1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Comprehensive molecular dynamics simulations of carbon nanotubes under axial force or torsion vibration and new continuum models

246 493 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 246
Dung lượng 11,78 MB

Nội dung

COMPREHENSIVE MOLECULAR DYNAMICS SIMULATIONS OF CARBON NANOTUBES UNDER AXIAL FORCE OR TORSION OR VIBRATION AND NEW CONTINUUM MODELS AMAR NATH ROY CHOWDHURY (B.Eng. (Hons.), Jadavpur University. M.Tech., Indian Institute of Technology Bombay, India) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2014 DECLARATION I hereby declare that the thesis is my original work and it has been written by me in its entirety. I have duly acknowledged all the sources of information which have been used in the thesis. This thesis has also not been submitted for any degree in any university previously. ______________________________________ Amar Nath Roy Chowdhury December 2014 iii ACKNOWLEDGMENTS I would like to express my sincere gratitude towards Professor Wang Chien Ming for giving me the opportunity to pursue a doctoral research in the Department of Civil and Environmental Engineering at National University of Singapore. Occasionally, during my PhD study, I felt disappointed and demotivated by getting stuck on research problems, but thanks to Prof Wang’s valuable guidance, I was able to regain hope to carry out the research work. I would also like to thank Dr. Adrian Koh of the Department of Mechanical Engineering for helping me to enrich my analytical and critical thinking capabilities. I want to express special thanks to both of them for listening to all of my ideas, and for mentoring me to complete the PhD research. Because of Prof. Wang and Dr. Koh’s patience and expert advices, I am able to sculpt my research work in the form of this thesis within the desired period of time. In the first semester, I was also lucky to get the opportunity to interact with Dr. Prakash Thamburaja who was a former faculty the Department of Mechanical Engineering at NUS. He helped me to understand some advanced concepts of continuum mechanics that were and are useful for my research. Thanks to Dr. Yingyan Zhang of University of Western Sydney for helping me to learn molecular dynamics techniques using LAMMPS. Also, I wish to acknowledge Dr. Zhi Yung Tay of University of Edinburgh for introducing me to ABAQUS. Special thanks go to NUS-HPC for the terrific computational resources and to NUS library for the vast source of literature, without them I would have not been able to finish the work within four years. v I am deeply thankful to my uncle Deb Kumar Mitra, my father Biswanath Roy Chowdhury, two of my aunts Lina Mitra and Bharati Sengupta, and my mother Mina Roy Chowdhury for being so awesome, caring and supporting. My special thanks also go to three of my very close childhood friends Sandip Saha, Sandip Dutta and Sumit Mukherjee who were always with me to overcome hard times in the last four years, thereby assisting me to progress in my academic career. I also want to thank my friends and four-years-roommates Nirmalya Bag, and Shubham Duttagupta for making the PhD life fun-filled. Last but not the least I want to dedicate this thesis to the loving memories of my uncle Ashoke Sengupta whose feats and success stories motivated me to pursue scientific career and also to my beloved aunt Shila Mitra. vi CONTENTS Declaration iii Acknowledgments v Contents vii Extended summary xiii List of tables xvii List of figures . xix List of symbols and acronyms .xxvii Chapter Introduction 1.1 Properties and applications of carbon nanotubes 1.1.1 Geometric properties of carbon nanotubes 1.1.2 Mechanical properties of CNT and its characterization 1.1.3 Applications of CNT 12 1.2 Computational models to study mechanics of carbon nanotubes . 15 1.2.1 Atomistic models of carbon nanotubes 16 1.2.2 Continuum models of CNT 19 1.3 Literature review . 22 1.3.1 Atomistic simulations of compression and torsional buckling of CNT . 22 1.3.2 Atomistic and continuum models for CNT under tension . 31 1.3.3 Vibration frequencies of CNT using atomistic calculations 33 1.4 Objectives of thesis . 35 vii 1.5 Layout of thesis . 37 Chapter Details on MD simulation of CNT 39 2.1 Mathematical construct of CNT 39 2.2 Description of simulation steps . 41 2.2.1 Interatomic potential 43 2.2.2 Energy relaxation . 49 2.2.3 Integration time-step 52 2.2.4 Incremental displacement or displacement rate . 53 2.2.5 Relaxation time Ts 54 2.2.6 Thermostat . 59 2.2.7 Barostat 62 2.2.8 Brief description of MD simulation steps with NVT ensemble 63 2.3 Comparison of MD simulations with NPT and NVT ensemble . 63 2.4 Summary and key findings 65 Chapter MD simulations of CNT under compression . 67 3.1 Load deformation behaviour of CNT under compression 67 3.1.1 Displacement rate for MD simulation 67 3.1.2 Stress-strain response . 69 3.2 Buckling of CNT under compression 72 3.2.1 Definition buckling 73 3.2.2 Compressive buckling results for non-chiral SWCNTs . 75 viii 3.2.3 Effect of θ on buckling properties . 78 3.2.4 Effect of wall numbers on buckling characteristics of CNT 81 3.3 Summary and Conclusions 83 Chapter MD simulations of CNT under torsion 85 4.1 Torque-twist response of SWCNT 85 4.1.1 Twisting rate for MD simulation . 85 4.1.2 Shear stress-shear strain response 87 4.2 Torsional buckling of CNT . 96 4.2.1 Definition of torsional buckling . 96 4.2.2 Torsional buckling results for non-chiral SWCNTs 98 4.2.3 Effect of θ and D on torsional buckling of SWCNT . 100 4.2.4 Effect of wall numbers on torsional buckling of CNT 102 4.3 Summary and Conclusions 103 Chapter Thick shell model for CNT 105 5.1 Description of cylindrical shell theory 105 5.2 Compressive buckling of CNT 108 5.2.1 Calibration of E of SWCNTs . 109 5.2.2 Inter-tube van der Waals interaction in MWCNT . 112 5.2.3 Finite element model for buckling analysis of CNTs 113 5.2.4 Compressive buckling of CNT: comparison of thick shell and MD results 115 5.3 Torsional buckling of CNT . 125 ix 5.3.1 Thick shell results for torsional buckling of armchair SWCNTs 126 5.3.2 Torsional buckling of chiral SWCNTs 130 5.3.3 Torsional buckling of armchair and zigzag MWCNTs 135 5.4 Summary and Conclusions 139 Chapter Continuum models for CNT under tension . 