Figure 4-10 Migration quantification of the MSCs toward uninjured and injured cartilage tissue Migration distance of the MSCs toward the complete media (CM) alone, uninjured and injured tissues were showed in this graph (Error bars represent standard errors of the means, one star: p-value < 0.05, two star: p-value < 0.01, and star: p-value < 0.001) 107 4.4.6 Quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) Custom-designed RT-PCR array was used to evaluate the differences in gene expressions of uninjured and injured cartilage tissue The factors were chosen according to the literature review and the availability of the primers for the RTPCR (Table 4.1) RT-PCR results showed that the injured cartilage upregulated expressions of collagen type I A1 (COL1A1), chemokine C-X-C motif 10 (CXCL10), transforming growth factor alpha (TGFA), insulin-like growth factor (IGF2), chemokine C-X-C motif 12 (CXCL12), angiopoietin (ANGPT1), fibroblast growth factor (FGF2), transforming growth factor beta3 (TGFβ3), bone morphogenetic protein (BMP4), and vitronectin (VTN) ligands Figure 4.8 showed the relative increase of gene expressions of these factors 108 Figure 4-11 Gene expression change of candidate ligands in injured cartilage Gene expression level (sample number = 2) increases of the candidate ligands, which could be involved in the MSCs migration 109 4.5 Discussion To evaluate if the migration of MSCs toward the injured cartilage, which was shown in previous chapter, is an active reaction to the injury site or a random translocation of MSCs to that site, the behavior of MSCs were studied in a microfluidic device I developed a new microfluidic device to simulate the in vivo interaction of MSCs with injured cartilage tissue in a three dimensional (3D) environment This simulation allows monitoring of the interactions between MSCs and the tissue in cellular and molecular level However, our system still lacks many of the characteristics of an actual in vivo situation For example in living animals, the host cells such as immune cells (e.g macrophages, monocytes, T cells, etc.) have interactions with both injured tissues and transplanted stem cells, which may affect their behaviors Moreover, in in vivo the blood circulation and joint motion may have some role in stem cell migration, which I not have in this in vitro model Although, these factors may make a difference between behavior of stem cells and injured tissue in vivo and in vitro (microfluidic device), microfluidic device has many advantages to the current methods and mimics the environment of real tissue better than conventional methods such as Boyden chamber, scratch migration assay, and under agarose migration system Boyden chamber, scratch test and under-agarose migration assay are the most common migration assay systems The Boyden chamber assay uses a membrane to separate the upper chamber (cell chamber) from the bottom chamber, which is too thin to make a gradient In Boyden chamber assay only the final results of the migration can be collected and this system allows testing only one condition at a time In the scratch migration test, cells are 110 scratched and the migration of the cells is evaluated by monitoring how the cells fill the gap.This system does not make a gradient of the chemotactic factors, which is one of the effective components in the tissue regeneration Also with this system we cannot use any tissue as the origin of chemotactic factors Under agarose migration assay system is dependent on the concept that solidified agarose does not attach to glass surfaces To perform this assay, a thick layer of warm agarose should be poured into a glass plate After solidification, three holes punched out; one hole for cell seeding, one for the cytokine source and one as control After gradient formation of the cytokine the cell migration can be observed, however this migration can be in any direction, and monitoring of the cells can be very difficult Other potential limitation of this system is the risk of cross-contamination of the cytokines between the holes through the porous agarose By using microfluidic system, I could study the cell migration in a 3D environment, which was more similar to in vivo situation and provided the control of the gradient between channels By having the specific channels for the 3D scaffold parallel to the cell channel on both sides, I decreased the risk of cross-contamination of the cytokines and also I could control the migration of the cells in a certain direction (collagen channel), which made it easier to monitor and image the cells migration Moreover, the high quality imaging capabilities of microfluidic system provided real-time monitoring of cells simultaneously at two different conditions over time The results of this study showed that MSCs could be primed and migrated toward the injured cartilage The migration (distance) toward the injured tissue 111 is longer than that of uninjured cartilage, suggesting injured tissue may secret factors attracting the MSCs As I showed that the injured cartilage attracts the MSCs, and the engraftment of the MSCs in the injured cartilage could be an active migration and homing, I also evaluated the potential chemotactic candidates for this phenomenon There are many chemotactic factors named in the literature that are secreted by different injured tissues such as skin wound, acute and chronic inflammation in brain and etc Previous studies (Table 4-2) have shown that CXCL10 (247), TGFA (157), IGF2 (152), CXCL12 (248), FGF2 (148), TGFB3 (249), BMP4 (154) and ANGPT1 (158) are stimulatory factors for MSCs migration However, to our knowledge, there is not any study on the injured cartilage As the nature of the cartilage is different from the other tissues due to lack of blood vessels and lymphatic drainage, in this study I evaluated the factors, which were up-regulated by the chondrocytes after acute cartilage injury It is crucial to understand the chemotactic factors secreted by injured cartilage to be able to use a sub-population of MSCs, which show stronger response to such factors in the clinical setting to design more effective treatment plan for patients RT-PCR results of injured cartilage tissues demonstrated that, chemotactic factors such as CXCL10, TGFA, IGF2, CXCL12, ANGPT1, FGF2, TGFB3, BMP4, and the extracellular matrix (ECM) proteins genes such as COL1A1, and VTN were up-regulated after cartilage injury 112 Table 4-2 Other studies done on stem cell stimulatory