 3.3.1.3 Effect of the salt…………………………………………… .62 3.3.1.4 Effect of the pH………………………………………………63 3.3.1.5 Effect of ultrasonic time…………………………………… .64 3.3.2 Method validation…………………………………………………65 3.3.3 Analysis of real samples………………………………………… 66 3.3.4 Comparison of IL-USA-DLLME with other sample preparation techniques……………………………………………………………….68 3.4 Conclusion…………………………………………………………… 70 Chapter Low-density solvent-based ultrasound-assisted dispersive liquid-liquid microextraction of organochlorine pesticides from water samples………………………………………………………………………71 4.1 Introduction……………………………………………………………71 iv 4.2 Experimental………………………………………………………… 72 4.2.1 Reagents and materials……………………………………………72 4.2.2 Instrument and conditions……………………………………… .74 4.2.3 Polyethylene Pasteur pipette-based LDS-USA-DLLME procedure……………………………………………………………… 74 4.3 Results and discussion…………………………………………………75 4.3.1 Optimization of microextraction performance……………………75 4.3.1.1 Selection of organic solvent…………………………………75 4.3.1.2 Effect of extraction solvent volume………………………….77 4.3.1.3 Effect of extraction time…………………………………… 78 4.3.1.4 Effect of salt addition……………………………………… 79 4.3.1.5 Effect of extraction temperature…………………………… 80 4.3.1.6 Effect of centrifugation time……………………………… 81 4.3.2 Method validation…………………………………………………82 4.3.3 Analysis of OCPs in water samples………………………………83 4.3.4 Comparison of polyethylene Pasteur pipette-based LDS-USADLLME-GC-MS with other analytical methodologies…………………86 4.4 Conclusion…………………………………………………………… 88 Chapter Low-density solvent-based vortex-assisted surfactant-enhanced emulsification liquid-liquid microextraction of phthalate esters from water samples…………………………………………… 89 5.1 Introduction……………………………………………………………89 5.2 Experimental………………………………………………………… 91 5.2.1 Reagents and materials …………………….…………………… 91 5.2.2 Instrument and conditions……………………………………… .93 v 5.2.3 LDS-VSDLLME procedure………………………………………94 5.2.4 Comparative studies………………………………………………95 5.2.4.1 Conventional DLLME……………………………………….95 5.2.4.2 LDS-DLLME…………………………………………………96 5.2.4.3 USAEME…………………………………………………… 96 5.3 Results and discussion…………………………………………………96 5.3.1 Comparison of LDS-VSDLLME with conventional DLLME, LDSDLLME and USAEME…………………………………………………97 5.3.2 Determination of the most favorable extraction conditions………99 5.3.2.1 Effect of extraction solvent………………………………… 99 5.3.2.2 Effect of extraction solvent volume……………………… .100 5.3.2.3 Effect of the type and concentration of surfactant…………101 5.3.2.4 Effect of the salt…………………………………………….104 5.3.2.5 Effect of vortex time……………………………………… .105 5.3.3 Method validation……………………………………………… 107 5.3.4 Analysis of genuine samples…………………………………….108 5.4 Conclusion……………………………………………………………109 Chapter Conclusions and Outlook…………………………………… .111 References………………………………………………………………….115 List of Publications……………………………………………………… .127 Conference presentations………………………………………………….129 vi demonstrated to be economical, simple, efficient and environmentally friendly, as well as accessible to even those with only basic facilities in their laboratories. 