141 6.1 Introduction . 141 6.2 Atomistic simulations 143 6.3 Membrane-shell model of SWCNT 147 6.3.1 Kinematics of axial deformation 148 6.3.2 Constitutive relation . 149 6.3.3 Calibration of material parameters . 152 6.3.4 Advantages and disadvantages of membrane-shell model 155 6.4 Hyper-elastic continuum model of CNT with softening . 155 6.4.1 Softening hyper-elasticity 156 6.4.2 Thermal effect 161 6.4.3 Effect of hydrostatic pressure 163 6.4.4 Advantages and disadvantages of hyper-elastic continuum model . 167 6.5 Summary and Conclusions 168 Chapter Modal analysis of CNT 171 7.1 Calculation of vibration frequency from MD simulation 171 7.2 Operational modal analysis using TDD 172 x nested system of cylindrical Shells." Journal of Applied Mechanics 77, Art. No. 061006. Heo, S. J., and Sinnott, S. B. (2007). "Investigation of influence of thermostat configurations on the mechanical properties of carbon nanotubes in molecular dynamics simulations." Journal of Nanoscience and Nanotechnology 7, pp. 15181524. Hern´andez, E., Goze, C., Bernier, P., and Rubio, A. (1998). "Elastic Properties of C and BxCyNz Composite Nanotubes." Physical Review Letters 80, pp. 4502-4505. Hertel, P. A. T., Martel, R., Schmidt, T., Shea, H. R., and Walkup, R. E. (1999). "Carbon nanotubes: Nanomechanics, manipulation, and electronic devices." Applied Surface Science 141, pp. 201-209. Heyes, D. M. (1994). "Pressure tensor of partial-charge and point-dipole lattices with bulk and surface geometries." Physical Review B 49, pp. 755-764. Hibbit, K., and Pawtucket, R. H. (2005). "ABAQUS user's manual, version 6.9." Hill, F. A., Havel, T. F., and Livermore, C. (2009a). "Modeling mechanical energy storage in springs based on carbon nanotubes." Nanotechnology 20, Art. No. 255704. Hill, F. A., Havel, T. F., Hart, A. J., and Livermore, C. (2009b). "Storing elastic energy in carbon nanotubes." Journal of micromechanics and microengineering 19, Art. No. 094015. Holzapfel, G. A. (2001). Nonlinear Solid Mechanics: A Continuum Approach for Engineering, John Wiley & Sons, Singapore. Holzapfel, G. A., Gasser, T. C., and Ogden, R. W. (2000). "A new constitutive framework for arterial wall mechanics and a comparative study of material models." Journal of Elasticity 61, pp. 1-48. Hoover, W. G. (1985). "Canonical dynamics: Equilibrium phase-space distributions." Physical Review A 31, pp. 1695-1697. Hone, J., Whitney, M., Piskoti, C., and Zettl, A. (1999). "Thermal conductivity of single-walled carbon nanotubes." Physical Review B 59, pp. R2514-R2516. Huang, J. Y., Chen, S., Wang, Z. Q., Kempa, K., Wang, Y. M., Jo, S. H., Chen, G., Dresselhaus, M. S., and Ren, Z. F. (2006a). "Super plastic carbon nanotubes." Nature 439, Art. No. 281. Huang, J. Y., Chen, S., Wang, Z. Q., Kempa, K., Wang, Y. M., Jo, S. H., Chen, G., Dresselhaus, M. S., and Ren, Z. F. (2006b). "Superplastic carbon nanotubes." Nature 439, pp. 281-281. Huang, X. (2009). "Fabrication and properties of carbon fibers." Materials 2, pp. 2369-2403. 203 Huang, Y., Wu, J., and Hwang, K. (2006c). "Thickness of graphene and single-wall carbon nanotubes." Physical Review B 74, Art. No. 245413. Hünenberger, P. H. (2005). "Thermostat algorithms for molecular dynamics simulations." Adv Polym Sci 173, pp. 105-147. Iijima, S. (1991). "Helical microtubules of graphitic carbon." Nature 354, pp. 56-58. Jeong, B. W., and Sinnott, S. B. (2010). "Unique buckling responses of multi-walled carbon nanotubes incorporated as torsion springs." Carbon 48, pp. 1697-1701. Jeong, B. W., Lim, J. K., and Sinnott, S. B. (2007). "Elastic torsional responses of carbon nanotube systems." Journal of Applied Physics 101, Art. No. 084309. Jiang, H., Huang, Y., and Hwang, K. C. (2005). "A finite-temperature continuum theory based on interatomic potentials." Journal of Engineering Materials and Technology 127, pp. 408-416. Jung, Y. J., Kar, S., Talapatra, S., Soldano, C., Viswanathan, G., Li, X., Yao, Z., Ou, F. S., Avadhanula, A., Vajtai, R., Curran, S., Nalamasu, O., and Ajayan, P. M. (2006). "Aligned carbon nanotube−polymer hybrid architectures for diverse flexible electronic applications." Nano letters 6, pp. 413-418. Kaledin, M., Brown, A., Kaledin, A. L., and Bowman, J. M. (2004). "Normal mode analysis using the driven molecular dynamics method.II.An application to biological macromolecules." J Chem Phys 121, pp. 5646-5653. Khademolhosseini, F., Rajapakse, R. K. N. D., and Nojeh, A. (2010). "Torsional buckling of carbon nanotubes based on nonlocal elasticity shell models." Computational Materials Science 48, pp. 736-742. Khoei, A. R., Ban, E., Banihashemi, P., and Abdolhosseini Qomi, M. J. (2011). "Effects of temperature and torsion speed on torsional properties of single-walled carbon nanotubes." Materials Science and Engineering: C 31, pp. 452-457. Kim, P., Shi, L., Majumdar, A., and McEuen, P. L. (2001). "Thermal transport measurements of individual multiwalled nanotubes." Physical Review Letters 87, Art. No. 215502. Kinoshita, Y., Murashima, M., Kawachi, M., and Ohno, N. (2013). "First-principles study of mechanical properties of one-dimensional carbon nanotube intramolecular junctions." Computational Materials Science 70, pp. 1-7. Klinger, C., Patel, Y., and Postma, H. W. C. (2012). "Carbon nanotube solar cells." PLoS One 7, Art. No. 37806. Knechtel, W. H., Düsberg, G. S., Blau, W. J., Hernández, E., and Rubio, A. (1998). "Reversible bending of carbon nanotubes using a transmission electron microscope." Applied Physics Letters 73, Art. No. 1961. 