chemotactic factors Ligand genes COL1A1 CXCL10 TGFA IGF2 CXCL12 ANGPT1 Chemokine source Assay method Condition and outcome Reference Commercially available Modified Boyden chamber Collagen I induced significant motogenic activity for both rabbit and human MSCs Thibault et al (161) Recombinant human chemokine Commercially available Agarose drop migration assay Boyden chamber / Wound assay Rice et al (247) Ozaki et al (157) Recombinant human chemokine Modified Boyden chamber CXCL10 chemokine trigger hMSC migration and promote hMSC proliferation The factors that induced the migration of rabbit and human MSCs also enhanced their proliferation IGF2 is a chemotactic factor for hMSCs and stimulates migration of human mesenchymal progenitor cells Supernatant of cultured human pancreatic islets Commercially available Fiedler et al (152) Modified Boyden chamber Human pancreatic islets as an in vitro model released CXCL12, which is able to attract BM MSCs in vitro Sordi et al (248) Transwell dishes Migration values of the TNFα-stimulated BM MSCs were higher than un-stimulated cells Ponte et al (158) Low concentrations of FGF2 leads to migration, whereas higher concentrations resulted in repulsion of the MSCs Schmidt et al (148) FGF2 Commercially available TGFB3 Commercially available Boyden chamber / Wound Assay / methyl cellulose disc Modified Boyden chamber BMP4 Commercially available VTN Commercially available TGFB3 stimulates chemotaxis/chemokinesis of multipotent C3H10T1/2 cells Makhijani et al (249) Modified Boyden chamber Migration of primary human progenitor cells was stimulated by rxBMP-4 in a dose-dependent manner Fiedler et al (154) Modified Boyden chamber Vitronectin induced significant motogenic activity for both rabbit and human MSCs Thibault et al (161) 113 Our results agreed with those of Thibault et al who demonstrated that ECM proteins such as Col1 and VTN could induce significant migratory and motogenic activity for MSCs (161) Then, these ECM proteins could be used in the clinical setting for cartilage repair as a scaffold to carry the stem cells and/or attract the endogenous or exogenous stem cells (endogenous from the bone marrow and exogenous by multiple intra-articular injection of the expanded autologous stem cells) As I showed, in the previous chapter, that injection of stem cells is a promising method for cartilage repair, in this chapter I confirmed that engraftment of the MSCs in injured cartilage is an active migration and homing process and injured cartilage encourage the migration of the MSCs toward the injury site I also showed that the cartilage injury up-regulate some specific chemotactic factors, which can help to find and select a sub-population of MSCs which show stronger response to such factors in cartilage repair On one hand, enhancement of the homing capacity of MSC can be achieved by modulating their response to chemotactic factors; for example by finding and selecting sub-population of MSCs which show stronger response to such factors (because of higher expression of surface receptors which responsible for those chemotactic signals) (250) On the other hand, modulation can be applied in the site of injury for example with stimulating the target site to attract more MSCs (with releasing more signals) 114 Chapter Autologous Bone Marrow Derived Mesenchymal Stem Cell versus Autologous Chondrocyte Implantation: An Observational Cohort Study 1 The final, definitive version of this paper has been published in “The American Journal of Sports Medicine”, 38(6): 1110-6, 2010 June by SAGE Publications Ltd SAGE Publications, Inc., All rights reserved © 115 5.1 Abstract Background: First generation ACI has limitations and introducing new effective cell sources can improve cartilage repair Purpose: To compare the clinical outcomes of patients treated with first generation autologous chondrocyte implantation (ACI) to patients treated with autologous bone marrow derived mesenchymal stem cell (BM MSCs) Study Design: Cohort Study, Level of Evidence, Methods: Seventy-two matched (lesion site and age) patients underwent cartilage repair using chondrocytes (n=36) or BM MSCs (n=36) Clinical outcomes were measured pre-operation and 3, 6, 9, 12, 18, and 24 months post-operation using the International Cartilage Repair Society (ICRS) Cartilage Injury Evaluation Package which included questions from the ShortForm (SF-36) Health Survey, International Knee Documentation Committee (IKDC) subjective knee evaluation form, Lysholm24 knee scale, and Tegner activity level scale Results: There was significant improvement in the patients’ quality of life (physical and mental components of the SF-36 questionnaire included in the ICRS package) after cartilage repair in both groups (ACI and BM MSCs) However, there was no difference between the BM MSCs and the ACI group in terms of clinical outcomes except for “Physical Role Functioning” with a greater improvement over time in the BM MSCs group (P = 0.044 for interaction effect) IKDC subjective knee evaluation (P = 0.861), Lysholm (P = 0.627), and Tegner (P = 0.200) scores did not have any significant difference between groups over time However, in general, men showed significantly better improvements than women Patients younger than 45 years scored 116 engineering Tissue Eng 2006 Oct;12(10):2765-75 PubMed PMID: 17518646 Epub 2007/05/24 eng 108 Ko IK, Song HT, Cho EJ, Lee ES, Huh YM, Suh JS In vivo MR imaging of tissue-engineered human mesenchymal stem cells transplanted to mouse: a preliminary study Ann Biomed Eng 2007 Jan;35(1):101-8 PubMed PMID: 17111211 Epub 2006/11/18 eng 109 Kraitchman DL, Heldman AW, Atalar E, Amado LC, Martin BJ, Pittenger MF, et al In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction Circulation 2003 May 13;107(18):2290-3 PubMed PMID: 12732608 Epub 2003/05/07 eng 110 Stuckey DJ, Carr CA, Martin-Rendon E, Tyler DJ, Willmott C, Cassidy PJ, et al Iron particles for noninvasive monitoring of bone marrow stromal cell engraftment into, and isolation of viable engrafted donor cells from, the heart Stem Cells 2006 Aug;24(8):1968-75 PubMed PMID: 16627684 Epub 2006/04/22 eng 111 Hill JM, Dick AJ, Raman VK, Thompson RB, Yu ZX, Hinds KA, et al Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells Circulation 2003 Aug 26;108(8):1009-14 PubMed PMID: 12912822 Pubmed Central PMCID: 1490325 Epub 2003/08/13 eng 112 Qiu B, Gao F, Walczak P, Zhang J, Kar S, Bulte JW, et al In vivo MR imaging of bone marrow cells trafficking to atherosclerotic