114 References [1] H.H. Liu, P.K. Dasgupta, Trends Anal. Chem. 15 (1996) 468-475. [2] C.L. Arthur, J. Pawliszyn, Anal. Chem. 62 (1990) 2145-2148. [3] M.A. Jeannot, F.F. Cantwell, Anal. Chem. 68 (1996) 2236-2240. [4] M.A. Jeannot, F.F. Cantwell, Anal. Chem. 69 (1997) 2935-2940. [5] M.A. Jeannot, F.F. Cantwell, Anal. Chem. 69 (1997) 235-239. [6] X.M. Jiang, C. Basheer, H. Zhang, H.K. Lee, J. Chromatogr. A 1087 (2005) 289-294. [7] J.M. Wu, K.H. Ee, H.K. Lee, J. Chromatogr. A, 1082 (2005) 121-127. [8] Y. He, H.K. Lee, J. Chromatogr. A 1122 (2006) 7-12. [9] X.M. Jiang, H.K. Lee, Anal. Chem. 76 (2004) 5591-5596. [10] C. Nerin, J. Salafranca, M. Aznar, R. Batlle, Anal. Bioanal. Chem. 393 (2009) 809-833 [11] T. Barri, J.A. Jonsson, J. Chromatogr. A 1186 (2008) 16-38 [12] M. Rezaee, Y. Assadi, M.R.M. Hosseinia, E. Aghaee, F. Ahmadi, S. Berijani, J. Chromatogr. A 1116 (2006) 1-9. [13] A. Saleh, E. Larsson, Y. Yamini, J.A. Jonsson, J. Chromatogr. A 1218 (2011) 1331-1339. [14] E. Ghasemi, M. Sillanpaa, N.M. Najafi, J. Chromatogr. A 1218 (2011) 380-386. [15] G.H. Siang, A. Makahleh, B. Saad, B.P. Lim, J. Chromatogr. A 1217 (2010) 8073-8078. [16] Z.A. Lin, J.H. Zhang, H.M. Cui, L. Zhang, G.N. Chen, J. Chromatogr. A 1217 (2010) 4507-4510. 115 [17] K.M. Al Azzam, A. Makahleah, B. Saad, S.M. Mansor, J. Chromatogr. A 1217 (2010) 3654-3659. [18] M. Saaid, B. Saad, A.S.M. Ali, M.I. Saleh, C. Basheer, H.K. Lee, J. Chromatogr. A 1216 (2009) 5165-5170. [19] H.S.N. Lee, C. Basheer, H.K. Lee, J. Chromatogr. A 1124 (2006) 91-96. [20] H. Hansson, M. Lagerstrom, M. Aberg, U. Nilsson, Talanta, 79 (2009) 633-638. [21] S.P. Huang, S.D. Huang, J. Chromatogr. A 1135 (2006) 6-11. [22] P. Liang, J. Xu, L. Guo, F. Song, J. Sep. Sci. 29 (2006) 366-370. [23] X.M. Jiang, S.Y. Oh, H.K. Lee, Anal. Chem. 77 (2005) 1689-1695. [24] N. Larsson, E. Petersson, M. Rylander, J.A. Jonsson, Anal. Methods (2009) 59-67. [25] X.J. Liu, X.W. Chen, S. Yang, X.D. Wang, J. Sep. Sci. 30 (2007) 25062512. [26] X.M. Chen, T.Z. Zhang, P. Liang, Y.L. Li, Microchim. Acta 155 (2006) 415-420. [27] Y.L. Li, T.Z. Zhang, P. Liang, Anal. Chim. Acta 536 (2005) 245-249. [28] L. Guo, H.K. Lee, J. Chromatogr. A 1218 (2011) 4299-4306. [29] M. Zhang, Q. Li, W. Ji, S. Jiang, C. Ma, C. Wang, J. Ye, Y. Cui, W.T. Liu, K.S. Bi, X.H. Chen, Chromatographia, 73 (2011) 897-903. [30] M.B. Melwanki, S.D. Huang, M.R. Fuh, Talanta, 72 (2007) 373-377. [31] M.B. Melwanki, S.D. Huang, , Anal. Chim. Acta 555 (2006) 139-145. [32] K.J. Chia, S.D. Huang, Rapic Commun. Mass Spectrom. 20 (2006) 118124. 116 [33] S. Berijani, Y. Assadi, M. Anbia, M.R.M. Hosseini, E. Aghaee, J. Chromatogr. A 1123 (2006) 1-9. [34] A.L. Theis, A.J. Waldack, S.M. Hansen, M.A. Jeannot, Anal. Chem. 73 (2001) 5651-5654. [35] F. Ahmadi, Y. Assadi, S.M.R.M. Hosseini, M. Rezaee, J. Chromatogr. A 1101 (2006) 307-312. [36] J. Liu, G.B. Jiang, Y.G. Chi, Y.Q. Cai, Q.X. Zhou, J.T. Hu, Anal. Chem. 75 (2003) 5870-5876. [37] E. Aguilera-Herrador, R. Lucena, S. Cardenas, M. Valcarcel, J. Chromatogr. A 1216 (2009) 5580-5587. [38] F. Ahmad, H.F. Wu, Analyst, 136 (2011) 4020-4027. [39] A. Chisvert, I.P. Roman, L. Vidal, A. Canals, J. Chromatogr. A 1216 (2009) 