204 Ko, H., and Tsukruk, V. V. (2006). "Liquid-crystalline processing of highly oriented carbon nanotube arrays for thin-film transistors." Nano letters 6, pp. 1443-1448. Korayem, A. H., Duan, W. H., Zhao, X. L., and Wang, C. M. (2012). "Buckling behaviour of short multi-walled carbon nanotubes under axial compression loads." International Journal of Structural Stability and Dynamics 12, Art. No. 1250045. Kozinda, A., Jiang, Y., and Lin, L. "Flexible energy storage devices based on lift-off of CNT films." Proc., 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), 1233-1236. Koziol, K., Vilatela, J., Moisala, A., Motta, M., Cunniff, P., Sennett, M., and Windle, A. (2007). "High-performance carbon nanotube fiber." Science 318, pp. 1892-1895. Kreupl, F., Stampfer, C., Heirold, C., Maultzsch, J., Thomsen, C., Roman, C., Roche, S., Rubio, A., Koumoutsakos, P., Robertson, J., and Yeow, J. T. W. (2008). Carbon Nanotube Devices, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. Krishnan, A., Dujardin, E., and Ebbesen, E. B. (1998a). "Young’s modulus of singlewalled nanotubes." Physical Review B 58, Art. No. 14013. Krishnan, A., Dujardin, E., Ebbesen, E. B., Yianilos, P. N., and Treacy, M. M. J. (1998b). "Young’s modulus of single-walled nanotubes." Physical Review B 58, Art. No. 14013. Kulathunga, D. D., Ang, K. K., and Reddy, J. N. (2009). "Accurate modeling of buckling of single- and double-walled carbon nanotubes based on shell theories." Journal of Physics: Condensed Matter 21, Art. No. 435301. Kumar, S., Cola, B. A., Jackson, R., and Graham, S. (2011). "A review of carbon nanotube ensembles as flexible electronics and advanced packaging materials." Journal of Electronic Packaging 133, Art. No. 020906. Kyriacou, S. K., Humphrey, J. D., and Schwab, C. (1996). "Finite element analysis of nonlinear orthotropic hyperelastic membranes." Computational Mechanics 18, pp. 269-278. Leissa, A. (1993). Vibration of Shells, Acoustical Society of America, Art. No.428. Li, C., and Chou, T. W. (2003). "A structural mechanics approach for the analysis of carbon nanotubes." International Journal of Solids and Structures 40, pp. 2487-2499. Li, M., Kang, Z., Yang, P., Meng, X., and Lu, Y. (2013). "Molecular dynamics study on buckling of single-wall carbon nanotube-based intramolecular junctions and influence factors." Computational Materials Science 67, pp. 390-396. Li, Q. W., Li, Y., Zhang, X. F., Chikkannanavar, S. B., Zhao, Y. H., Dangelewicz, A. M., Zheng, L. X., Doorn, S. K., Jia, Q. X., Peterson, D. E., Arendt, P. N., and Zhu, Y. T. (2007). "Structure-Dependent Electrical Properties of Carbon Nanotube Fibers." Adv Mater 19, pp. 3358-3363. 205 Li, X., Maute, K., Dunn, M. L., and Yang, R. (2010). "Strain effects on the thermal conductivity of nanostructures." Physical Review B 81, Art. No. 245318. Li, Z., Dharap, P., Sharma, P., Nagarajaiah, S., and Yakobson, B. I. (2005). "Continuum field model of defect formation in carbon nanotubes." Journal of Applied Physics 97, Art. No. 074303. Lier, G. V., Alsenoy, C. V., Doren, V. V., and Geerlings, P. (2000). "Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene." Chem Phys Lett 326, pp. 181-185. Liew, K. M., Wong, C. H., He, X. Q., Tan, M. J., and Meguid, S. A. (2004). "Nanomechanics of single and multiwalled carbon nanotubes." Physical Review B 69, Art. No. 115429. Liu, B., Huang, Y., Jiang, H., Qu, S., and Hwang, K. C. (2004). "The atomic-scale finite element method." Computer Methods in Applied Mechanics and Engineering 193, pp. 1849-1864. Liu, F., Ming, P., and Li, J. (2007). "Ab initio calculation of ideal strength and phonon instability of graphene under tension." Physical Review B 76, Art. No. 064120. Liu, F., Wang, H., Xue, L., Fan, L., and Zhu, Z. (2008). "Effect of microstructure on the mechanical properties of PAN-based carbon fibers during high-temperature graphitization." J Mater Sci 43, pp. 4316-4322. Liu, X.-M., Huang, Z. d., Oh, S. w., Zhang, B., Ma, P.-C., Yuen, M. M. F., and Kim, J.-K. (2012). "Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: A review." Composites Science and Technology 72, pp. 121-144. Lomov, S. V., Gorbatikh, L., Kotanjac, Ž., Koissin, V., Houlle, M., Rochez, O., Karahan, M., Mezzo, L., and Verpoest, I. (2011). "Compressibility of carbon woven fabrics with carbon nanotubes/nanofibres grown on the fibres." Composites Science and Technology 71, pp. 315-325. Lourie, O., and Wagner, H. D. (1998). "Evaluation of Young’s modulus of carbon nanotubes by micro-Raman spectroscopy." Journal of Materials Research 13, pp. 2418-2422. Lourie, O., Cox, D. M., and Wagner, H. D. (1998). "Buckling and collapse of embedded carbon nanotubes." Physical Review Letters 81, pp. 1638-1641. Lu, J. M., Hwang, C. C., Kuo, Q. Y., and Wang, Y. C. (2008a). "Mechanical buckling of multi-walled carbon nanotubes: The effects of slenderness ratio." Physica E: Lowdimensional Systems and Nanostructures 40, pp. 1305-1308. Lu, J. M., Wang, Y. C., Chang, J. G., Su, M. H., and Hwang, C. C. (2008b). "Molecular-dynamic investigation of buckling of double-walled carbon nanotubes 206 under uniaxial compression." Journal of the Physical Society of Japan 77, Art. No. 044603. Lu, J. P. (1997). "Elastic properties of carbon nanotubes and nanoropes." Physical Review Letters 79, pp. 1297-1300. Lubarda, V. A. (2004). "Constitutive theories based on the multiplicative decomposition of deformation gradient: Thermoelasticity, elastoplasticity, and biomechanics." Applied Mechanics Reviews 57, Art. No. 95. Ma, J., Wang, J. N., and Wang, X. X. (2009). "Large-diameter and water-dispersible single-walled carbon nanotubes: Synthesis, characterization and applications." J Mater Chem 19, pp. 3033-3041. Makar, J. M., and Beaudoin, J. J. "Carbon nanotubes and their application in the construction industry." Proc., Nanotechnology in Construction, Proceeding of the 1st International Symposium on Nanotechnology in Construction, Royal Society of Chemistry. Makar, J. M., Margeson, J., and Luh, J. "Carbon nanotube/cement composites - early results and potential applications." Proc., The 3rd International Conference on Construction Materials: Performance, Innovations and Structural Implications. Marques, M. A. L., Troiani, H. E., Miki-Yoshida, M., Jose-Yacaman, M., and Rubio, A. (2004). "On the breaking of carbon nanotubes under tension." Nano letters 4, pp. 811-815. Martinez, M., Gaigeot, M. P., Borgis, D., and Vuilleumier, R. (2006). "Extracting effective normal modes from equilibrium dynamics at finite temperature." J Chem Phys 125, Art. No. 144106. Mielke, S. L., Troya, D., Zhang, S., Li, J. L., Xiao, S., Car, R., Ruoff, R. S., Schatz, G. C., and Belytschko, T. (2004). "The role of vacancy defects and holes in the fracture of carbon nanotubes." Chem Phys Lett 390, pp. 413-420. Nardelli, M. B., Yakobson, B. I., and Bernholc, J. (1998a). "Mechanism of strain release in carbon nanotubes." Physical Review B 57, pp. R4277-R4280. Oberlin, A., Endo, M., and Koyama, T. (1976). "Filamentous growth of carbon through benzene decomposition." Journal of Crystal Growth 32, pp. 335-349. Odeja, A. P. (2012). "Matlab implementation of an operational modal analysis technique for vibration-based structural health monitoring " Masters of Engineering, Massachusetts Institute of Technology. Odom, T., Huang, J.