plaques J Magn Reson Imaging 2007 Aug;26(2):339-43 PubMed PMID: 17623878 Epub 2007/07/12 eng 113 Jendelova P, Herynek V, DeCroos J, Glogarova K, Andersson B, Hajek M, et al Imaging the fate of implanted bone marrow stromal cells labeled with superparamagnetic nanoparticles Magn Reson Med 2003 Oct;50(4):767-76 PubMed PMID: 14523963 Epub 2003/10/03 eng 114 de Vries IJ, Lesterhuis WJ, Barentsz JO, Verdijk P, van Krieken JH, Boerman OC, et al Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy Nat Biotechnol 2005 Nov;23(11):1407-13 PubMed PMID: 16258544 Epub 2005/11/01 eng 115 Zhu J, Zhou L, XingWu F Tracking neural stem cells in patients with brain trauma N Engl J Med 2006 Nov 30;355(22):2376-8 PubMed PMID: 17135597 Epub 2006/12/01 eng 116 Nakamura H, Ito N, Kotake F, Mizokami Y, Matsuoka T Tumordetecting capacity and clinical usefulness of SPIO-MRI in patients with hepatocellular carcinoma J Gastroenterol 2000;35(11):849-55 PubMed PMID: 11085494 Epub 2000/11/21 eng 117 Reimer P, Rummeny EJ, Daldrup HE, Balzer T, Tombach B, Berns T, et al Clinical results with Resovist: a phase clinical trial Radiology 1995 May;195(2):489-96 PubMed PMID: 7724772 Epub 1995/05/01 eng 118 Weissleder R, Elizondo G, Wittenberg J, Lee AS, Josephson L, Brady TJ Ultrasmall superparamagnetic iron oxide: an intravenous contrast agent for assessing lymph nodes with MR imaging Radiology 1990 May;175(2):494-8 PubMed PMID: 2326475 Epub 1990/05/01 eng 119 Sharma R, Saini S, Ros PR, Hahn PF, Small WC, de Lange EE, et al Safety profile of ultrasmall superparamagnetic iron oxide ferumoxtran-10: phase II clinical trial data J Magn Reson Imaging 1999 Feb;9(2):291-4 PubMed PMID: 10077027 Epub 1999/03/17 eng 151 120 Jung CW, Jacobs P Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil Magn Reson Imaging 1995;13(5):661-74 PubMed PMID: 8569441 Epub 1995/01/01 eng 121 Shen T, Weissleder R, Papisov M, Bogdanov A, Jr., Brady TJ Monocrystalline iron oxide nanocompounds (MION): physicochemical properties Magn Reson Med 1993 May;29(5):599-604 PubMed PMID: 8505895 Epub 1993/05/01 eng 122 Taupitz M, Schnorr J, Abramjuk C, Wagner S, Pilgrimm H, Hunigen H, et al New generation of monomer-stabilized very small superparamagnetic iron oxide particles (VSOP) as contrast medium for MR angiography: preclinical results in rats and rabbits J Magn Reson Imaging 2000 Dec;12(6):905-11 PubMed PMID: 11105029 Epub 2000/12/06 eng 123 Wilhelm C, Gazeau F Universal cell labelling with anionic magnetic nanoparticles Biomaterials 2008 Aug;29(22):3161-74 PubMed PMID: 18455232 Epub 2008/05/06 eng 124 Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JF Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits Circulation 2001 Jan 23;103(3):41522 PubMed PMID: 11157694 Epub 2001/02/07 eng 125 von Zur Muhlen C, von Elverfeldt D, Bassler N, Neudorfer I, Steitz B, Petri-Fink A, et al Superparamagnetic iron oxide binding and uptake as imaged by magnetic resonance is mediated by the integrin receptor Mac-1 (CD11b/CD18): implications on imaging of atherosclerotic plaques Atherosclerosis 2007 Jul;193(1):102-11 PubMed PMID: 16997307 Epub 2006/09/26 eng 126 Kooi ME, Cappendijk VC, Cleutjens KB, Kessels AG, Kitslaar PJ, Borgers M, et al Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging Circulation 2003 May 20;107(19):2453-8 PubMed PMID: 12719280 Epub 2003/04/30 eng 127 Bendszus M, Kleinschnitz C, Stoll G Iron-enhanced MRI in ischemic stroke: intravascular trapping versus cellular inflammation Stroke 2007 May;38(5):e12; author reply e3 PubMed PMID: 17363716 Epub 2007/03/17 eng 128 Saleh A, Schroeter M, Jonkmanns C, Hartung HP, Modder U, Jander S In vivo MRI of brain inflammation in human ischaemic stroke Brain 2004 Jul;127(Pt 7):1670-7 PubMed PMID: 15128622 Epub 2004/05/07 eng 129 Ghosh P, Hawrylak, N., Broadus, J., Greenough, W.T., Lauterbur, P.C NMR imaging of transplanted iron oxide-labelled cells in the rat brain Proc Soc Magn Reson Med 1990;9:1193 130 Norman AB, Thomas SR, Pratt RG, Lu SY, Norgren RB Magnetic resonance imaging of neural transplants in rat brain using a superparamagnetic contrast agent Brain Res 1992 Oct 30;594(2):279-83 PubMed PMID: 1450953 Epub 1992/10/30 eng 131 Yeh TC, Zhang W, Ildstad ST, Ho C Intracellular labeling of T-cells with superparamagnetic contrast agents Magn Reson Med 1993 Nov;30(5):617-25 PubMed PMID: 8259062 Epub 1993/11/01 eng 132 Modo M, Hoehn M, Bulte JW Cellular MR imaging Mol Imaging 2005 Jul-Sep;4(3):143-64 PubMed PMID: 16194447 Epub 2005/10/01 eng 152 133 Heyn C, Bowen CV, Rutt BK, Foster PJ Detection threshold of single SPIO-labeled cells with FIESTA Magn Reson Med 2005 Feb;53(2):312-20 PubMed PMID: 15678551 Epub 2005/01/29 eng 134 van den Bos EJ, Wagner A, Mahrholdt H, Thompson RB, Morimoto Y, Sutton BS, et al Improved efficacy of stem cell labeling for magnetic resonance imaging studies by the use of cationic liposomes Cell Transplant 2003;12(7):743-56 PubMed PMID: 14653621 Epub 2003/12/05 eng 135 Heyn C, Ronald JA, Mackenzie LT, MacDonald IC, Chambers AF, Rutt BK, et al In vivo magnetic resonance imaging of single cells in mouse brain with optical validation Magn Reson Med 2006 Jan;55(1):23-9 PubMed PMID: 16342157 Epub 2005/12/13 eng 136 Muhlfeld C, Gehr P, Rothen-Rutishauser B Translocation and cellular entering mechanisms of nanoparticles in the respiratory tract Swiss Med Wkly 2008 Jul 12;138(27-28):387-91 PubMed PMID: 18642134 Epub 2008/07/22 eng 137 Pratten MK, Lloyd JB Pinocytosis and phagocytosis: the effect of size of a particulate substrate on its mode of capture by rat peritoneal macrophages cultured in vitro Biochim Biophys Acta 1986 May 2;881(3):30713 PubMed PMID: 3008849 Epub 1986/05/02 eng 138 Stearns RC, Paulauskis JD, Godleski JJ Endocytosis of ultrafine particles by A549 cells Am J Respir Cell Mol Biol 2001 Feb;24(2):108-15 PubMed PMID: 11159043 Epub 2001/02/13 eng 139 Geiser M, Rothen-Rutishauser B, Kapp N, Schurch S, Kreyling W, Schulz H, et al Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells Environ Health Perspect 2005 Nov;113(11):1555-60 PubMed PMID: 16263511 Pubmed Central PMCID: 1310918 Epub 2005/11/03 eng 140 Iversen TG ST, Sandvig K Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies Nano Today 2011;6(2):176-85 141 Revell CM, Athanasiou KA Success rates and immunologic responses of autogenic, allogenic, and xenogenic treatments to repair articular cartilage defects Tissue Eng Part B Rev 2009 Mar;15(1):1-15 PubMed PMID: 19063664 Pubmed Central PMCID: 2760376 142 Mahmud