1290-1295. [40] Q.Y. Liu, Y.J. Liu, S.Z. Chen, Q.J. Liu, J. Sep. Sci. 33 (2010) 2376-2382. [41] J.L. Manzoori, M. Amjadi, J. Abulhassani, Anal. Chim. Acta 644 (2009) 48-52. [42] L. Vidal, A. Chisvert, A. Canals, A. Salvador, J. Chromatogr. A 1174 (2007) 95-103. [43] Q.X. Zhou, C.L. Ye, Microchim. Acta 162 (2008) 153-159. [44] C.Q. Wu, D.Y. Chen, A.J. Zhou, H.M. Deng, Y.H. Liu, Chin. J. Anal. Chem., 39 (2011) 17-21. [45] F.Q. Zhao, J. Li, B.Z. Zeng, J. Sep. Sci. 31 (2008) 3045-3049. [46] Y. He, H.K. Lee, Anal. Chem. 69 (1997) 4634-4640. [47] L. Hou, G. Shen, H.K. Lee, J. Chromatogr. A 985 (2003) 107-116. [48] W.P. Liu, H.K. Lee, Anal. Chem. 72 (2000) 4462-4467. 117 [49] H.H. Liu, P.K. Dasgupta, Anal. Chem. 68 (1996) 1817-1821. [50] J.R. Albert-Garcia, M.C. Icardo, J.M. Calatayud, Talanta, 69 (2006) 608614. [51] Y. Liu, Y. Hashi, J.M. Lin, Anal. Chim. Acta 585 (2007) 294-299. [52] S. Pedersen-Bjergaard, K.E. Rasmussen, Anal. Chem. 71 (1999) 26502656. [53] L.S. de Jager, A.R.J. Andrews, Analyst, 126 (2001) 1298-1303. [54] L.S. de Jager, A.R.J. Andrews, J. Chromatogr. A 1184 (2008) 132-142. [55] L. Hou, H.K. Lee, J. Chromatogr. A 976 (2002) 377-385. [56] L. Hou, H.K. Lee, Anal. Chem. 75 (2003) 2784-2789. [57] M.H. Fatemi, M.R. Hadjmohammadi, P. Shakeri, P. Biparva, J. Sep. Sci. 35 (2012) 86-92. [58] R.R. Kozani, Y. Assadi, F. Shemirani, M.R.M. Hosseini, M.R. Jamali, Talanta, 72 (2007) 387-393. [59] P. Liang, J. Xu, Q. Li, Anal. Chim. Acta 609 (2008) 53-58. [60] N. Fattahi, Y. Assadi, M.R.M. Hosseini, E.Z. Jahromi, J. Chromatogr. A 1157 (2007) 23-29. [61] D. Nagaraju, S.D. Huang, J. Chromatogr. A 1161 (2007) 89-97. [62] L. Farina, E. Boido, F. Carrau, E. Dellacassa, J. Chromatogr. A 1157 (2007) 46-50. [63] A. Daneshfar, T. Khezeli, H.J. Lotfi, J. Chromatogr. B, 877 (2009) 456460. [64] R.R. Kozani, Y. Assadi, F. Shemirani, M.R.M. Hosseini, M.R. Jamali, Chromatographia, 66 (2007) 81-86. 118 [65] X.D. Wang, L.Y. Fu, G.H. Wei, J. Hu, X.N. Zha, X.J. Liu, Y.Y. Li, J. Sep. Sci. 31 (2008) 2932-2938. [66] S. Samadi, H. Sereshti, Y. Assadi, J. Chromatogr. A 1219 (2012) 61-65. [67] Y. Li, G. Wei, J. Hu, X. Liu, X. Zhao, X. Wang, Anal. Chim. Acta 615 (2008) 96-103. [68] M.B. Melwanki, M.R. Fuh, J. Chromatogr. A 1207 (2008) 24-28. [69] Q.H. Wu, Y.P. Li, C. Wang, Z.M. Liu, X.H. Zang, X. Zhou, Z. Wang, Anal. Chim. Acta 638 (2009) 139-145. [70] M.B. Melwanki, M.R. Fuh, J. Chromatogr. A 1198 (2008) 1-6. [71] W.C. Tsai, S.D. Huang, J. Chromatogr. A 1216 (2009) 5171-5175. [72] N.M. Najafi, H. Tavakoli, R. Alizadeh, S. Seidi, Anal. Chim. Acta 670 (2010) 18-23. [73] A. Bidari, E.Z. Jahromi, Y. Assadi, M.R.M. Hosseini, Microchem. J. 87 (2007) 6-12. [74] M.A. Farajzadeh, M. Bahram, B.G. Mehr, J.A. Jonsson, Talanta, 75 (2008) 832-840. [75] P. Liang, H.B. Sang, Anal. Biochem. 380 (2008) 21-25. [76] A. Moghimi, J. Chin. Chem. Soc. 55 (2008) 369-376. [77] A.P. Birjandi, A. Bidari, F. Rezaei, M.R.M. Hosseini, Y. Assadi, J. Chromatogr. A 1193 (2008) 19-25. [78] C. Zheng, J. Zhao, P. Bao, J. Gao, J. He, J. Chromatogr. A 1218 (2011) 3830-3836. [79] C.C. Chang, S.Y. Wei, S.D. Huang, J. Sep. Sci. 34 (2011) 837-843. [80] P.P. Zhang, Z.G. Shi, Q.W. Yu, Y.Q. Feng, Talanta, 83 (2011) 1711-1715. 