-L., and Lieber, C. M. (2002). "STM studies of single-walled carbon nanotubes." Condensed matter 14, pp. 145-167. Ogata, S., and Shibutani, Y. (2003). "Ideal tensile strength and band gap of singlewalled carbon nanotubes." Physical Review B 68, Art. No.165409. 207 Pang, J. W., and Neuhauser, D. (1996). "Application of generalized filterdiagonalization to extract instantaneous normal modes." Chem Phys Lett 252, pp. 173-180. Pantano, A., M. Parks, D., and Boyce, M. C. (2004). "Mechanics of deformation of single- and multi-wall carbon nanotubes." Journal of the Mechanics and Physics of Solids 52, pp. 789-821. Pastewka, L., Klemenz, A., Gumbsch, P., and Moseler, M. (2013). "Screened empirical bond-order potentials for Si-C." Physical Review B 87, Art. No. 205410. Pastewka, L., Pou, P., Pérez, R., Gumbsch, P., and Moseler, M. (2008). "Describing bond-breaking processes by reactive potentials: Importance of an environmentdependent interaction range." Physical Review B 78, Art. No.161402. Peng, J., Wu, J., Hwang, K. C., Song, J., and Huang, Y. (2008). "Can a single-wall carbon nanotube be modeled as a thin shell?" Journal of the Mechanics and Physics of Solids 56, pp. 2213-2224. Plimpton, S. (1995). "Fast parallel algorithms for short-range molecular dynamics." Journal of Computational Physics 117, pp. 1-19. Plimpton, S. "Foundations of molecular dynamics." Proc., Computational Material Science for Energy Generation and Conversion. Poncharal, P., Wang, Z. L., Ugarte, D., and de Heer, W. A. (1999). "Electrostatic deflections and electromechanical resonances of Carbon Nanotubes." Science 283, pp. 1513-1516. Ponder, J. W. (2000). "Computer Code: Tinker Package."Washington University in St. Loius, St. Louis. Molecular Modeling Ponder, J. W. (2004). "Computer code TINKER molecular modelling package 4.2." Popov, V. (2004). "Carbon nanotubes: Properties and application." Materials Science and Engineering: R: Reports 43, pp. 61-102. Pozrikidis, C. (2009). "On the applicability of the Cauchy-Born rule." Computational Materials Science 46, pp. 438-442. Pullen, A., Zhao, G. L., Bagayoko, D., and Yang, L. (2005). "Structural, elastic, and electronic properties of deformed carbon nanotubes under uniaxial strain." Physical Review B 71, Art. No. 205410. Qi, H. J., Teo, K. B. K., Lau, K. K. S., Boyce, M. C., Milne, W. I., Robertson, J., and Gleason, K. K. (2003). "Determination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation." Journal of the Mechanics and Physics of Solids 51, pp. 2213-2237. 208 Qian, H., Greenhalgh, E. S., Shaffer, M. S. P., and Bismarck, A. (2010). "Carbon nanotube-based hierarchical composites: A review." J Mater Chem 20, pp. 47514762. Qian, M. Y., Keng, A. K., and McGuckin, D. (2005). "A plate element based on relative displacement concept." International Journal for Computational Methods in Engineering Science and Mechanics 6, pp. 153-159. Rapaport, D. C. (2004). The art of molecular dynamics simulation, Cambridge University Press, New York. Reddy, J. (2007a). "Nonlocal theories for bending, buckling and vibration of beams." International Journal of Engineering Science 45, pp. 288-307. Reddy, J. N. (2003). Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press LLC, Boca Raton, Florida, USA. Reddy, J. N. (2007b). Theory and Analysis of Elastic Plates and Shells, CRC Press, London. Robertson, D. H., Brenner, D. W., and Mintmire, J. W. (1992). "Energetics of nanoscale graphitic tubules." Physical Review B 45, pp. 12592-12595. Roy Chowdhury, A. N., Wang, C. M., and Koh, S. J. A. (2014a). "Continuum shell model for buckling of single-walled carbon nanotubes with different chiral angles." International Journal of Structural Stability and Dynamics 14, Art. No. 1450006. Roy Chowdhury, A. N., Wang, C. M., and Koh, S. J. A. (2014b). "Continuum shell model for buckling of armchair carbon nanotubes under compression or torsion." International Journal of Applied Mechanics 6, pp. 1-25. Roy Chowdhury, A. N., Koh, S. J. A., and Wang, C. M. (2015). "Nonlinear-elastic membrane-shell model for single-walled carbon nanotubes under uni-axial deformation." Computational Materials Science 97, pp. 237-244. Ru, C. Q. (2000). "Effect of van der Waals forces on axial buckling of a doublewalled carbon nanotube." Journal of Applied Physics 87, pp. 7227-7231. Russell, D. (2004). "Development of a Time-Domain, Variable-Period Surface Wave Magnitude Procedure for Application at Regional and Teleseismic Distances, Part I: Theory." . Saavedra Flores, E. I., Adhikari, S., Friswell, M. I., and Scarpa, F. (2011a). "Hyperelastic modelling of post-buckling response in single wall carbon nanotubes under axial compression." Procedia Engineering 10, pp. 2256-2261. Saavedra Flores, E. I., Adhikari, S., Friswell, M. I., and Scarpa, F. (2011b). "Hyperelastic finite element model for single wall carbon nanotubes in tension." Computational Materials Science 50, pp. 1083-1087. 