G, Campbell CJ, Bishop KJM, Komarova YA, Chaga O, Soh S, et al Directing cell motions on micropatterned ratchets Nature Physics 2009 Aug;5(8):606-12 PubMed PMID: WOS:000269132100023 143 Horwitz AR, Parsons JT Cell migration movin' on Science 1999 Nov 5;286(5442):1102-3 PubMed PMID: 10610524 Epub 1999/12/28 eng 144 Smart N, Riley PR The stem cell movement Circ Res 2008 May 23;102(10):1155-68 PubMed PMID: 18497316 Epub 2008/05/24 eng 145 Aiuti A, Webb IJ, Bleul C, Springer T, Gutierrez-Ramos JC The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood J Exp Med 1997 Jan 6;185(1):11120 PubMed PMID: 8996247 Pubmed Central PMCID: 2196104 Epub 1997/01/06 eng 146 Li Y, Yu X, Lin S, Li X, Zhang S, Song YH Insulin-like growth factor enhances the migratory capacity of mesenchymal stem cells Biochem 153 Biophys Res Commun 2007 May 11;356(3):780-4 PubMed PMID: 17382293 Epub 2007/03/27 eng 147 Pelus LM, Fukuda S Chemokine-mobilized adult stem cells; defining a better hematopoietic graft Leukemia 2008 Mar;22(3):466-73 PubMed PMID: 17972941 Pubmed Central PMCID: 2814589 Epub 2007/11/02 eng 148 Schmidt A, Ladage D, Schinkothe T, Klausmann U, Ulrichs C, Klinz FJ, et al Basic fibroblast growth factor controls migration in human mesenchymal stem cells Stem Cells 2006 Jul;24(7):1750-8 PubMed PMID: 16822883 Epub 2006/07/11 eng 149 Wynn RF, Hart CA, Corradi-Perini C, O'Neill L, Evans CA, Wraith JE, et al A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow Blood 2004 Nov 1;104(9):2643-5 PubMed PMID: 15251986 Epub 2004/07/15 eng 150 Birnbaum T, Roider J, Schankin CJ, Padovan CS, Schichor C, Goldbrunner R, et al Malignant gliomas actively recruit bone marrow stromal cells by secreting angiogenic cytokines J Neurooncol 2007 Jul;83(3):241-7 PubMed PMID: 17570034 Epub 2007/06/16 eng 151 Dimitriou R, Tsiridis E, Giannoudis PV Current concepts of molecular aspects of bone healing Injury 2005 Dec;36(12):1392-404 PubMed PMID: 16102764 Epub 2005/08/17 eng 152 Fiedler J, Brill C, Blum WF, Brenner RE IGF-I and IGF-II stimulate directed cell migration of bone-marrow-derived human mesenchymal progenitor cells Biochem Biophys Res Commun 2006 Jul 7;345(3):1177-83 PubMed PMID: 16716263 Epub 2006/05/24 eng 153 Fiedler J, Etzel N, Brenner RE To go or not to go: Migration of human mesenchymal progenitor cells stimulated by isoforms of PDGF J Cell Biochem 2004 Nov 15;93(5):990-8 PubMed PMID: 15389881 Epub 2004/09/25 eng 154 Fiedler J, Roderer G, Gunther KP, Brenner RE BMP-2, BMP-4, and PDGF-bb stimulate chemotactic migration of primary human mesenchymal progenitor cells J Cell Biochem 2002;87(3):305-12 PubMed PMID: 12397612 Epub 2002/10/25 eng 155 Liang CC, Park AY, Guan JL In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro Nat Protoc 2007;2(2):329-33 PubMed PMID: 17406593 Epub 2007/04/05 eng 156 M LI, Eriksen EF, Bunger C Bone morphogenetic protein-2 but not bone morphogenetic protein-4 and -6 stimulates chemotactic migration of human osteoblasts, human marrow osteoblasts, and U2-OS cells Bone 1996 Jan;18(1):53-7 PubMed PMID: 8717537 Epub 1996/01/01 eng 157 Ozaki Y, Nishimura M, Sekiya K, Suehiro F, Kanawa M, Nikawa H, et al Comprehensive analysis of chemotactic factors for bone marrow mesenchymal stem cells Stem Cells Dev 2007 Feb;16(1):119-29 PubMed PMID: 17348810 Epub 2007/03/14 eng 158 Ponte AL, Marais E, Gallay N, Langonne A, Delorme B, Herault O, et al The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities Stem Cells 2007 Jul;25(7):1737-45 PubMed PMID: 17395768 Epub 2007/03/31 eng 154 159 Tamai N, Myoui A, Hirao M, Kaito T, Ochi T, Tanaka J, et al A new biotechnology for articular cartilage repair: subchondral implantation of a composite of interconnected porous hydroxyapatite, synthetic polymer (PLAPEG), and bone morphogenetic protein-2 (rhBMP-2) Osteoarthritis Cartilage 2005 May;13(5):405-17 PubMed PMID: 15882564 Epub 2005/05/11 eng 160 Thibault MM, Buschmann MD Migration of bone marrow stromal cells in 3D: color methodology reveals spatially and temporally coordinated events Cell Motil Cytoskeleton 2006 Dec;63(12):725-40 PubMed PMID: 17009327 Epub 2006/09/30 eng 161 Thibault MM, Hoemann CD, Buschmann MD Fibronectin, vitronectin, and collagen I induce chemotaxis and haptotaxis of human and rabbit mesenchymal stem cells in a standardized transmembrane assay Stem Cells Dev 2007 Jun;16(3):489-502 PubMed PMID: 17610379 Epub 2007/07/06 eng 162 Wang L, Li Y, Chen J, Gautam SC, Zhang Z, Lu M, et al Ischemic cerebral tissue and MCP-1 enhance rat bone marrow stromal cell migration in interface culture Exp Hematol 2002 Jul;30(7):831-6 PubMed PMID: 12135683 Epub 2002/07/24 eng 163 Ringe J, Strassburg S, Neumann K, Endres M, Notter M, Burmester GR, et al Towards in situ tissue repair: human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2 J Cell Biochem 2007 May 1;101(1):135-46 PubMed PMID: 17295203 Epub 2007/02/14 eng 164 Motoo Y, Xie MJ, Mouri H, Sawabu N Expression of interleukin-8 in human obstructive pancreatitis JOP 2004 May;5(3):138-44 PubMed PMID: 15138335 Epub 2004/05/13 eng 165 Jung Y, Wang J, Schneider A, Sun YX, Koh-Paige AJ, Osman NI, et al Regulation of SDF-1 (CXCL12) production by osteoblasts; a possible mechanism for stem cell homing Bone 2006 Apr;38(4):497-508 PubMed PMID: 16337237 Epub 2005/12/13 eng 166 Heit B, Kubes P Measuring chemotaxis and chemokinesis: the underagarose cell migration assay Sci STKE 2003 Feb 18;2003(170):PL5 PubMed PMID: 12591998 Epub 2003/02/20 eng 167 Hara-Chikuma M, Verkman AS Aquaporin-1 facilitates epithelial cell migration in kidney proximal tubule J Am Soc Nephrol 2006 Jan;17(1):39-45 PubMed PMID: 16319186 Epub 2005/12/02 eng 168 Zicha D, Dunn GA, Brown AF A new direct-viewing chemotaxis chamber J Cell Sci 1991 Aug;99 ( Pt 4):769-75 PubMed PMID: 1770004 Epub 1991/08/01 eng 169 Zigmond SH Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors J Cell Biol 1977 Nov;75(2 Pt 1):606-16 PubMed PMID: 264125 Pubmed Central PMCID: 2109936 Epub 1977/11/01 eng 170 Zicha D, Dunn G, Jones G Analyzing chemotaxis using the Dunn direct-viewing chamber Methods Mol Biol 1997;75:449-57 PubMed PMID: 9276291 Epub 1997/01/01 eng 171 Boyden S The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes J Exp Med 1962 Mar 1;115:453-66 PubMed PMID: 13872176 Pubmed Central PMCID: 2137509 Epub 1962/03/01 eng 155 172 Kim BJ, Wu M Microfluidics for mammalian cell chemotaxis Ann Biomed Eng 2012 Jun;40(6):1316-27 PubMed PMID: 22189490 Pubmed Central PMCID: 3424276 Epub 2011/12/23 eng 173 Nelson RD, Quie