119 [81] C.X. Wu, H.M. Liu, W.H. Liu, Q.H. Wu, C. Wang, Z. Wang, Anal. Bioanal. Chem. 397 (2010) 2543-2549. [82] H. Xu, Z.Q. Ding, L.L. Lv, D.D. Song, Y.Q. Feng, Anal. Chim. Acta 636 (2009) 28-33. [83] M.I. Leong, S.D. Huang, J. Chromatogr. A 1211 (2008) 8-12. [84] A. Saleh, Y. Yamini, M. Faraji, M. Rezaee, M. Ghambarian, J. Chromatogr. A 1216 (2009) 6673-6679. [85] M.T. Pena, M.C. Casais, M.C. Mejuto, R. Cela, J. Chromatogr. A 1216 (2009) 6356-6364. [86] S.Q. Li, S. Cai, W. Hu, H. Chen, H.L. Liu, Spectrochim. Acta, Part B 64 (2009) 666-671. [87] M.H. Mallah, F. Shemirani, M.G. Maragheh, Environ. Sci. Technol. 43 (2009) 1947-1951. [88] Y. Liu, E.C. Zhao, W.T. Zhu, H.X. Gao, Z.Q. Zhou, J. Chromatogr. A 1216 (2009) 885-891. [89] M. Gharehbaghi, F. Shemirani, M. Baghdadi, Int. J. Environ. Anal. Chem. 89 (2009) 21-33. [90] Y.C. Fan, M.L. Chen, C. Shen-Tu, Y. Zhu, Abstr. Pap. Am. Chem. S. 236 (2008). [91] Y.C. Fan, Z.L. Hu, M.L. Chen, C.S. Tu, Y. Zhu, Chin. Chem. Lett. 19 (2008) 985-987. [92] Q.X. Zhou, H.H. Bai, G.H. Xie, J.P. Xiao, J. Chromatogr. A 1177 (2008) 43-49. [93] Q.X. Zho, H.H. Bai, G.H. Xie, J.P. Xiao, J. Chromatogr. A 1188 (2008) 148-153. 120 [94] P. Berton, E.M. Martinis, L.D. Martinezc, R.G. Wuilloud, Anal. Chim. Acta 640 (2009) 40-46. [95] H.H. Bai, Q.X. Zhou, G.H. Xie, J.P. Xiao, Anal. Chim. Acta 651 (2009) 64-68. [96] Z.J. Li, P.P. Chen, C.P. Yu, Y.J. Fang, Z.Y. Wang, M. Li, H.X. Shan, Curr. Anal. Chem. (2009) 324-329. [97] R.S. Zhao, X. Wang, J. Sun, J.P. Yuan, S.S. Wang, X.K. Wang, J. Sep. Sci. 33 (2010) 1842-1848. [98] F. Kamarei, H. Ebrahimzadeh, Y. Yamini, Talanta, 83 (2010) 36-41. [99] Q.X. Zhou, X.G. Zhang, G.H. Xie, Anal. Methods, (2011) 356-361. [100] Q.X. Zhou, Y.Y. Gao, J.P. Xiao, G.H. Xie, Anal. Methods, (2011) 653-658. [101] Q.X. Zhou, X.G. Zhang, G.H. Xie, Anal. Methods, (2011) 1815-1820. [102] M.D.L. de Castro, F. Priego-Capote, Talanta, 72 (2007) 321-334. [103] J. Regueiro, M. Llompart, C. Garcia-Jares, J.C. Garcia-Monteagudo, R. Cela, J. Chromatogr. A 1190 (2008) 27-38. [104] A.R. Fontana, R. Wuilloud, L.D. Martinez, J.C. Altamirano, J. Chromatogr. A 1216 (2009) 147-153. [105] Q.X. Zhou, X.G. Zhang, J.P. Xiao, J. Chromatogr. A 1216 (2009) 43614365. [106] J. Cheng, G. Matsadiq, L. Liu, Y.W. Zhou, G. Chen, J. Chromatogr. A 1218 (2011) 2476-2482. [107] S. Ozcan, A. Tor, M.E. Aydin, Anal. Chim. Acta 665 (2010) 193-199. [108] S.L. Lin, M.R. Fuh, J. Chromatogr. A 1217 (2010) 3467-3472. [109] A.R. Fontana, J.C. Altamirano, Talanta, 81 (2010) 1536-1541. 121 [110] J. Regueiro, M. Llompart, E. Psillakis, J.C. Garcia-Monteagudo, C. Garcia-Jares, Talanta, 79 (2009) 1387-1397. [111] N. Cabaleiro, F. Pena-Pereira, I. de la Calle, C. Bendicho, I. Lavilla, Microchem. J. 99 (2011) 246-251. [112] J. Cheng, Y.T. Xia, Y.W. Zhou, F. Guo, G. Chen, Anal. Chim. Acta 701 (2011) 86-91. [113] C. Cortada, L. Vidal, A. Canals, Talanta, 85 (2011) 2546-2552. [114] C. Cortada, L. Vidal, A. Canals, J. Chromatogr. A 1218 (2011) 17-22. [115] H. Ebrahimzadeh, Z. Saharkhiz, M. Tavassoli, F. Kamarei, A.A. Asgharinezhad, J. Sep. Sci. 34 (2011) 1275-1282. [116] M.L. Feo, E. Eljarrat, D. Barcelo, J. Chromatogr. A 1217 (2010) 22482253. [117] A.R. Fontana, A.B. Camargo, J.C. Altamirano, J. Chromatogr. A 1217 (2010) 6334-6341. [118] F. Kamarei, H. Ebrahimzadeh, Y. Yamini, Microchem. J. 99 (2011) 2633. [119] X.X. Liao, B. Liang, Z.Z. Li, Y.F. Li, Analyst, 136 (2011) 4580-4586. [120] S. Tajik, M.A. Taher, Microchim. Acta 173 (2011) 249-257. [121] E. Yiantzi, E. Psillakis, K. Tyrovola, N. Kalogerakis, Talanta, 80 (2010) 2057-2062. [122] E.C. Zhao, C.H. Jia, X.D. Zhu, J.H. Wang, M. He, L. Chen, P.Z. Yu, J. Chromatogr. A, 1217 (2010) 5868-5871. [123] A. Papadopoulou, I.P. Roman, A. Canals, K. Tyrovola, E. Psillakis, Anal. Chim. Acta 691 (2011) 56-61. [124] S. Ozcan, J. Sep. Sci. 34 (2011) 574-584. 122 [125] Z.H. Yang, Y.L. Lu, Y. Liu, T. Wu, Z.Q. Zhou, D.H. Liu, J. Chromatogr. A 1218 (2011) 7071-7077. [126] Q.H. Wu, Q.Y. Chang, C.X. Wu, H. Rao, X. Zeng, C. Wang, Z. Wang, J. Chromatogr. A 1217 (2010) 1773-1778. [127] M. Moradi, Y. Yamini, A. Esrafili, S. Seidi, Talanta, 82 (2010) 18641869. [128] J. Vichapong, R. Burakham, Anal. Methods, (2012) 2101-2108. [129] C.X. Wu, N. Liu, Q.H. Wu, C. Wang, Z. Wang, Anal. Chim. Acta 679 (2010) 56-62. [130] Y. Zou, Y.H. Li, H. Jin, D.Q. Zou, M.S. Liu, Y.L. Yang, J. Braz. Chem. Soc. 23 (2012) 694-701. [131] D.L. Giokas, A. Salvador, A. Chisvert, Trends Anal. Chem. 26 (2007) 360-374. [132] M. Schlumpf, P. Schmid, S. Durrer, M. Conscience, K. Maerkel, M. Henseler, M. Gruetter, I. Herzog, S. Reolon, R. Ceccatelli, O. Faass, E. Stutz, H. Jarry, W. Wuttke, W. Lichtensteiger, Toxicology, 205 (2004) 113-122. [133] P. Cuderman, E. Heath, Anal. Bioanal. Chem. 387 (2007) 1343-1350. [134] D.A. Lambropoulou, D.L. Giokas, V.A. Sakkas, T.A. Albanis, M.I. Karayannis, J. Chromatogr. A 967 (2002) 243-253. [135] A. Nieto, F. Borrull, R.M. Marce, E. Pocurull, J. Chromatogr. A 1216 (2009) 5619-5625. [136] D.L. Giokas, V.A. Sakkas, T.A. Albanis, D.A. Lampropoulou, J. Chromatogr. A 1077 (2005) 19-27. [137] M. Kawaguchi, R. Ito, N. Endo, N. Sakui, N. Okanouchi, K. Saito, N. Sato, T. Shiozaki, H. Nakazawa, Anal. Chim. Acta 557 (2006) 272-277. 123 [138] R. Rodil, S. Schrader, M. Moeder, J. Chromatogr. A 1216 (2009) 48874894. [139] R. Rodil, S. Schrader, M. Moeder, J. Chromatogr. A 1216 (2009) 88518858. [140] N. Okanouchi, H. Honda, R. Ito, M. Kawaguchi, K. Saito, H. Nakazawa, Anal. Sci. 24 (2008) 627-630. [141] L. Vidal, A. Chisvert, A. Canals, A. Salvador, Talanta, 81 (2010) 549555. [142] D.D. Ge, H.K. Lee, J. Chromatogr. A 1229 (2012) 1-5. [143] N. Negreira, I. Rodriguez, E. Rubi, R. Cela, Anal. Bioanal. Chem. 398 (2010) 995-1004. [144] I. Tarazona, A. Chisvert, Z. Leon, A. Salvador, J. Chromatogr. A 1217 (2010) 4771-4778. [145] L. Ye, J.J. Liu, X. Yang, Y. Peng, L. Xu, J. Sep. Sci. 34 (2011) 700-706. [146] D. Ge, H.K. Lee, J. Chromatogr. A 1251 (2012) 27-32. [147] C.H. Jia, X.D. Zhu, J.H. Wang, E.C. Zhao, M. He, L. Chen, P.Z. Yu, J. Chromatogr. A 1217 (2010) 5868-5871. [148] D. Li, J. Park, J.R. Oh, Anal. Chem. 73 (2001) 3089-3095. [149] I.P. Roman, A. Chisvert, A. Canals, J. Chromatogr. A 1218 (2011) 2467-2475. [150] J. Regueiro, M. Llompart, C. Garcia-Jares, J.C. Garcia-Monteagudo, R. Cela, J. Chromatogr. A 1190 (2008) 27-38. [151] S. Ozcan, A. Tor, M.E. Aydin, Water Res. 43 (2009) 4269-4277. [152] E. Aguilera-Herrador, R. Lucena, S. Cardenas, M. Valcarcel, J. Chromatogr. A 1201 (2008) 106-111. 124 [153] C. Basheer, A.A. Alnedhary, B.S.M. Rao, R. Balasubramanian, H.K. Lee, J. Chromatogr. A 1210 (2008) 19-24. [154] L.M. Ravelo-Perez, J. Hernandez-Borges, M. Asensio-Ramos, M.A. Rodriguez-Delgado, J. Chromatogr. A 1216 (2009) 7336-7345. [155] C. Yao, W.R. Pitner, J.L. Anderson, Anal. Chem. 81 (2009) 5054-5063. [156] J.J. Du, H.Y. Yan, D.D. She, B.M. Liu, G.L. Yang, Talanta, 82 (2010) 698-703. [157] H.Y. Yan, B.M. Liu, J.J. Du, G.L. Yang, K.H. Row, J. Chromatogr. A 1217 (2010) 5152-5157. [158] Y.S. Su, J.F. Jen, J. Chromatogr. A 1217 (2010) 5043-5049. [159] S.Y. Wei, M.I. Leong, Y. Li, S.D. Huang, J. Chromatogr. A 1218 (2011) 9142-9148. [160] X.Z. Hu, J.H. Wu, Y.Q. Feng, J. Chromatogr. A 1217 (2010) 7010-7016. [161] L. Guo, H.K. Lee, J. Chromatogr. A 1218 (2011) 5040-5046. [162] J. Zhang, H.K. Lee, J. Chromatogr. A 1216 (2009) 7527-7532. [163] Q.H. Wu, Z. Li, C.X. Wu, C. Wang, Z. Wang, Microchim. Acta 170 (2010) 59-65. [164] H.Y. Yan, H. Wang, X.Y. Qin, B.M. Liu, J.J. Du, J. Pharm. and Biomed. Anal. 54 (2011) 53-57. [165] C. Cortada, L. Vidal, R. Pastor, N. Santiago, A. Canals, Anal. Chim. Acta 649 (2009) 218-221. [166] L.M. Zhao, H.K. Lee, J. Chromatogr. A 919 (2001) 381-388. [167] C. Cortada, L. Vidal, S. Tejada, A. Romo, A. Canals, Anal. Chim. Acta 638 (2009) 29-35. 125 [168] H. Farahani, Y. Yamini, S. Shariati, M.R. Khalili-Zanjani, S. MansourBaghahi, Anal. Chim. Acta 626 (2008) 166-173. [169] C.A. Staples, D.R. Peterson, T.F. Parkerton, W.J. Adams, Chemosphere, 35 (1997) 667-749. [170] D. Balafas, K.J. Shaw, F.B. Whitfield, Food Chem. 65 (1999) 279-287. [171] F.A. Arcadi, C. Costa, C. Imperatore, A. Marchese, A. Rapisarda, M. Salemi, G.R. Trimarchi, G. Costa, Food Chem. Toxicol. 36 (1998) 963-970. [172] C.R. Tyler, S. Jobling, J.P. Sumpter, Crit. Rev. Toxicol. 28 (1998) 319361. [173] A. Penalver, E. Pocurull, F. Borrull, R.M. Marce, J. Chromatogr. A 922 (2001) 377-384. [174] E. Psillakis, N. Kalogerakis, J. Chromatogr. A 999 (2003) 145-153. [175] J. Hu, Y.Y. Li, W. Zhang, H.L. Wang, C.J. Huang, M.H. Zhang, X.D. Wang, J. Sep. Sci. 32 (2009) 2103-2108. 126 List of Publications [1] Y. Zhang, H.K. Lee, “Low-density solvent-based vortex-assisted surfactant-enhanced emulsification liquid-liquid microextraction combined with gas chromatograpy-mass spectrometry for the fast determination of phthalate esters in water samples”, Journal of Chromatography A, 1274 (2013) 28-35 [2] Y. Zhang, H.K. Lee, “Liquid phase microextraction using knitting wool as the extractant phase holder in the analysis of UV filters in water”, Journal of Chromatography A, 1273 (2013) 12-17 [3] Y. Zhang, H.K. Lee, “Trace determination of ultraviolet filters in environmental water samples by temperature-controlled ionic liquid dispersive liquid-phase microextraction”, Journal of Chromatography A, 1271 (2013) 5661 [4] Y. Zhang, H.K. Lee, “Determination of ultraviolet filters in water samples by vortex-assisted dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry”, Journal of Chromatography A, 1429 (2012) 25-31. [5] Y. Zhang, H.K. Lee, “Application of ultrasound-assisted emulsification microextraction based on applying low-density organic solvent for the determination of organochlorine pesticides in water samples”, Journal of Chromatography A, 1252 (2012) 67-73. [6] Y. Zhang, H.K. Lee, Ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction followed high-performance liquid chromatography for the determination of ultraviolet filters in environmental water samples, Anal. Chim. Acta. 750 (2012) 120-126. 127 [7] Z. Shi, Y. Zhang, H.K. Lee, Ferrofluid-based liquid-phase microextraction, J. Chromatogr. A 1217 (2010) 7311. 128 Conference presentations 1. “6th Mathematical and Physical Science Graduate Congress”, University of Malaya, Malaysia, 2010 Poster presentation “Liquid phase microextraction - Using knitting wool as the extractant phase holder to determine UV filters in swimming pool water” 2. “The International Chemical Congress of Pacific Basin Societies”, Honolulu, Hawaii, USA, 2010 Poster presentation “Liquid phase microextraction - Using knitting wool as the extractant phase holder to determine UV filters in swimming pool water” 3. “International Conference on Challenges in Environmental Science & Engineering”, Tainan City, Taiwan, 2011 Oral Presentation “Ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction followed high-performance liquid chromatography for the determination of UV filters in environmental water samples” 129 [...]... vortex-assisted dispersive liquid- liquid microextraction (VADLLME), ionic liquid- based ultrasound-assisted dispersive liquid- liquid microextraction (ILUSA-DLLME), low-density solvent-based ultrasound-assisted dispersive liquid- liquid microextraction (LDS-USA-DLLME), and low-density solventbased vortex-assisted surfactant-enhanced dispersive liquid- liquid microextraction (LDS-VSDLLME) These four kinds of DLLME... methodologies The work described involves the development of different novel modes of dispersive liquid- liquid microextraction (DLLME) techniques for some important analytes of environmental concern To avoid the use of large amount of toxic dispersive solvent (up to hundred microliters) which is often applied in traditional DLLME, and ensure sufficient dispersion of extraction solvent to the aqueous sample... Hollow fiber liquid phase microextraction (HF-LPME) Figure 1-5 Dispersive liquid- liquid microextraction (DLLME) Figure 2-1 Comparison of chromatograms of UV filters obtained (a) without and (b) after derivatization at a concentration of 10 mg/L for each analyte (BH’: silyl derivative of BH; BP: non-derivatized; EHS’: silyl derivative of EHS; HMS’: silyl derivative of HMS; BP-3’: silyl derivative of BP-3;... have led to the development of miniaturized sample preparation methods, which use small volumes of organic solvent Therefore, many efforts in the past decades have been devoted to the adorption of exsting methods and the development of new techniques which are environmentally friendly, economical, accurate and with high extraction efficiency As alternatives to LLE and SPE, environmentally friendly and... on extraction Figure 3-4 Effect of dispersive solvent on extraction Figure 3-5 Effect of dispersive solvent volume on extraction Figure 3-6 Effect of the concentration of sodium chloride on extraction xi Figure 3-7 Effect of pH on extraction Figure 3-8 Effect of ultrasonication time on extraction Figure 3-9 HPLC trace of extract of spiked river water sample (50 μg/L of each analyte) under the most... toward to the development of microscale sample preparation procedures Liquid- phase microextraction (LPME) is a sample preparation technique which is based on the use of a small amount of extraction solvent to extract analytes from minimal amounts of sample matrices This thesis focuses on one of the major challenges associated with sample preparation, developing miniaturized and environmentally friendly. .. methodologies shuch as liquid- phase microextraction (LPME) [1] and solid-phase microextraction (SPME) [2] have been developed LPME was first introduced in middle-to-late 1990s [3-5] and it is a big breakthrough in the development of sample preparation methods A latter development of LPME was based on a droplet of organic solvent hanging at the end of a microsyringe needle (single drop microextraction, SDME),... amounts of organic solvent However, SPE requires column conditioning which is tedious and is relatively expensive The disadvantages of these conventional extraction techniques have led to the development of miniaturized sample preparation methods, which use small volumes of organic solvent And recent research has been oriented towards the development of efficient, economical, and environmentally friendly. .. been devoted to the adorption of exsting miniaturized sample preparation methods and the development of new techniques in this field As alternatives to LLE and SPE, environmentally friendly and cost-effective miniaturized sample preparation methodologies shuch as liquid- phase microextraction (LPME) [1] and solidphase microextraction (SPME) [2] have been developed in the needs of times SPME was introduced... Hollow-fiber protected liquid- phase microextraction [HMIM][FAP] 1-Hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate [HMIM][PF6] 1-Hexyl-3-methylimidazolium hexafluorophosphate HPLC High performance liquid chromatography HS-SDME Headspace single drop microextraction LLE Liquid- liquid extraction LPME Liquid- phase microextraction LOD Limit of detection LOQ Limit of quantification MS Mass . DEVELOPMENT OF ENVIRONMENTALLY FRIENDLY DISPERSIVE LIQUID- LIQUID MICROEXTRACTION TECHNIQUES ZHANG YUFENG 2013 DEVELOPMENT OF ENVIRONMENTALLY FRIENDLY DISPERSIVE LIQUID- LIQUID MICROEXTRACTION. development of different novel modes of dispersive liquid- liquid microextraction (DLLME) techniques for some important analytes of environmental concern. To avoid the use of large amount of. DEVELOPMENT OF ENVIRONMENTALLY FRIENDLY DISPERSIVE LIQUID- LIQUID MICROEXTRACTION TECHNIQUES ZHANG YUFENG NATIONAL UNIVERSITY OF

Ngày đăng: 10/09/2015, 09:05

TỪ KHÓA LIÊN QUAN