209 Saito, R., Dresselhaus, G., and Dresselhaus, M. S. (1998). "Structure of a Single-Wall Carbon Nanotube." Physical Properties Of Carbon Nanotubes, pp. 35-58. Saito, R., Fujita, M., Dresselhaus, G., and Dresselhaus, M. S. (1992). "Electronic structure of chiral graphene tubules." Applied Physics Letters 60, pp. 2204-2206. Saito, R., Matuso, R., Kimura, T., Dresselhaus, G., and Dresselhaus, M. S. (2001). "Anomalous potential barrier of double-wall carbon nanotube." Chem Phys Lett 348, pp. 187-193. Salvetat, J. P., Bonard, J. M., Thomson, N. H., Kulik, A. J., Forro, L., Benoit, W., and Zuppiroli, L. (1999a). "Mechanical properties of carbon nanotubes." Appl Phys AMater 69, pp. 255–260. Salvetat, J. P., Briggs, G. A. D., Bonard, J. M., Bacsa, R. R., Kulik, A. J., Stöckli, T., Burnham, N. A., and Forró, L. (1999b). "Elastic and shear moduli of single-walled carbon nanotube ropes." Physical Review Letters 82, pp. 944-947. Sánchez-Portal, D., Artacho, E., Soler, J. M., Rubio, A., and Ordejón, P. (1999). "Ab initio structural, elastic, and vibrational properties of carbon nanotubes." Physical Review B 59, pp. 12678-12688. Sears, A., and Batra, R. (2004). "Macroscopic properties of carbon nanotubes from molecular-mechanics simulations." Physical Review B 69, Art. No. 235406. Sears, A., and Batra, R. (2006). "Buckling of multiwalled carbon nanotubes under axial compression." Physical Review B 73, Art. No. 085410. Shen, H. S., and Zhang, C. L. (2010). "Torsional buckling and postbuckling of double-walled carbon nanotubes by nonlocal shear deformable shell model." Composite Structures 92, pp. 1073-1084. Shenderova, O. A., Brenner, D. W., Omeltchenko, A., Su, X., and Yang, L. H. (2000). "Atomistic modeling of the fracture of polycrystalline diamond." Physical Review B 61, pp. 3877-3888. Shibutani, Y., and Ogata, S. (2004). "Mechanical integrity of carbon nanotubes for bending and torsion." Modelling and Simulation in Materials Science and Engineering 12, pp. 599-610. Shima, H. (2011). "Buckling of carbon nanotubes: A state of the art review." Materials 5, pp. 47-84. Shinoda, W., Shiga, M., and Mikami, M. (2004). "Rapid estimation of elastic constants by molecular dynamics simulation under constant stress." Physical Review B 69, Art. No. 134103. Silvestre, N. (2012). "On the accuracy of shell models for torsional buckling of carbon nanotubes." European Journal of Mechanics - A/Solids 32, pp. 103-108. 210 Silvestre, N., Faria, B., and Canongia Lopes, J. N. (2012). "A molecular dynamics study on the thickness and post-critical strength of carbon nanotubes." Composite Structures 94, pp. 1352-1358. Small, J. P., Shi, L., and Kim, P. (2003). "Mesoscopic thermal and thermoelectric measurements of individual carbon nanotubes." Solid State Commun 127, pp. 181186. Srivastava, D., Wei, C., and Cho, K. (2003). "Nanomechanics of carbon nanotubes and composites." Applied Mechanics Reviews 56, pp. 215-230. Stampfer, C., Helbling, T., Jungen, A., and Hierold, C. (2006a). "Micromachined pressure sensors for electromechanical characterization of carbon nanotubes." Physica Status Solidi (B) 243, pp. 3537-3541. Stampfer, C., Jungen, A., Linderman, R., Obergfell, D., Roth, S., and Hierold, C. (2006b). "Nano-electromechanical displacement sensing based on single-walled carbon nanotubes." Nano letters 6, pp. 1449-1453. Stampfer, C., Helbling, T., Obergfell, D., Schöberle, B., Tripp, M. K., Jungen, A., Roth, S., Bright, V. M., and Hierold, C. (2006c). "Fabrication of single-walled carbon-nanotube-based pressure sensors." Nano letters 6, pp. 233-237. Stevens, R. M. D., Frederick, N. A., Smith, B. L., Morse, D. E., Stucky, G. D., and Hansma, P. K. (2000). "Carbon nanotubes as probes for atomic force microscopy." Nanotechnology 11, pp. 1-5. Stuart, S. J., Tutein, A. B., and Harrison, J. A. (2000). "A reactive potential for hydrocarbons with intermolecular interactions." J Chem Phys 112, pp. 6472-6486. Sun, D. M., Timmermans, M. Y., Tian, Y., Nasibulin, A. G., Kauppinen, E. I., Kishimoto, S., Mizutani, T., and Ohno, Y. (2011). "Flexible high-performance carbon nanotube integrated circuits." Nature nanotechnology 6, pp. 156-161. Sun, H. (1998). "COMPASS: An ab initio force-Field optimized for condensed-phase applications overview with details on alkane and benzene compounds " Journal of Physical Chemistry B 102, pp. 7338-7364. Sun, Y., and Liew, K. M. (2008). "Application of the higher-order Cauchy-Born rule in mesh-free continuum and multiscale simulation of carbon nanotubes." International Journal for Numerical Methods in Engineering 75, pp. 1238-1258. Swarztrauber, P. N. (1982). Vectorizing the FFTs, in Parallel Computations Academic Press. Tanaka, T. (2010). "Filtration characteristics of carbon nanotubes and preparation of buckypapers." Desalination and Water Treatment, pp. 193-198. Tang, J., Qin, L. C., Sasaki, T., Yudasaka, M., Matsushita, A., and Iijima, S. (2000). "Compressibility and polygonization of single-walled carbon nanotubes under hydrostatic pressure." Physical Review Letters 85, pp. 1887-1889. 211 Tersoff, J. (1988). "New empirical approach for the structure and energy of covalent systems." Physical Review B 37, pp. 6991-7000. Tombler, T. W., Zhou, C., Alexseyev, L., Kong, J., Dai, H., Liu, L., Jayanthi, C. S., Tang, M., and Wu, S. Y. (2000). "Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation." Letters to Nature 405, pp. 769772. Treacy, M. M. J., Ebbesen, T. W., and Gibson, J. M. (1996). "Exceptionally high Young's modulus observed for individual carbon nanotubes." Nature 381, pp. 678680. Troya, D., Mielke, S. L., and Schatz, G. C. (2003). "Carbon nanotube fracture – differences between quantum mechanical mechanisms and those of empirical potentials." Chem Phys Lett 382, pp. 133-141. Tsai, D. H. (1979). "The virial theorem and stress calculation in molecular dynamics." The Journal of Chemical Physics 70, pp. 1375-1382. Tserpes, K.I., Papanikos, P., (2007). "The effect of Stone–Wales defect on the tensile behavior and fracture of single-walled carbon nanotubes." Composite Structures 79, pp. 581-589. Tserpes, K. I., Papanikos, P., and Tsirkas, S. A. (2006). "A progressive fracture model for carbon nanotubes." Composites Part B: Engineering 37, pp. 662-669. van Gunsteren, W. F., and Berendsen, H. J. C. (1990). "Computer simulation of molecular dynamics:Methodology, applications, and perspectives in chemistry." Angewandte Chemie International Edition in English 29, pp. 992-1023. Varga, K., and Driscoll, J. A. (2011). Computational nanoscience, Cambridge University Press, UK. Velasquez-Garcia, L. F., Gassend, B. L. P., and Akinwande, A. I. (2010). "CNTbased MEMS/NEMS gas ionizers for portable mass spectrometry applications." Microelectromechanical Systems, Journal of 19, pp. 484-493. Volokh, K. Y. (2006). "Lagrangian equilibrium equations in cylindrical and spherical coordinates." Computers, Materials & Continua 3, pp. 37-42. Volokh, K. Y. (2007). "Hyper-elasticity with softening for modeling materials failure." Journal of the Mechanics and Physics of Solids 55, pp. 2237-2264. Volokh, K. Y. (2010). "On modeling failure of rubber-like materials." Mechanics Research Communications 37, pp. 684-689. Volokh, K. Y., and Ramesh, K. T. (2006). "An approach to multi-body interactions in a continuum-atomistic context: Application to analysis of tension instability in carbon nanotubes." International Journal of Solids and Structures 43, pp. 7609-7627. 