PG, Simmons RL Chemotaxis under agarose: a new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leukocytes and monocytes J Immunol 1975 Dec;115(6):1650-6 PubMed PMID: 1102606 Epub 1975/12/01 eng 174 Chicurel M Cell biology Cell migration research is on the move Science 2002 Jan 25;295(5555):606-9 PubMed PMID: 11809950 Epub 2002/01/26 eng 175 Selmeczi D, Mosler S, Hagedorn PH, Larsen NB, Flyvbjerg H Cell motility as persistent random motion: theories from experiments Biophys J 2005 Aug;89(2):912-31 PubMed PMID: 15951372 Pubmed Central PMCID: 1366641 Epub 2005/06/14 eng 176 Li Jeon N, Baskaran H, Dertinger SK, Whitesides GM, Van de Water L, Toner M Neutrophil chemotaxis in linear and complex gradients of interleukin8 formed in a microfabricated device Nat Biotechnol 2002 Aug;20(8):826-30 PubMed PMID: 12091913 Epub 2002/07/02 eng 177 Chung BG, Flanagan LA, Rhee SW, Schwartz PH, Lee AP, Monuki ES, et al Human neural stem cell growth and differentiation in a gradientgenerating microfluidic device Lab Chip 2005 Apr;5(4):401-6 PubMed PMID: 15791337 Epub 2005/03/26 eng 178 Tourovskaia A, Figueroa-Masot X, Folch A Differentiation-on-a-chip: a microfluidic platform for long-term cell culture studies Lab Chip 2005 Jan;5(1):14-9 PubMed PMID: 15616734 Epub 2004/12/24 eng 179 Gomez-Sjoberg R, Leyrat AA, Pirone DM, Chen CS, Quake SR Versatile, fully automated, microfluidic cell culture system Anal Chem 2007 Nov 15;79(22):8557-63 PubMed PMID: 17953452 Epub 2007/10/24 eng 180 Gu W, Zhu X, Futai N, Cho BS, Takayama S Computerized microfluidic cell culture using elastomeric channels and Braille displays Proc Natl Acad Sci U S A 2004 Nov 9;101(45):15861-6 PubMed PMID: 15514025 Pubmed Central PMCID: 528755 Epub 2004/10/30 eng 181 Frisk T, Rydholm S, Liebmann T, Svahn HA, Stemme G, Brismar H A microfluidic device for parallel 3-D cell cultures in asymmetric environments Electrophoresis 2007 Dec;28(24):4705-12 PubMed PMID: 18008308 Epub 2007/11/17 eng 182 Saadi W, Rhee SW, Lin F, Vahidi B, Chung BG, Jeon NL Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber Biomed Microdevices 2007 Oct;9(5):627-35 PubMed PMID: 17530414 Epub 2007/05/29 eng 183 Cheng SY, Heilman S, Wasserman M, Archer S, Shuler ML, Wu M A hydrogel-based microfluidic device for the studies of directed cell migration Lab Chip 2007 Jun;7(6):763-9 PubMed PMID: 17538719 Epub 2007/06/01 eng 184 Paguirigan A, Beebe DJ Gelatin based microfluidic devices for cell culture Lab Chip 2006 Mar;6(3):407-13 PubMed PMID: 16511624 Epub 2006/03/03 eng 185 Nejadnik H, Hui JH, Feng Choong EP, Tai BC, Lee EH Autologous bone marrow-derived mesenchymal stem cells versus autologous 156 chondrocyte implantation: an observational cohort study Am J Sports Med 2010 Jun;38(6):1110-6 PubMed PMID: 20392971 Epub 2010/04/16 eng 186 Liu TM, Martina M, Hutmacher DW, Hui JH, Lee EH, Lim B Identification of common pathways mediating differentiation of bone marrowand adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages Stem Cells 2007 Mar;25(3):750-60 PubMed PMID: 17095706 Epub 2006/11/11 eng 187 Hui JH, Li L, Teo YH, Ouyang HW, Lee EH Comparative study of the ability of mesenchymal stem cells derived from bone marrow, periosteum, and adipose tissue in treatment of partial growth arrest in rabbit Tissue Eng 2005 May-Jun;11(5-6):904-12 PubMed PMID: 15998230 Epub 2005/07/07 eng 188 Kircher MF, Gambhir SS, Grimm J Noninvasive cell-tracking methods Nat Rev Clin Oncol 2011 Nov;8(11):677-88 PubMed PMID: 21946842 Epub 2011/09/29 eng 189 Arbab AS, Yocum GT, Rad AM, Khakoo AY, Fellowes V, Read EJ, et al Labeling of cells with ferumoxides-protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells NMR Biomed 2005 Dec;18(8):553-9 PubMed PMID: 16229060 Epub 2005/10/18 eng 190 Arbab AS YG, Kalish H, Jordan EJ, Anderson SA, Khakoo AY, Read, EJ, Frank JA Ferumoxies–protamine sulfate labeling does not alter differentiation of mesenchymal stem cells Blood 2004;104 3412–3 191 Henning TD, Sutton EJ, Kim A, Golovko D, Horvai A, Ackerman L, et al The influence of ferucarbotran on the chondrogenesis of human mesenchymal stem cells Contrast Media Mol Imaging 2009 JulAug;4(4):165-73 PubMed PMID: 19670250 Pubmed Central PMCID: 2933782 Epub 2009/08/12 eng 192 Kostura L, Kraitchman DL, Mackay AM, Pittenger MF, Bulte JW Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis NMR Biomed 2004 Nov;17(7):513-7 PubMed PMID: 15526348 Epub 2004/11/05 eng 193 Bulte JW, Kraitchman DL, Mackay AM, Pittenger MF Chondrogenic differentiation of mesenchymal stem cells is inhibited after magnetic labeling with ferumoxides Blood 2004 Nov 15;104(10):3410-2; author reply 2-3 PubMed PMID: 15525839 Epub 2004/11/05 eng 194 Golovko DM, Henning T, Bauer JS, Settles M, Frenzel T, Mayerhofer A, et al Accelerated stem cell labeling with ferucarbotran and protamine Eur Radiol 2010 Mar;20(3):640-8 PubMed PMID: 19756632 Pubmed Central PMCID: 2822227 Epub 2009/09/17 eng 195 Hsiao JK, Chu HH, Wang YH, Lai CW, Chou PT, Hsieh ST, et al Macrophage physiological function after superparamagnetic iron oxide labeling NMR Biomed 2008 Oct;21(8):820-9 PubMed PMID: 18470957 196 Sheehan DC, Hrapchak BB Theory and practice of histotechnology 2nd ed Columbus, Ohio Detroit, Mich.: Battelle Press ; Distributed by Lipshaw; 1987 xiii, 481 p., p of plates p 197 Frank JA, Miller BR, Arbab AS, Zywicke HA, Jordan EK, Lewis BK, et al Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents Radiology 2003 Aug;228(2):480-7 PubMed PMID: 12819345 Epub 2003/06/24 eng 157 198 Deans RJ, Moseley AB Mesenchymal stem cells: biology and potential clinical uses Exp Hematol 2000 Aug;28(8):875-84 PubMed PMID: 10989188 Epub 2000/09/16 eng 199 Bernardo ME, Emons JA, Karperien M, Nauta AJ, Willemze R, Roelofs H, et al Human mesenchymal stem cells derived from bone marrow display a better chondrogenic differentiation compared with other sources Connect Tissue Res 2007;48(3):132-40 PubMed PMID: 17522996 Epub 2007/05/25 eng 200 Miyoshi S, Flexman JA, Cross DJ, Maravilla KR, Kim Y, Anzai Y, et al Transfection of neuroprogenitor cells with iron nanoparticles for magnetic resonance imaging tracking: cell viability, differentiation, and intracellular localization Mol Imaging Biol 2005 Jul-Aug;7(4):286-95 PubMed PMID: 16080022 Epub 2005/08/05 eng 201 Walczak P, Kedziorek DA, Gilad AA, Lin S, Bulte JW Instant MR labeling of stem cells using magnetoelectroporation Magn Reson Med 2005 Oct;54(4):769-74 PubMed PMID: 16161115 Epub 2005/09/15 eng 202 Hinds KA, Hill JM, Shapiro