212 Wang, C. M., Ma, Y. Q., Zhang, Y. Y., and Ang, K. K. (2006). "Buckling of doublewalled carbon nanotubes modeled by solid shell elements." Journal of Applied Physics 99, Art. No. 114317. Wang, C. M., Zhang, Y. Y., Xiang, Y., and Reddy, J. N. (2010a). "Recent studies on buckling of carbon nanotubes." Applied Mechanics Reviews 63, Art. No. 030804. Wang, C. M., Roy Chowdhury, A. N., Koh, S. J. A., and Zhang, Y. Y. (2014). "Molecular dynamics simulation and continuum shell model for buckling analysis of carbon nanotubes." Modeling of Carbon Nanotubes, Graphene and their Composites, K. I. Tserpes, and N. Silvestre, eds., Springer International Publishing, pp. 239-273. Wang, C. M., Tay, Z. Y., Chowdhuary, A. N. R., Duan, W. H., Zhang, Y. Y., and Silvestre, N. (2011). "Examination of cylindrical shell theories for buckling of carbon nanotubes." International Journal of Structural Stability and Dynamics 11, pp. 10351058. Wang, C. Y., Ru, C. Q., and Mioduchowski, A. (2003). "Axially compressed buckling of pressured multiwall carbon nanotubes." International Journal of Solids and Structures 40, pp. 3893-3911. Wang, D., Song, P., Liu, C., Wu, W., and Fan, S. (2008). "Highly oriented carbon nanotube papers made of aligned carbon nanotubes." Nanotechnology 19, Art. No. 075609. Wang, M. S., Golberg, D., and Bando, Y. (2010b). "Tensile tests on individual singlewalled carbon nanotubes: Linking nanotube strength with its defects." Advaced Materials 22, pp. 4071-4075. Wang, Q. (2008). "Torsional buckling of double-walled carbon nanotubes." Carbon 46, pp. 1172-1174. Wang, Q., Quek, S. T., and Varadan, V. K. (2007). "Torsional buckling of carbon nanotubes." Physics Letters A 367, pp. 135-139. Waters, J. F., Guduru, P. R., Jouzi, M., Xu, J. M., Hanlon, T., and Suresh, S. (2005). "Shell buckling of individual multiwalled carbon nanotubes using nanoindentation." Applied Physics Letters 87, Art. No. 103109. Waters, J. F., Guduru, P. R., and Xu, J. M. (2006). "Nanotube mechanics – Recent progress in shell buckling mechanics and quantum electromechanical coupling." Composites Science and Technology 66, pp. 1141-1150. Wei, C., Cho, K., and Srivastava, D. (2003). "Tensile strength of carbon nanotubes under realistic temperature and strain rate." Physical Review B 67. Wei, X.-L., Liu, Y., Chen, Q., Wang, M.-S., and Peng, L.-M. (2008). "The very-low shear modulus of multi-walled carbon nanotubes determined simultaneously with the axial Young's modulus via in situ experiments." Advanced Functional Materials 18, pp. 1555-1562. 213 Wei, X., Chen, Q., Peng, L.-M., Cui, R., and Li, Y. (2009). "Tensile Loading of double-walled and triple-walled carbon nanotubes and their mechanical properties." The Journal of Physical Chemistry C 113, pp. 17002-17005. Wei, Y., Wang, B., Wu, J., Yang, R., and Dunn, M. L. (2013). "Bending rigidity and Gaussian bending stiffness of single-layered graphene." Nano letters 13, pp. 26-30. Williams, P. A., Papadakis, S. J., Patel, A. M., Falvo, M. R., Washburn, S., and Superfine, R. (2003). "Fabrication of nanometer-scale mechanical devices incorporating individual multiwalled carbon nanotubes as torsional springs." Applied Physics Letters 82, pp. 805-807. Wilson, N. R., and Macpherson, J. V. (2009). "Carbon nanotube tips for atomic force microscopy." Nature nanotechnology 4, pp. 483-491. Withey, P. A., Vemuru, V. S. M., Bachilo, S. M., Nagarajaiah, S., and Weisman, R. B. (2012). "Strain paint: Noncontact strain measurement using single-walled carbon nanotube composite coatings." Nano letters 12, pp. 3497-3500. Wong, E. W., Sheehan, P. E., and Lieber, C. M. (1997). "Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes." Science 277, pp. 19711975. Wu, J., Hwang, K. C., and Huang, Y. (2009). "Chapter A shell theory for carbon nanotubes based on the interatomic potential and atomic structure." 43, pp. 1-68. Wu, Y., Huang, M., Wang, F., Huang, X. M. H., Sami Rosenblatt, Huang, L., Yan, H., O’Brien, S. P., Hone, J., and Heinz, T. F. (2008). "Determination of the Young’s modulus of structurally defined carbon nanotubes." Nano letters 8, pp. 4158-4161. Xia, Z., Guduru, P., and Curtin, W. (2007). "Enhancing mechanical properties of multiwall carbon nanotubes via sp3 interwall bridging." Physical Review Letters 98, Art. No. 245501. Xiao, J. R., Gama, B. A., and Gillespie, J. W. (2005). "An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes." International Journal of Solids and Structures 42, pp. 3075-3092. Xiao, J. R., Lopatnikov, S. L., Gama, B. A., and Gillespie, J. W. (2006). "Nanomechanics on the deformation of single- and multi-walled carbon nanotubes under radial pressure." Materials Science and Engineering: A 416, pp. 192-204. Xiao, T., and Liao, K. (2002). "Nonlinear elastic properties of carbon nanotubes subjected to large axial deformations." Physical Review B 66, Art. No. 153407. Xu, Y. Q., Barnard, A., and McEuen, P. L. (2009). "Bending and twisting of suspended single-walled carbon nanotubes in solution." Nano letters 9, pp. 16091614. Xu, Z., and Buehler, M. J. (2010). "Geometry controls conformation of graphene sheets: membranes, ribbons, and scrolls." ACS nano 4, pp. 3869–3876. 214 Yakobson, B. I., and Avouris, P. (2001). "Mechanical properties of carbon nanotubes." Topics in Applied Physics, M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, eds., Springer–Verlag, Heidelberg, Germany, pp. 287–329. Yakobson, B. I., Brabec, C. J., and Bernholc, J. (1996). "Nanomechanics of carbon tubes: Instabilities beyond linear response." Physical Review Letters 76, pp. 25112514. Yan, J. W., Liew, K. M., and He, L. H. (2013). "Free vibration analysis of singlewalled carbon nanotubes using a higher-order gradient theory." Journal of Sound and Vibration 332, pp. 3740-3755. Yang, D., Zhang, Q., Chen, G., Yoon, S., Ahn, J., Wang, S., Zhou, Q., Wang, Q., and Li, J. (2002). "Thermal conductivity of multiwalled carbon nanotubes." Physical Review B 66. Yang, J., and Weinan, E. (2006). "Generalized Cauchy-Born rules for elastic deformation of sheets, plates, and rods: Derivation of continuum models from atomistic models." Physical Review B 74. Yang, L., Anantram, M. P., Han, J., and Lu, J. P. (1999). "Band-gap change of carbon nanotubes: Effect of small uniaxial and torsional strain." Physical Review B 60, pp. 13874-13878. Yang, S. H., and Wei, Z. X. (2009). "Molecular dynamics study of effects of sp interwall bridging upon torsional behaviour of double-walled carbon nanotube." Physics Letters A 373, pp. 682-685. Yang, Y. H., and Li, W. Z. (2011). "Radial elasticity of single-walled carbon nanotube measured by atomic force microscopy." Applied Physics Letters 98, Art. No. 041901. Yap, H. W., Lakes, R. S., and Carpick, R. W. (2007). "Mechanical instabilities of individual multiwalled carbon nanotubes under cyclic axial Compression." Nano letters 7, pp. 1149-1154. Yu, M.-F., Lourie, O., Dyer, M. J., Moloni, K., and Kelly, T. F. R., Rodney S. (2000a). "Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load." Science 287, pp. 637-640. Yu, M. F., Files, B. S., Arepalli, S., and Ruoff, R. S. (2000b). "Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties." Physical Review Letters 84, pp. 5552-5555. Yusaf, E. (2007). "Output only Modal Analysis." Masters Masters, Blekinge Institute of Technology, Karlskrona, Sweden. Zang, J.-L., Yuan, Q., Wang, F.-C., and Zhao, Y.-P. (2009). "A comparative study of Young’s modulus of single-walled carbon nanotube by CPMD, MD and first principle simulations." Computational Materials Science 46, pp. 621-625. 215 Zanzot, G. (1992). "On the material symmetry group of elastic crystals and the Born rule." Archive for Rational Mechanics and Analysis 121, pp. 1-36. Zhang, C., and Shen, H. (2006). "Buckling and postbuckling analysis of single-walled carbon nanotubes in thermal environments via molecular dynamics simulation." Carbon 44, pp. 2608-2616. Zhang, C. L., and Shen, H. S. (2008). "Predicting the elastic properties of doublewalled carbon nanotubes by molecular dynamics simulation." Journal of Physics D: Applied Physics 41, Art. No. 055404. Zhang, L., and Lu, J. (2007). "An Eshelby-type approach for defect energetics in carbon nanotubes." Journal of Mechanics and Materials and Structures 2, pp. 319333. Zhang, P., Huang, Y., Geubelle, P. H., Klein, P. A., and Hwang, K. C. (2002). "The elastic modulus of single-wall carbon nanotubes: A continuum analysis incorporating interatomic potentials." International Journal of Solids and Structures 39, pp. 3893– 3906. Zhang, P., Jiang, H., Huang, Y., Geubelle, P. H., and Hwang, K. C. (2004). "An atomistic-based continuum theory for carbon nanotubes: Analysis of fracture nucleation." Journal of the Mechanics and Physics of Solids 52, pp. 977-998. Zhang, Y., Zheng, L., Sun, G., Zhan, Z., and Liao, K. (2012a). "Failure mechanisms of carbon nanotube fibers under different strain rates." Carbon 50, pp. 2887-2893. Zhang, Y. Y., and Wang, C. M. (2008). "Torsional responses of double-walled carbon nanotubes via molecular dynamics simulations." Journal of Physics: Condensed Matter 20, p. 455214. Zhang, Y. Y., Tan, V. B. C., and Wang, C. M. (2006). "Effect of chirality on buckling behaviour of single-walled carbon nanotubes." Journal of Applied Physics 100, p. 074304. Zhang, Y. Y., Tan, V. B. C., and Wang, C. M. (2007). "Effect of strain rate on the buckling behaviour of single- and double-walled carbon nanotubes." Carbon 45, pp. 514-523. Zhang, Y. Y., Wang, C. M., and Tan, V. B. C. (2008). "Examining the effects of wall numbers on buckling behaviour and mechanical properties of multiwalled carbon nanotubes via molecular dynamics simulations." Journal of Applied Physics 103, Art. No 053505. Zhang, Y. Y., Wang, C. M., and Tan, V. B. C. (2009a). "Mechanical properties and buckling behaviours of condensed double-walled carbon nanotubes." Journal of Nanoscience and Nanotechnology 9, pp. 4870-4879. Zhang, Y. Y., Wang, C. M., and Xiang, Y. (2010). "A molecular dynamics investigation of the torsional responses of defective single-walled carbon nanotubes." Carbon 48, pp. 4100-4108. 216 Zhang, Y. Y., Pei, Q. X., and Wang, C. M. (2012b). "Mechanical properties of graphynes under tension: A molecular dynamics study." Applied Physics Letters 101, Art. No.081909. Zhang, Y. Y., Wang, C. M., Duan, W. H., Xiang, Y., and Zong, Z. (2009b). "Assessment of continuum mechanics models in predicting buckling strains of singlewalled carbon nanotubes." Nanotechnology 20, Art. No. 395707. Zhao, H., and Aluru, N. R. (2010). "Temperature and strain-rate dependent fracture strength of graphene." Journal of Applied Physics 108, Art. No. 064321. Zhao, H., Min, K., and Aluru, N. R. (2009). "Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension." Nano letters 9, pp. 30123015. Zhaohui, J., Lanting, Z., Jianfeng, G., Hong, H., and Feng, S. (2009). "Computational Materials Science." URL, http://cms.sjtu.edu.cn/doc/reading/md/NoseHooverthermostat.pdf. Zhou, X., Zhou , J., and Ou-Yang, Z. C. (2000). "Strain energy and Young’s modulus of single-wall carbon nanotubes calculated from electronic energy-band theory." Physical Review B 62, Art. No. 13692. Zhu, W., Bartos, P. J. M., and Porro, A. (2004). "Application of nanotechnology in construction - Summary of a state-of-the-art report." Mater Struct 37, pp. 649-658. LIST OF AUTHOR’S PUBLICATIONS Journal papers  Wang, C. M., Tay, Z. Y., Chowdhuary, A. N. R., Duan, W. H., Zhang, Y. Y., and Silvestre, N. (2011). "Examination of cylindrical shell theories for buckling of carbon nanotubes." International Journal of Structural Stability and Dynamics 11, pp. 1035-1058.  Roy Chowdhury, A. N., Wang, C. M., and Koh, S. J. A. (2014a). "Continuum shell model for buckling of single-walled carbon nanotubes with different chiral angles." International Journal of Structural Stability and Dynamics 14, Art. No. 1450006.  