EM, Laukkanen MO, Silva AC, Combs CA, et al Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells Blood 2003 Aug 1;102(3):867-72 PubMed PMID: 12676779 Epub 2003/04/05 eng 203 Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, et al Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells Nat Biotechnol 2000 Apr;18(4):410-4 PubMed PMID: 10748521 Epub 2000/04/05 eng 204 Farrell E, Wielopolski P, Pavljasevic P, van Tiel S, Jahr H, Verhaar J, et al Effects of iron oxide incorporation for long term cell tracking on MSC differentiation in vitro and in vivo Biochem Biophys Res Commun 2008 May 16;369(4):1076-81 PubMed PMID: 18336785 Epub 2008/03/14 eng 205 Heymer A, Haddad D, Weber M, Gbureck U, Jakob PM, Eulert J, et al Iron oxide labelling of human mesenchymal stem cells in collagen hydrogels for articular cartilage repair Biomaterials 2008 Apr;29(10):1473-83 PubMed PMID: 18155133 Epub 2007/12/25 eng 206 Jing XH, Yang L, Duan XJ, Xie B, Chen W, Li Z, et al In vivo MR imaging tracking of magnetic iron oxide nanoparticle labeled, engineered, autologous bone marrow mesenchymal stem cells following intra-articular injection Joint Bone Spine 2008 Jul;75(4):432-8 PubMed PMID: 18448377 Epub 2008/05/02 eng 207 Wang YX Comment on Jing et al original article "In vivo MR imaging tracking of magnetic iron oxide nanoparticle labeled, engineered, autologous bone marrow mesenchymal stem cells following intra-articular injection" Joint Bone Spine 2009 Jan;76(1):118-9; author reply 9-20 PubMed PMID: 19095483 Epub 2008/12/20 eng 208 Lee KB, Wang VT, Chan YH, Hui JH A novel, minimally-invasive technique of cartilage repair in the human knee using arthroscopic microfracture and injections of mesenchymal stem cells and hyaluronic acid-a prospective comparative study on safety and short-term efficacy Annals of the Academy of Medicine, Singapore 2012 Nov;41(11):511-7 PubMed PMID: 23235728 158 209 Lee KB, Hui JH, Song IC, Ardany L, Lee EH Injectable mesenchymal stem cell therapy for large cartilage defects a porcine model Stem Cells 2007 Nov;25(11):2964-71 PubMed PMID: 17656639 210 Fong EL, Chan CK, Goodman SB Stem cell homing in musculoskeletal injury Biomaterials 2011 Jan;32(2):395-409 PubMed PMID: 20933277 Pubmed Central PMCID: 2991369 211 Gupta S, Hawker GA, Laporte A, Croxford R, Coyte PC The economic burden of disabling hip and knee osteoarthritis (OA) from the perspective of individuals living with this condition Rheumatology (Oxford) 2005 Dec;44(12):1531-7 PubMed PMID: 16091394 Epub 2005/08/11 eng 212 Hunter W Of the structure and disease of articulating cartilages 1743 Clin Orthop Relat Res 1995 Aug(317):3-6 PubMed PMID: 7671493 Epub 1995/08/01 eng 213 Messner K, Maletius W The long-term prognosis for severe damage to weight-bearing cartilage in the knee: a 14-year clinical and radiographic follow-up in 28 young athletes Acta Orthop Scand 1996 Apr;67(2):165-8 PubMed PMID: 8623573 Epub 1996/04/01 eng 214 Biant LC, Bentley G Stem cells and debrided waste: two alternative sources of cells for transplantation of cartilage J Bone Joint Surg Br 2007 Aug;89(8):1110-4 PubMed PMID: 17785754 Epub 2007/09/06 eng 215 Wakitani S, Nawata M, Tensho K, Okabe T, Machida H, Ohgushi H Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees J Tissue Eng Regen Med 2007 Jan-Feb;1(1):74-9 PubMed PMID: 18038395 Epub 2007/11/27 eng 216 El-Ali J, Sorger PK, Jensen KF Cells on chips Nature 2006 Jul 27;442(7101):403-11 PubMed PMID: 16871208 Epub 2006/07/28 eng 217 Chung S, Sudo R, Mack PJ, Wan CR, Vickerman V, Kamm RD Cell migration into scaffolds under co-culture conditions in a microfluidic platform Lab Chip 2009 Jan 21;9(2):269-75 PubMed PMID: 19107284 Epub 2008/12/25 eng 218 Aref AR, Huang RY, Yu W, Chua KN, Sun W, Tu TY, et al Screening therapeutic EMT blocking agents in a three-dimensional microenvironment Integr Biol (Camb) 2013 Nov 21 PubMed PMID: 23172153 Epub 2012/11/23 Eng 219 Toh YC, Zhang C, Zhang J, Khong YM, Chang S, Samper VD, et al A novel 3D mammalian cell perfusion-culture system in microfluidic channels Lab Chip 2007 Mar;7(3):302-9 PubMed PMID: 17330160 Epub 2007/03/03 eng 220 Vickerman V, Blundo J, Chung S, Kamm R Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging Lab Chip 2008 Sep;8(9):1468-77 PubMed PMID: 18818801 Pubmed Central PMCID: 2560179 Epub 2008/09/27 eng 221 Zervantonakis IK, Kothapalli CR, Chung S, Sudo R, Kamm RD Microfluidic devices for studying heterotypic cell-cell interactions and tissue specimen cultures under controlled microenvironments Biomicrofluidics 2011;5(1):13406 PubMed PMID: 21522496 Pubmed Central PMCID: 3082343 Epub 2011/04/28 eng 159 222 Sudo R, Chung S, Zervantonakis IK, Vickerman V, Toshimitsu Y, Griffith LG, et al Transport-mediated angiogenesis in 3D epithelial coculture FASEB J 2009 Jul;23(7):2155-64 PubMed PMID: 19246488 Pubmed Central PMCID: 2718841 Epub 2009/02/28 eng 223 Kothapalli CR, van Veen E, de Valence S, Chung S, Zervantonakis IK, Gertler FB, et al A high-throughput microfluidic assay to study neurite response to growth factor gradients Lab Chip 2011 Feb 7;11(3):497-507 PubMed PMID: 21107471 Epub 2010/11/26 eng 224 Shamloo A, Heilshorn SC Matrix density mediates polarization and lumen formation of endothelial sprouts in VEGF gradients Lab Chip 2010 Nov 21;10(22):3061-8 PubMed PMID: 20820484 Epub 2010/09/08 eng 225 Berdichevsky Y, Sabolek H, Levine JB, Staley KJ, Yarmush ML Microfluidics and multielectrode array-compatible organotypic slice culture method J Neurosci Methods 2009 Mar 30;178(1):59-64 PubMed PMID: 19100768 Pubmed Central PMCID: 2669279 Epub 2008/12/23 eng 226 Sordi V Mesenchymal stem cell homing capacity Transplantation 2009 May 15;87(9 Suppl):S42-5 PubMed PMID: 19424004 Epub 2009/05/14 eng 227 Levesque JP, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide J Clin Invest 2003 Jan;111(2):187-96 PubMed PMID: 12531874 Pubmed Central PMCID: 151860 Epub 2003/01/18 eng 228 Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L, et al G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4 Nat Immunol 2002 Jul;3(7):687-94 PubMed PMID: 12068293 Epub 2002/06/18 eng 229 Doitsidou M, Reichman-Fried M, Stebler J, Koprunner M, Dorries J, Meyer D, et al Guidance of primordial germ cell migration by the chemokine SDF-1 Cell 2002 Nov 27;111(5):647-59 PubMed PMID: 12464177 Epub 2002/12/05 eng 230 Zervantonakis IK CS, Sudo R, Zhang M, Charest JL, Kamm RD Concentration gradients in microfluidic 3D matrix cell culture systems Intern J Micro-Nano Scale Transport 2010;1(1):27-36 231 Helm CL, Fleury ME, Zisch AH, Boschetti F, Swartz MA Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism Proc Natl Acad Sci U S A 2005 Nov 1;102(44):15779-84 PubMed PMID: 16249343 Pubmed Central PMCID: 1276047 Epub 2005/10/27 eng 232 Swartz MA, Fleury ME Interstitial flow and its effects in soft tissues Annu Rev Biomed Eng 2007;9:229-56 PubMed PMID: 17459001 Epub 2007/04/27 eng 233 Qin D, Xia Y, Whitesides GM Soft lithography for micro- and nanoscale patterning Nat Protoc 2010 Mar;5(3):491-502 PubMed PMID: 20203666 Epub 2010/03/06 eng 234 Zhang ZY, Teoh SH, Chong MS, Schantz JT, Fisk NM, Choolani MA, et al Superior osteogenic capacity for bone tissue engineering of fetal compared with perinatal and adult mesenchymal stem cells Stem Cells 2009 Jan;27(1):126-37 PubMed PMID: 18832592 Epub 2008/10/04 eng 160 235 Mishima Y, Lotz M Chemotaxis of human articular chondrocytes and mesenchymal stem cells J Orthop Res 2008 Oct;26(10):1407-12 PubMed PMID: 18464249 Epub 2008/05/09 eng 236 Dell'accio F, De Bari C, Eltawil NM, Vanhummelen P, Pitzalis C Identification of the molecular response of articular cartilage to injury, by microarray screening: Wnt-16 expression and signaling after injury and in osteoarthritis Arthritis Rheum 2008 May;58(5):1410-21 PubMed PMID: 18438861 Epub 2008/04/29 eng 237 Bhakta S, Hong P, Koc O The surface adhesion molecule CXCR4 stimulates mesenchymal stem cell migration to stromal cell-derived factor-1 in vitro but does not decrease apoptosis under serum deprivation Cardiovasc Revasc Med 2006 Jan-Mar;7(1):19-24 PubMed PMID: 16513519 Epub 2006/03/04 eng 238 Croitoru-Lamoury J, Lamoury FM, Zaunders JJ, Veas LA, Brew BJ Human mesenchymal stem cells constitutively express chemokines and chemokine receptors that can be upregulated by cytokines, IFN-beta, and Copaxone J Interferon Cytokine Res 2007 Jan;27(1):53-64 PubMed PMID: 17266444 Epub 2007/02/03 eng 239 Fiedler J, Leucht F, Waltenberger J, Dehio C, Brenner RE VEGF-A and PlGF-1 stimulate chemotactic migration of human mesenchymal progenitor cells Biochem Biophys Res Commun 2005 Aug 26;334(2):561-8 PubMed PMID: 16005848 Epub 2005/07/12 eng 240 Ji JF, He BP, Dheen ST, Tay SS Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury Stem Cells 2004;22(3):415-27 PubMed PMID: 15153618 Epub 2004/05/22 eng 241 Karadag A, Fisher LW Bone sialoprotein enhances migration of bone marrow stromal cells through matrices by bridging MMP-2 to alpha(v)beta3integrin J Bone Miner Res 2006 Oct;21(10):1627-36 PubMed PMID: 16995818 Epub 2006/09/26 eng 242 Kucia M, Wojakowski W, Reca R, Machalinski B, Gozdzik J, Majka M, et al The migration of bone marrow-derived non-hematopoietic tissuecommitted stem cells is regulated in an SDF-1-, HGF-, and LIF-dependent manner Arch Immunol Ther Exp (Warsz) 2006 Mar-Apr;54(2):121-35 PubMed PMID: 16648972 Epub 2006/05/02 eng 243 Metheny-Barlow LJ, Tian S, Hayes AJ, Li LY Direct chemotactic action of angiopoietin-1 on mesenchymal cells in the presence of VEGF Microvasc Res 2004 Nov;68(3):221-30 PubMed PMID: 15501241 Epub 2004/10/27 eng 244 Pathi S, Rutenberg JB, Johnson RL, Vortkamp A Interaction of Ihh and BMP/Noggin signaling during cartilage differentiation Dev Biol 1999 May 15;209(2):239-53 PubMed PMID: 10328918 Epub 1999/05/18 eng 245 Schantz JT, Chim H, Whiteman M Cell guidance in tissue engineering: SDF-1 mediates site-directed homing of mesenchymal stem cells within threedimensional polycaprolactone scaffolds Tissue Eng 2007 Nov;13(11):261524 PubMed PMID: 17961003 Epub 2007/10/27 eng 246 Wang L, Li Y, Chen X, Chen J, Gautam SC, Xu Y, et al MCP-1, MIP-1, IL-8 and ischemic cerebral tissue enhance human bone marrow stromal cell migration in interface culture Hematology 2002 Apr;7(2):113-7 PubMed PMID: 12186702 Epub 2002/08/21 eng 161 247 Rice CM, Scolding NJ Adult human mesenchymal cells proliferate and migrate in response to chemokines expressed in demyelination Cell Adh Migr 2010 Apr-Jun;4(2):235-40 PubMed PMID: 20234187 Pubmed Central PMCID: 2900619 Epub 2010/03/18 eng 248 Sordi V, Malosio ML, Marchesi F, Mercalli A, Melzi R, Giordano T, et al Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets Blood 2005 Jul 15;106(2):419-27 PubMed PMID: 15784733 Epub 2005/03/24 eng 249 Makhijani NS, Bischoff DS, Yamaguchi DT Regulation of proliferation and migration in retinoic acid treated C3H10T1/2 cells by TGF-beta isoforms J Cell Physiol 2005 Jan;202(1):304-13 PubMed PMID: 15389595 Epub 2004/09/25 eng 250 Karp JM, Leng Teo GS Mesenchymal Stem Cell Homing: The Devil Is in the Details Cell stem cell 2009;4(3):206-16 251 Aroen A, Loken S, Heir S, Alvik E, Ekeland A, Granlund OG, et al Articular cartilage lesions in 993 consecutive knee arthroscopies Am J Sports Med 2004 Jan-Feb;32(1):211-5 PubMed PMID: 14754746 252 Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG Cartilage injuries: a review of 31,516 knee arthroscopies Arthroscopy 1997 Aug;13(4):456-60 PubMed PMID: 9276052 253 Hjelle K, Solheim E, Strand T, Muri R, Brittberg M Articular cartilage defects in 1,000 knee arthroscopies Arthroscopy 2002 Sep;18(7):730-4 PubMed PMID: 12209430 254 Cole BJ, Lee SJ Complex knee reconstruction: articular cartilage treatment options Arthroscopy 2003 Dec;19 Suppl 1:1-10 PubMed PMID: 14673413 255 Krishnan SP, Skinner JA, Bartlett W, Carrington RW, Flanagan AM, Briggs TW, et al Who is the ideal candidate for autologous chondrocyte implantation? J Bone Joint Surg Br 2006 Jan;88(1):61-4 PubMed PMID: 16365122 256 Marlovits S, Zeller P, Singer P, Resinger C, Vecsei V Cartilage repair: generations of autologous chondrocyte transplantation European journal of radiology 2006 Jan;57(1):24-31 PubMed PMID: 16188417 257 Newman AP Articular cartilage repair Am J Sports Med 1998 MarApr;26(2):309-24 PubMed PMID: 9548130 258 Bentley G, Biant LC, Carrington RW, Akmal M, Goldberg A, Williams AM, et al A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee J Bone Joint Surg Br 2003 Mar;85(2):223-30 PubMed PMID: 12678357 259 Fu FH, Zurakowski D, Browne JE, Mandelbaum B, Erggelet C, Moseley JB, Jr., et al Autologous chondrocyte implantation versus debridement for treatment of full-thickness chondral defects of the knee: an observational cohort study with 3-year follow-up Am J Sports Med 2005 Nov;33(11):1658-66 PubMed PMID: 16093543 260 Peterson L, Brittberg M, Kiviranta I, Akerlund EL, Lindahl A Autologous chondrocyte transplantation Biomechanics and long-term durability Am J Sports Med 2002 Jan-Feb;30(1):2-12 PubMed PMID: 11798989 261 Brittberg M, Peterson L, Sjogren-Jansson E, Tallheden T, Lindahl A Articular cartilage engineering with autologous chondrocyte transplantation A 162 review of recent developments J Bone Joint Surg Am 2003;85-A Suppl 3:109-15 PubMed PMID: 12925617 262 Sgaglione NA, Miniaci A, Gillogly SD, Carter TR Update on advanced surgical techniques in the treatment of traumatic focal articular cartilage lesions in the knee Arthroscopy 2002 Feb;18(2 Suppl 1):9-32 PubMed PMID: 11828343 263 Behrens P, Bitter T, Kurz B, Russlies M Matrix-associated autologous chondrocyte transplantation/implantation (MACT/MACI) 5-year follow-up The Knee 2006 Jun;13(3):194-202 PubMed PMID: 16632362 264 Haddo O, Mahroof S, Higgs D, David L, Pringle J, Bayliss M, et al The use of chondrogide membrane in autologous chondrocyte implantation The Knee 2004 Feb;11(1):51-5 PubMed PMID: 14967329 265 Kon E, Gobbi A, Filardo G, Delcogliano M, Zaffagnini S, Marcacci M Arthroscopic second-generation autologous chondrocyte implantation compared with microfracture for chondral lesions of the knee: prospective nonrandomized study at years Am J Sports Med 2009 Jan;37(1):33-41 PubMed PMID: 19059899 266 Marcacci M, Kon E, Zaffagnini S, Filardo G, Delcogliano M, Neri MP, et al Arthroscopic second generation autologous chondrocyte implantation Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA 2007 May;15(5):610-9 PubMed PMID: 17372718 267 Hui JH, Chen F, Thambyah A, Lee EH Treatment of chondral lesions in advanced osteochondritis dissecans: a comparative study of the efficacy of chondrocytes, mesenchymal stem cells, periosteal graft, and mosaicplasty (osteochondral autograft) in animal models Journal of pediatric orthopedics 2004 Jul-Aug;24(4):427-33 PubMed PMID: 15205626 268 Lee EH, Hui JH The potential of stem cells in orthopaedic surgery J Bone Joint Surg Br 2006 Jul;88(7):841-51 PubMed PMID: 16798982 269 Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees Osteoarthritis Cartilage 2002 Mar;10(3):199-206 PubMed PMID: 11869080 270 Goshima J, Goldberg VM, Caplan AI The osteogenic potential of culture-expanded rat marrow mesenchymal cells assayed in vivo in calcium phosphate ceramic blocks Clin Orthop Relat Res 1991 Jan(262):298-311 PubMed PMID: 1984928 271 Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells Experimental cell research 1998 Jan 10;238(1):265-72 PubMed PMID: 9457080 272 Lennon DP, Haynesworth SE, Young RG, Dennis JE, Caplan AI A chemically defined medium supports in vitro proliferation and maintains the osteochondral potential of rat marrow-derived mesenchymal stem cells Experimental cell research 1995 Jul;219(1):211-22 PubMed PMID: 7628536 273 Ware JE, Jr., Sherbourne CD The MOS 36-item short-form health survey (SF-36) I Conceptual framework and item selection Medical care 1992 Jun;30(6):473-83 PubMed PMID: 1593914 274 Lysholm J, Gillquist J Evaluation of knee ligament surgery results with special emphasis on use of a scoring scale Am J Sports Med 1982 MayJun;10(3):150-4 PubMed PMID: 6896798 163 275 Tegner Y, Lysholm J Rating systems in the evaluation of knee ligament injuries Clin Orthop Relat Res 1985 Sep(198):43-9 PubMed PMID: 4028566 276 Saris DB, Vanlauwe J, Victor J, Haspl M, Bohnsack M, Fortems Y, et al Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture Am J Sports Med 2008 Feb;36(2):23546 PubMed PMID: 18202295 277 Robinson D, Nevo Z Articular Cartilage Chondrocytes are more Advantageous for Generating Hyaline-like Cartilage than Mesenchymal Cells Isolated from Microfracture Repairs Cell and tissue banking 2001;2(1):23-30 PubMed PMID: 15256927 278 Knutsen G, Drogset JO, Engebretsen L, Grontvedt T, Isaksen V, Ludvigsen TC, et al A randomized trial comparing autologous chondrocyte implantation with microfracture Findings at five years J Bone Joint Surg Am 2007 Oct;89(10):2105-12 PubMed PMID: 17908884 279 Knutsen G, Engebretsen L, Ludvigsen TC, Drogset JO, Grontvedt T, Solheim E, et al Autologous chondrocyte implantation compared with microfracture in the knee A randomized trial J Bone Joint Surg Am 2004 Mar;86-A(3):455-64 PubMed PMID: 14996869 280 Stone KR, Walgenbach AW, Freyer A, Turek TJ, Speer DP Articular cartilage paste grafting to full-thickness articular cartilage knee joint lesions: a 2- to 12-year follow-up Arthroscopy 2006 Mar;22(3):291-9 PubMed PMID: 16517314 281 Tompkins M, Hamann JC, Diduch DR, Bonner KF, Hart JM, Gwathmey FW, et al Preliminary Results of a Novel Single-Stage Cartilage Restoration Technique: Particulated Juvenile Articular Cartilage Allograft for Chondral Defects of the Patella Arthroscopy 2013 Jul 20 PubMed PMID: 23876608 282 Sakaguchi Y, Sekiya I, Yagishita K, Muneta T Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source Arthritis Rheum 2005 Aug;52(8):2521-9 PubMed PMID: 16052568 283 Shirasawa S, Sekiya I, Sakaguchi Y, Yagishita K, Ichinose S, Muneta T In vitro chondrogenesis of human synovium-derived mesenchymal stem cells: optimal condition and comparison with bone marrow-derived cells J Cell Biochem 2006 Jan 1;97(1):84-97 PubMed PMID: 16088956 284 Pei M, He F, Boyce BM, Kish VL Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell-engineered tissue constructs Osteoarthritis Cartilage 2009 Jun;17(6):714-22 PubMed PMID: 19128988 285 Ohgushi H, Caplan AI Stem cell technology and bioceramics: from cell to gene engineering J Biomed Mater Res 1999;48(6):913-27 PubMed PMID: 10556859 286 Rosenberger RE, Gomoll AH, Bryant T, Minas T Repair of large chondral defects of the knee with autologous chondrocyte implantation in patients 45 years or older Am J Sports Med 2008 Dec;36(12):2336-44 PubMed PMID: 18725654 287 Henderson I, Francisco R, Oakes B, Cameron J Autologous chondrocyte implantation for treatment of focal chondral defects of the knee-164 a clinical, arthroscopic, MRI and histologic evaluation at years The Knee 2005 Jun;12(3):209-16 PubMed PMID: 15911295 165 ... of stem cells is a promising method for cartilage repair, in this chapter I confirmed that engraftment of the MSCs in injured cartilage is an active migration and homing process and injured cartilage. .. microfracture (265, 266), or introducing new cell sources like debrided waste chondrocytes, Bone Marrow derived Mesenchymal Stem Cells (BM MSCs), or any combination of these cells (29, 214, 215, 267,... exogenous stem cells (endogenous from the bone marrow and exogenous by multiple intra -articular injection of the expanded autologous stem cells) As I showed, in the previous chapter, that injection