Roy Chowdhury, A. N., Koh, S. J. A., and Wang, C. M. (2015). "Nonlinearelastic membrane-shell model for single-walled carbon nanotubes under uni-axial deformation." Computational Materials Science 97, pp. 237-244.  Roy Chowdhury, A. N., Wang, C. M., and Koh, S. J. A. (2014b). "Continuum shell model for buckling of armchair carbon nanotubes under compression or torsion." International Journal of Applied Mechanics 6, pp. 1-25. 217 Book chapter  Wang, C. M., Roy Chowdhury, A. N, Koh, S. J. A., and Zhang, Y. Y. (2014). Molecular dynamics simulation and continuum shell model for buckling analysis of carbon nanotubes. Modeling of carbon nanotubes, graphene and their composites, K. I. Tserpes, and N. Silvestre, eds., Springer International Publishing, pp. 239-273. Conference articles  Roy Chowdhury, A. N., Koh, S. J. A., and Wang, C. M., Nonlinear-elastic membrane-shell model for single walled carbon nanotubes. 23rd International Workshop on Computational Mechanics of Materials, Singapore, October 2-4, 2013. (paper presented)  Roy Chowdhury, A. N., and Wang, C. M., Molecular simulation results for axial buckling of double walled carbon nanotubes, The 7th International Conference on Advances in Steel Structures, Nanjing, China, April 14-16, 2012 (paper presented).  Wang, C. M., and Roy Chowdhury, A. N., Molecular dynamics simulation results for buckling of carbon nanotubes with small aspect ratios. International Congress on Computational Mechanics and Simulation (ICCMS), IIT Hyderabad, December 2012 (Keynote Lecture). 218 [...]... Existing molecular dynamics (MD) simulation results for CNT under uni -axial deformation, torsion, and vibration are not comprehensive Moreover, in many cases discrepancies are observed in MD simulation results reported by different researchers For that purpose, extensive classical MD simulations are performed to generate accurate benchmark results for CNT under uni -axial deformation, torsion and vibration. .. Discrepancies in reported cr of SWCNT(5,5) 27 Figure 1.11: Discrepancies in reported cr of DWCNT((5,5),(10,10)) 28 Figure 2.1: Hexagonal graphene lattice and CNT unit cell 40 Figure 2.2: Molecular dynamics simulation set-up for CNT under uniaxial deformation /torsion 41 Figure 2.3: Molecular dynamics simulation set-up for CNT under uniaxial deformation /torsion using NPT ensemble... L, D, wall number, and θ of non-chiral SWCNTs For chiral CNTs, Mcr and cr depend on twist direction also Mcr and cr of chiral SWCNT under anti-clockwise torsion, is greater than the Mcr and cr of chiral SWCNT under clockwise torsion Although in case of MWCNT the τ- relation is not affected by number of walls, but the torsional buckling characteristics depend on wall number For MWCNT, Mcr increases... Summary and Conclusions 187 8.2 Future Studies 192 References 197 List of author’s publications 217 xi EXTENDED SUMMARY The main objective of this thesis is to obtain continuum models suitable to analyze mechanics of carbon nanotube (CNT) under uni -axial deformation, torsion, and vibration In general, continuum models of CNT are calibrated from atomistic simulations. .. L, and θ In case of chiral SWCNT, the τ- response also depends on twist direction because the carbon- carbon bonds are asymmetrically arranged along the length and perimeter of SWCNT, and the force deformation relation of carbon- carbon bond is different under compression and tension The MD simulation results reveal that the shear modulus (G) of non-chiral SWCNT depends on D As D increases, the G of. .. buckling results for zigzag and chiral DWCNTs with L/Di ≤ 10 under axial load 82 Table 4.1: MD buckling results for armchair SWCNTs with L/D ≤ 10 under torsion9 8 Table 4.2: MD buckling results for zigzag SWCNTs with L/D ≤ 10 under torsion 99 Table 4.3: MD buckling results for armchair DWCNTs with L/Di ≤ 10 under torsion 102 Table 4.4: MD buckling results for zigzag DWCNTs... GPa The G of chiral SWCNT also depends on twist direction SWCNT with chiral angle 15.5o has the highest G under clockwise torsion, but G of the same SWCNT is the lowest under anticlockwise torsion Occurrence of torsional buckling is indicated by the degradation of the slope of (torque) MZ versus (end rotation)  curve The critical buckling torque (Mcr) and critical buckling end-rotation (cr) of CNT depend... shell theory are very close to MD simulation results xvi LIST OF TABLES Table 1.1 E of CNT from various experiments 5 Table 1.2 Mechanical properties of various fiber materials 11 Table 1.3: Electrical and thermal properties of CNT 12 Table 1.4: Summary of SWCNT buckling under torsion 29 Table 1.5: Summary of DWCNT buckling under torsion 31 Table 2.1: Parameters for original... calculate the vibration frequencies and mode shapes of SWCNTs from MD simulation trajectories Comparing the vibration frequencies of various chiral SWCNTs, we find that the vibration frequencies of SWCNT are independent of θ, but similar to a thick cylindrical shell, the vibration frequencies depend on D and L of SWCNT Thick shell theory is used to calculate vibration frequencies We observe that the vibration. .. interaction for carbon- carbon bond 45 Table 2.2: Influence of Ts on critical buckling load 55 Table 3.1: MD buckling results for armchair SWCNTs under axial load 75 Table 3.2: MD buckling results for zigzag SWCNTs under axial load 76 Table 3.3: Effect of chiral indices on MD buckling results for SWCNTs 78 Table 3.4: MD buckling results for armchair DWCNTs with L/Di ≤ 10 under axial load . COMPREHENSIVE MOLECULAR DYNAMICS SIMULATIONS OF CARBON NANOTUBES UNDER AXIAL FORCE OR TORSION OR VIBRATION AND NEW CONTINUUM MODELS AMAR NATH. objective of this thesis is to obtain continuum models suitable to analyze mechanics of carbon nanotube (CNT) under uni -axial deformation, torsion, and vibration. In general, continuum models of CNT. models of carbon nanotubes 16 1.2.2 Continuum models of CNT 19 1.3 Literature review 22 1.3.1 Atomistic simulations of compression and torsional buckling of CNT . 22 1.3.2 Atomistic and continuum

Ngày đăng: 09/09/2015, 11:19

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN