Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 186 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
186
Dung lượng
10,58 MB
Nội dung
IONIC LIQUIDS FOR CELLULOSE PROCESSING AND CARBON CAPTURE: FROM FIRST-PRINCIPLES CALCULATIONS TO ATOMISTIC SIMULATIONS KRISHNA MOHAN GUPTA (B.Tech., NIT, Durgapur, India) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMICAL AND BIOMOLECULAR ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2014 To My Family & Almighty God Declaration I hereby declare that the thesis is my original work and it has been written by me in its entirety. I have duly acknowledged all the sources of information which have been used in this thesis. This thesis has also not been submitted for any degree in any university previously. _________________ Krishna Mohan Gupta October 2014 Acknowledgements First and foremost, it is my great pleasure to extend my sincere thanks and profound sense of gratitude to my supervisor A/Prof. Jiang Jianwen for his invaluable guidance and unending support throughout my research. I truly admire him for his continuous advice and moral support, and appreciate his patience especially at time of my slow progress. As a friend-cum-supervisor, he is constantly willing to share his knowledge and experiences that have helped me in learning innumerable lessons both for research and daily life. I feel privileged to be a part of his research group, which provides me the delightful opportunity to receive continuous encouragement and meticulous guidance during the course of my graduate studies. I will certainly try to implement these invaluable experiences in my future endeavors. This thesis would have not been possible without encouragement from my lab mates. I wish to make special thanks to Dr. Hu Zhongqiao for his comprehensive discussions and providing alternate suggestions. I feel grateful to Dr. Anjaiah Nalaparaju, Dr. Chen Yifei, and Dr. Fang Weijie for sharing their knowledge and helping me out on several occasions. I wish to extend my thanks to my other group members Dr. Zhang Liling, Dr. Luo Zhonglin, Mr. Naresh Thota and Ms. Zhang Kang for being a source of technical discussions as well as refreshing gossips. I would like to thank my external and internal examiners to accept the request to examine my thesis and also provide me valuable comments. I am thankful to A/Prof. Li Zhi and Dr. Erik Birgersson for being my examination committee and their constructive comments during my qualifying examination. I wish to thank Sandy for taking care of lab related issues, and also to Yoke, Steffen, and Vanessa for helping me out in academic and administrative matters. I highly value the support of National University of Singapore for providing the funding and research facilities. I want to express my special and heartfelt thanks to Ashwini, Sumit, Shivom, and Vaibhav for taking their extra time out in memorable conversations and energizing chitchats during entire PhD duration. I wish to thank my friends, Manoj, Shailesh, Krishna, Naresh, Rajneesh, Praveen, i Naviyn, Meiyappan, and Jaya Kumar to keep myself sane and also providing me a wonderful atmosphere outside the research life. Most important for me is to evince my endless gratitude to my father Late Shree J.P. Gupta who taught me the way to come out easily from very difficult situations. He is my real hero, inspiration, and motivator and always will be in my heart. Indeed it would not be possible to convey my gratitude to him in mere words. How can I forget to pass my heartfelt and unending gratitude to my beloved mother Mrs. Sharda Devi for her inspiration, patience, moral encouragement, and endless love and support. Specially, I remember her sacrifice of getting up at 4.30 AM along with me to get completed my homework when I was a kid. I further want to convey my deepest gratitude and warmest thanks to my siblings - Mrs. Yatri Devi, Mr. S. B. Gupta, and Mr. R.B. Gupta and all other relatives and friends for their love and cherished moments. I will always remember the encouraging words of my brother Mr. S.B. Gupta “(i) Due to unfortunate incident I was unable to carry forward my higher studies, but I will not let that happen to you. ii) Never think that your father has passed away; from now onwards, I am your both father and brother.” The statement given by my brother Mr. R.B Gupta to other family members “Don’t tell any bad news even the minor ones to Krishna, otherwise his study will get affected.” will forever remind me his intense care for me. I would also extend my heartiest thanks to my fiancée Sonam for her patience, love and understanding. In addition, I acknowledge each and every one who helped me to complete this thesis directly or indirectly. Last, but most importantly, I am deeply grateful to almighty God. I would have never completed my PhD program without His blessing and offering me enough strength. Krishna Mohan Gupta ii Table of Contents Acknowledgements i Table of Contents . iii Summary . vii List of Tables . ix List of Figures xi Abbreviations . xviii List of Symbols xxi Chapter 1. Introduction 1.1 Development of Ionic Liquids .1 1.2 Structures of Ionic Liquids .2 1.3 Physical and Chemical Properties of Ionic Liquids .4 1.4 Applications of Ionic Liquids 1.4.1 Industrial-Scale Applications 1.4.2 Laboratory or Pilot-Scale Applications 1.4.2.1 Solvents 1.4.2.2 Separation 1.4.2.3 Other Applications .9 1.5 Cellulose Dissolution/Regenration 10 1.6 CO2 Capture .11 1.7 Objectives and Outline of the Thesis .12 Chapter 2. Literature Review .14 2.1 Cellulose Dissolution/Regeneration .14 2.1.1 Cellulose Dissolution 14 2.1.1.1 Experimental Studies .14 2.1.1.2 Theoretical Studies .19 2.1.2 Cellulose Regeneration .22 2.1.2.1 Experimental Studies .22 2.1.2.2 Theoretical Studies .22 2.2 CO2 Capture .23 2.2.1 Experimental Studies 23 iii 2.2.2 Theoretical Studies 29 Chapter 3. Computational Methods .33 3.1. Electronic Level Methods .33 3.1.1 Ab Initio Calculation .33 3.1.2 Density Functional Theory .34 3.2 Atomic Level Methods 35 3.2.1 Monte Carlo Simulation 36 3.2.2 Molecular Dynamics Simulation 37 3.2.3 Force Fields .39 Chapter 4. Mechanistic Insights into Cellulose Dissolution in Ionic Liquids .41 4.1 Introduction 41 4.2 Simulation Models and Methods .42 4.2.1 Cellulose Crystal .42 4.2.2 Ionic Liquids .44 4.2.3 Cellulose/Solvent Systems 45 4.3 Results and Discussion 46 4.3.1 Cellulose Crystal .46 4.3.2 Ionic Liquids .50 4.3.3 Cellulose/Solvent Systems 50 4.4 Summary 54 Chapter 5. Molecular Insights into Cellulose Regeneration from Cellulose/Ionic Liquid Mixture 56 5.1 Introduction 56 5.2 Models and Methods 56 5.3. Results and Discussion .58 5.3.1 Effect of Water Concentration 58 5.3.1.1. Radial Distribution Functions .58 5.3.1.2. Hydrogen-Bonds .62 5.3.1.3. Torsional Angle Distributions .66 5.3.2. Effect of Temperature 67 5.3.2.1. Radial Distribution Functions .67 5.3.2.2. Number of Contacts 68 iv 5.4. Summary .69 Chapter 6. Role of Anti-Solvents in Cellulose Regeneration from Cellulose/Ionic Liquid Mixture 71 6.1 Introduction 71 6.2 Models and Methods 71 6.2.1. Cellulose/[BMIM][Ac]/Solvent Systems .71 6.2.2. Ab Initio Calculations 73 6.3 Results and Discussion 74 6.3.1. Radial Distribution Functions 74 6.3.2 Hydrogen-Bonds .76 6.3.3. Dynamic Properties 79 6.4. Summary .82 Chapter 7. IRMOF-1-Supported Ionic Liquid Membranes for CO2/N2 Separation 84 7.1 Introduction 84 7.2 Models and Methods 85 7.2.1 Ionic Liquids .85 7.2.2 Binding Energies between Anions and CO2 .87 7.2.3 IL/IRMOF-1 Membranes 87 7.2.4 Adsorption and Diffusion of CO2/N2 Mixture 89 7.3. Results and Discussion .90 7.3.1 Densities of ILs .90 7.3.2 Structures of ILs in IL/IRMOF-1 Membranes 91 7.3.3 Limiting Selectivities of CO2/N2 Mixture .96 7.3.4 Separation of CO2/N2 Mixture in [BMIM][SCN]/IRMOF-1 Membrane 98 7.4. Summary .103 Chapter 8. Hydrophobic/Hydrophilic MOFs-Supported Ionic Liquid Membranes for CO2/N2 Separation 105 8.1 Introduction 105 8.2. Models and Methods .105 8.2.1 MOF-Supported [BMIM][SCN] Membranes .105 8.2.2 Adsorption, Diffusion and Permeation of CO2/N2 Mixture 109 8.3. Results and Discussion .110 v 8.3.1 Structures of [BMIM][SCN] in Membranes .110 8.3.2 Separation of CO2/N2 Mixture 113 8.4 Summary 118 Chapter 9. Systematic Investigation of Nitrile-Based Ionic Liquids for CO2 Capture .120 9.1 Introduction 120 9.2. Models and Methods .121 9.2.1 Atomistic Models 121 9.2.2 Molecular Dynamics Simulations .122 9.2.3. Ab Initio Calculations 124 9.3. Results and Discussion .124 9.3.1. IL Systems .124 9.3.2. CO2/IL Systems .127 9.3.3. CO2nion and Cationnion Binding Energies .131 9.4. Summary .134 Chapter 10. Conclusions and Future Work 135 10.1 Conclusions 135 10.2 Future Work .138 Bibliography 141 Journal Publications .160 Conference Contributions 161 vi Summary In the recent years, increased energy demand and severe global warming are two major but contradictory challenges. Fossil fuels (coal, oil, and gas) are supplying nearly 85% of total energy demand and their combustion releases approximately 30 gigatons per year of CO2 into the atmosphere. In this perspective, there has been considerable interest in search of environmentally benign energy sources and capturing CO2 to reduce global warming. As the most abundant, biodegradable, natural material on the earth, cellulose is considered to be a viable energy source to produce biofuels (a class of renewable fuels). However, cellulose is not readily dissolve/regenerate in common solvents due to the highly ordered structure and complex hydrogenbonding network. In this context, ionic liquids (ILs) as a unique class of green solvents have been considered promising solvents for both cellulose processing (energy surrogate) and CO2 capture (counter global warming). Though a number of experimental and simulation studies have been reported, fundamental understandings of cellulose processing and CO2 capture in ILs are elusive and act as a practical bottleneck toward the pathway from laboratory synthesis and testing to industrial utilization. With rapid growth in computer power, molecular computation has emerged as a robust tool for materials characterization, screening and design. Starting from a molecular level, it can provides microscopic insight that otherwise is experimentally inaccessible. The objectives of this thesis are to quantitatively understand, from computational approach, the underlying physics of cellulose processing (dissolution/regeneration) and CO2 capture in ILs. The whole thesis consists of three parts. Firstly, the mechanisms of cellulose dissolution/regeneration in ILs are unraveled. Towards this end, three solvents including [BMIM][PF6], [BMIM][Ac] and water are examined. Upon contact with solvents, the number of inter-chain H-bonds at the cellulose surface are found to decrease, particularly in [BMIM][Ac]. Furthermore, cellulose regeneration is investigated from cellulose/[BMIM][Ac] mixture using water as anti-solvent. With increasing water concentration, the number of cellulose-[Ac] H-bonds vii (86) Swatloski, R. P.; Spear, S. K.; Holbrey, J. D.; Rogers, R. D. Journal of the American Chemical Society, 2002, 124, 4974. (87) Mikkola, J. P.; Kirilin, A.; Tuuf, J. C.; Pranovich, A.; Holmbom, B.; Kustov, L. M.; Murzin, D. Y.; Salmi, T. Green Chemistry, 2007, 9, 1229. (88) Erdmenger, T.; Haensch, C.; Hoogenboom, R.; Schubert, U. S. Macromolecular Bioscience, 2007, 7, 440. (89) Heinze, T.; Schwikal, K.; Barthel, S. Macromolecular Bioscience, 2005, 5, 520. (90) Zhang, H.; Wu, J.; Zhang, J.; He, J. Macromolecules, 2005, 38, 8272. (91) Barthel, S.; Heinze, T. Green Chemistry, 2006, 8, 301. (92) Hermanutz, F.; Gaehr, F.; Uerdingen, E.; Meister, F.; Kosan, B. Macromolecular Symposia, 2008, 262, 23. (93) Kosan, B.; Michels, C.; Meister, F. Cellulose, 2008, 15, 59. (94) Zhao, B.; Greiner, L.; Leitner, W. RSC Advances, 2012, 2, 2476. (95) Xu, A. R.; Wang, J. J.; Wang, H. Y. Green Chemistry, 2010, 12, 268. (96) Zhao, H.; Baker, G. A.; Song, Z. Y.; Olubajo, O.; Crittle, T.; Peters, D. Green Chemistry, 2008, 10, 696. (97) Tang, S. K.; Baker, G. A.; Ravula, S.; Jones, J. E.; Zhao, H. Green Chemistry, 2012, 14, 2922. (98) Fukaya, Y.; Sugimoto, A.; Ohno, H. Biomacromolecules, 2006, 7, 3295. (99) Fukaya, Y.; Hayashi, K.; Wada, M.; Ohno, H. Green Chemistry, 2008, 10, 44. (100) Vitz, J.; Erdmenger, T.; Haensch, C.; Schubert, U. S. Green Chemistry, 2009, 11, 417. (101) Lee, S. H.; Doherty, T. V.; Linhardt, R. J.; Dordick, J. S. Biotechnology and Bioengineering, 2009, 102, 1368. (102) Cao, Y.; Wu, J.; Zhang, J.; Li, H. Q.; Zhang, Y.; He, J. S. Chemical Engineering Journal, 2009, 147, 13. (103) Cruz, H.; Fanselow, M.; Holbrey, J. D.; Seddon, K. R. Chemical Communications, 2012, 48, 5620. (104) Liebert, T., in Cellulose Solvents – Remarkable History, Bright Future, Washington, DC, 2010. 146 (105) Zhang, J. M.; Zhang, H.; Wu, J.; Zhang, J.; He, J. S.; Xiang, J. F. Physical Chemistry Chemical Physics, 2010, 12, 1941. (106) Youngs, T. G. A.; Holbrey, J. D.; Mullan, C. L.; Norman, S. E.; Lagunas, M. C.; D'Agostino, C.; Mantle, M. D.; Gladden, L. F.; Bowron, D. T.; Hardacre, C. Chemical Science, 2011, 2, 1594. (107) Xu, A. R.; Zhang, Y. J.; Zhao, Y.; Wang, J. J. Carbohydrate Polymers, 2013, 92, 540. (108) Muraoka, J.; Kamiya, N.; Ito, Y. Journal of Molecular Liquids, 2013, 182, 76. (109) Shill, K.; Padmanabhan, S.; Xin, Q.; Prausnitz, J. M.; Clark, D. S.; Blanch, H. W. Biotechnology and Bioengineering, 2011, 108, 511. (110) Leskinen, T.; King, A. W. T.; Kilpelainen, I.; Argyropoulos, D. S. Industrial & Engineering Chemistry Research, 2011, 50, 12349. (111) Leskinen, T.; King, A. W. T.; Kilpelainen, I.; Argyropoulos, D. S. Industrial & Engineering Chemistry Research, 2013, 52, 3958. (112) Miyafuji, H.; Miyata, K.; Saka, S.; Ueda, F.; Mori, M. Journal of Wood Science, 2009, 55, 215. (113) Hamada, Y.; Yoshida, K.; Asai, R.; Hayase, S.; Nokami, T.; Izumi, S.; Itoh, T. Green Chemistry, 2013, 15, 1863. (114) Froschauer, C.; Hummel, M.; Iakovlev, M.; Roselli, A.; Schottenberger, H.; Sixta, H. Biomacromolecules, 2013, 14, 1741. (115) Weerachanchai, P.; Lee, J. M. ACS Sustainable Chemistry & Engineering, 2013, 1, 894. (116) Tosi, M. P.; Fumi, F. G. Journal of Physics and Chemistry of Solids, 1964, 25, 45. (117) Hanke, C. G.; Price, S. L.; Lynden-Bell, R. M. Molecular Physics, 2001, 99, 801. (118) Hanke, C. G.; Atamas, N. A.; Lynden-Bell, R. M. Green Chemistry, 2002, 4, 107. (119) Shah, J. K.; Brennecke, J. F.; Maginn, E. J. Green Chemistry, 2002, 4, 112. (120) Morrow, T. I.; Maginn, E. J. Journal of Physical Chemistry B, 2002, 106, 12807. 147 (121) Derecskei, B.; Derecskei-Kovacs, A. Molecular Simulation, 2006, 32, 109. (122) Youngs, T. G. A.; Holbrey, J. D.; Deetlefs, M.; Nieuwenhuyzen, M.; Gomes, M. F. C.; Hardacre, C. ChemPhysChem, 2006, 7, 2279. (123) Youngs, T. G. A.; Hardacre, C.; Holbrey, J. D. Journal of Physical Chemistry B, 2007, 111, 13765. (124) Novoselov, N. P.; Sashina, E. S.; Petrenko, V. E.; Zaborsky, M. Fibre Chemistry, 2007, 39, 153. (125) Liu, Z. W.; Remsing, R. C.; Moore, P. B.; Moyna, G. ACS Symposium Series, 2007, 975, 335. (126) Liu, H. B.; Sale, K. L.; Holmes, B. M.; Simmons, B. A.; Singh, S. Journal of Physical Chemistry B, 2010, 114, 4293. (127) Liu, H. B.; Cheng, G.; Kent, M.; Stavila, V.; Simmons, B. A.; Sale, K. L.; Singh, S. Journal of Physical Chemistry B, 2012, 116, 8131. (128) Cho, H. M.; Gross, A. S.; Chu, J. W. Journal of the American Chemical Society, 2011, 133, 14033. (129) Gross, A. S.; Bell, A. T.; Chu, J. W. Physical Chemistry Chemical Physics, 2012, 14, 8425. (130) Zhao, Y. L.; Liu, X. M.; Wang, J. J.; Zhang, S. J. ChemPhysChem, 2012, 13, 3126. (131) Xu, H.; Pan, W. X.; Wang, R. X.; Zhang, D. J.; Liu, C. B. Journal of Computer-Aided Molecular Design, 2012, 26, 329. (132) Rabideau, B. D.; Agarwal, A.; Ismail, A. E. Journal of Physical Chemistry B, 2013, 117, 3469. (133) Zhao, Y. L.; Liu, X. M.; Wang, J. J.; Zhang, S. J. Journal of Physical Chemistry B, 2013, 117, 9042. (134) Huo, F.; Liu, Z.; Wang, W. Journal of Physical Chemistry B, 2013, 117, 11780. (135) Kahlen, J.; Masuch, K.; Leonhard, K. Green Chemistry, 2010, 12, 2172. (136) Casas, A.; Palomar, J.; Alonso, M. V.; Oliet, M.; Omar, S.; Rodriguez, F. Industrial Crops and Products, 2012, 37, 155. (137) Casas, A.; Omar, S.; Palomar, J.; Oliet, M.; Alonso, M. V.; Rodriguez, F. RSC Advances, 2013, 3, 3453. 148 (138) Zhao, H.; Jones, C. I. L.; Baker, G. A.; Xia, S.; Olubajo, O.; Person, V. N. Journal of Biotechnology, 2009, 139, 47. (139) Dadi, A. P.; Varanasi, S.; Schall, C. A. Biotechnology Bioengineering, 2006, 95, 904. (140) Hauru, L. K. J.; Hummel, M.; King, A. W. T.; Kilpeläinen, I.; Sixta, H. Biomacromolecules, 2012, 13, 2896. (141) Ding, Z. D.; Chi, Z.; Gu, W. X.; Gu, S. M.; Liu, J. H.; Wang, H. J. Carbohydrate Polymers, 2012, 89, 7. (142) Liu, H. B.; Sale, K. L.; Simmons, B. A.; Singh, S. Journal of Physical Chemistry B, 2011, 115, 10251. (143) Blanchard, L. A.; Hancu, D.; Beckman, E. J.; Brennecke, J. F. Nature, 1999, 399, 28. (144) Blanchard, L. A.; Gu, Z. Y.; Brennecke, J. F. Journal of Physical Chemistry B, 2001, 105, 2437. (145) Anthony, J. L.; Maginn, E. J.; Brennecke, J. F. Journal of Physical Chemistry B, 2002, 106, 7315. (146) Husson-Borg, P.; Majer, V.; Gomes, M. F. C. Journal of Chemical and Engineering Data, 2003, 48, 480. (147) Kamps, A. P. S.; Tuma, D.; Xia, J. Z.; Maurer, G. Journal of Chemical and Engineering Data, 2003, 48, 746. (148) Cadena, C.; Anthony, J. L.; Shah, J. K.; Morrow, T. I.; Brennecke, J. F.; Maginn, E. J. Journal of the American Chemical Society, 2004, 126, 5300. (149) Aki, S. N. V. K.; Mellein, B. R.; Saurer, E. M.; Brennecke, J. F. Journal of Physical Chemistry B, 2004, 108, 20355. (150) Shiflett, M. B.; Yokozeki, A. Industrial & Engineering Chemistry Research, 2005, 44, 4453. (151) Ferguson, L.; Scovazzo, P. Industrial & Engineering Chemistry Research, 2007, 46, 1369. (152) Gong, Y.; Wang, H.; Chen, Y.; Hu, X.; Ibrahim, A.-R.; Tanyi, A.-R.; Hong, Y.; Su, Y.; Li, J. Industrial & Engineering Chemistry Research, 2013, 52, 3926. (153) Shariati, A.; Peters, C. J. Journal of Supercritical Fluids, 2004, 30, 139. 149 (154) Kim, J. E.; Lim, J. S.; Kang, J. W. Fluid Phase Equilibria, 2011, 306, 251. (155) Kim, Y. S.; Choi, W. Y.; Jang, J. H.; Yoo, K. P.; Lee, C. S. Fluid Phase Equilibria, 2005, 228–229, 439. (156) Lee, H.; Cho, M. H.; Lee, B. S.; Palgunadi, J.; Kim, H.; Kim, H. S. Energy & Fuels, 2010, 24, 6689. (157) Carlisle, T. K.; Bara, J. E.; Gabriel, C. J.; Noble, R. D.; Gin, D. L. Industrial & Engineering Chemistry Research, 2008, 47, 7005. (158) Muldoon, M. J.; Aki, S. N. V. K.; Anderson, J. L.; Dixon, J. K.; Brennecke, J. F. Journal of Physical Chemistry B, 2007, 111, 9001. (159) Revelli, A.-L.; Mutelet, F.; Jaubert, J.-N. l. Journal of Physical Chemistry B, 2010, 114, 12908. (160) Jung, Y. H.; Jung, J. Y.; Jin, Y. R.; Lee, B. C.; Baek, I. H.; Kim, S. H. Journal of Chemical and Engineering Data, 2012, 57, 3321. (161) Baltus, R. E.; Culbertson, B. H.; Dai, S.; Luo, H. M.; DePaoli, D. W. Journal of Physical Chemistry B, 2004, 108, 721. (162) Yunus, N. M.; Mutalib, M. I. A.; Man, Z.; Bustam, M. A.; Murugesan, T. Chemical Engineering Journal, 2012, 189, 94. (163) Mota-Martinez, M. T.; Althuluth, M.; Kroon, M. C.; Peters, C. J. Fluid Phase Equilibria, 2012, 332, 35. (164) Bates, E. D.; Mayton, R. D.; Ntai, I.; Davis, J. H. Journal of the American Chemical Society, 2002, 124, 926. (165) Wang, C. M.; Luo, H. M.; Jiang, D. E.; Li, H. R.; Dai, S. Angewandte Chemie-International Edition, 2010, 49, 5978. (166) Wang, C. M.; Luo, X. Y.; Luo, H. M.; Jiang, D. E.; Li, H. R.; Dai, S. Angewandte Chemie-International Edition, 2011, 50, 4918. (167) Sharma, P.; Park, S. D.; Park, K. T.; Nam, S. C.; Jeong, S. K.; Yoon, Y. I.; Baek, I. H. Chemical Engineering Journal, 2012, 193, 267. (168) Ren, S. H.; Hou, Y. C.; Tian, S. D.; Chen, X. M.; Wu, W. Z. Journal of Physical Chemistry B, 2013, 117, 2482. (169) Bara, J. E.; Gabriel, C. J.; Lessmann, S.; Carlisle, T. K.; FInotello, A.; Gin, D. L.; Noble, R. D. Industrial & Engineering Chemistry Research, 2007, 46, 5380. 150 (170) Mahurin, S. M.; Lee, J. S.; Baker, G. A.; Luo, H. M.; Dai, S. Journal of Membrane Science, 2010, 353, 177. (171) Scovazzo, P.; Kieft, J.; Finan, D. A.; Koval, C.; DuBois, D.; Noble, R. D. Journal of Membrance Science, 2004, 238, 57. (172) Scovazzo, P.; Havard, D.; McShea, M.; Mixon, S.; Morgan, D. Journal of Membrane Science, 2009, 327, 41. (173) Myers, C.; Pennline, H.; Luebke, D.; Ilconich, J.; Dixon, J. K.; Maginn, E. J.; Brennecke, J. F. Journal of Membrance Science, 2008, 322, 28. (174) Jindaratsamee, P.; Shimoyama, Y.; Morizaki, H.; Ito, A. Journal of Chemical Thermodynamics, 2011, 43, 311. (175) Jindaratsamee, P.; Ito, A.; Komuro, S.; Shimoyama, Y. Journal of Membrane Science, 2012, 423–424, 27. (176) Zhao, W.; He, G.; Nie, F.; Zhang, L.; Feng, H.; Liu, H. Journal of Membrane Science, 2012, 411–412, 73. (177) Mahurin, S. M.; Dai, T.; Yeary, J. S.; Luo, H.; Dai, S. Industrial & Engineering Chemistry Research, 2011, 50, 14061. (178) Mahurin, S. M.; Hillesheim, P. C.; Yeary, J. S.; Jiang, D. E.; Dai, S. RSC Advances, 2012, 2, 11813. (179) Kim, D. H.; Baek, I. H.; Hong, S. U.; Lee, H. K. Journal of Membrane Science, 2011, 372, 346. (180) Neves, L. A.; Crespo, J. G.; Coelhoso, I. M. Journal of Membrane Science, 2010, 357, 160. (181) Close, J. J.; Farmer, K.; Moganty, S. S.; Baltus, R. E. Journal of Membrane Science, 2012, 390–391, 201. (182) Labropoulos, A. I.; Romanos, G. E.; Kouvelos, E.; Falaras, P.; Likodimos, V.; Francisco, M.; Kroon, M. C.; Iliev, B.; Adamova, G.; Schubert, T. J. S. Journal of Physical Chemistry C, 2013, 117, 10114. (183) Kasahara, S.; Kamio, E.; Ishigami, T.; Matsuyama, H. Journal of Membrane Science, 2012, 415–416, 168. (184) Albo, J.; Santos, E.; Neves, L. A.; Simeonov, S. P.; Afonso, C. A. M.; Crespo, J. G.; Irabien, A. Separation and Purification Technology, 2012, 97, 26. (185) Santos, E.; Albo, J.; Daniel, C. I.; Portugal, C. A. M.; Crespo, J. G.; Irabien, A. Journal of Membrane Science, 2013, 430, 56. 151 (186) Hu, X.-B.; Li, Y.-X.; Huang, K.; Ma, S.-L.; Yu, H.; Wu, Y.-T.; Zhang, Z.-B. Green Chemistry, 2012, 14, 1440. (187) Tome, L. C.; Patinha, D. J. S.; Freire, C. S. R.; Rebelo, L. P. N.; Marrucho, I. M. RSC Advances, 2013, 3, 12220. (188) Tzialla, O.; Veziri, C.; Papatryfon, X.; Beltsios, K. G.; Labropoulos, A.; Iliev, B.; Adamova, G.; Schubert, T. J. S.; Kroon, M. C.; Francisco, M.; Zubeir, L. F.; Romanos, G. E.; Karanikolos, G. N. Journal of Physical Chemistry C, 2013, 117, 18434. (189) Shi, W.; Maginn, E. J. Journal of Physical Chemistry B, 2008, 112, 16710. (190) Bhargava, B. L.; Krishna, A. C.; Balasubramanian, S. AIChE Journal, 2008, 54, 2971. (191) Almantariotis, D.; Gefflaut, T.; P dua, A. A. H.; Coxam, J. Y.; Costa Gomes, M. F. Journal of Physical Chemistry B, 2010, 114, 3608. (192) Ghobadi, A. F.; Taghikhani, V.; Elliottt, J. R. Journal of Physical Chemistry B, 2011, 115, 13599. (193) Zhang, X.; Liu, X.; Yao, X.; Zhang, S. Industrial & Engineering Chemistry Research, 2011, 50, 8323. (194) Gurkan, B.; Goodrich, B.; Mindrup, E.; Ficke, L.; Massel, M.; Seo, S.; Senftle, T.; Wu, H.; Glaser, M.; Shah, J. Journal of Physical Chemistry Letters, 2010, 1, 3494. (195) Huang, X.; Margulis, C. J.; Li, Y.; Berne, B. J. Journal of the American Chemical Society, 2005, 127, 17842. (196) Bhargava, B. L.; Balasubramanian, S. Chemical Physics Letters, 2007, 444, 242. (197) Kazarian, S. G.; Briscoe, B. J.; Welton, T. Chemical Communications, 2000, 2047. (198) Sudha, S. Y.; Khanna, A. World Academy of Science, Engineering and Technology, 2009, 57, 539. (199) Babarao, R.; Dai, S.; Jiang, D. E. Journal of Physical Chemistry B, 2011, 115, 9789. (200) Gutowski, K. E.; Maginn, E. J. Journal of the American Chemical Society, 2008, 130, 14690. 152 (201) Wu, H.; Shah, J. K.; Tenney, C. M.; Rosch, T. W.; Maginn, E. J. Industrial & Engineering Chemistry Research, 2011, 50, 8983. (202) Chen, J. J.; Li, W. W.; Li, X. L.; Yu, H. Q. Physical Chemistry Chemical Physics, 2012, 14, 4589. (203) Perez-Blanco, M. E.; Maginn, E. J. Journal of Physical Chemistry B, 2010, 114, 11827. (204) Wick, C. D.; Chang, T. M.; Dang, L. X. Journal of Physical Chemistry B, 2010, 114, 14965. (205) Dang, L. X.; Chang, T. M. Journal of Physical Chemistry Letters, 2012, 3, 175. (206) Chen, Y.; Hu, Z.; Gupta, K. M.; Jiang, J. Journal of Physical Chemistry C, 2011. (207) Vicent-Luna, J. M.; Gutiérrez-Sevillano, J. J.; Anta, J. A.; Calero, S. Journal of Physical Chemistry C, 2013, 117, 20762. (208) Zhang, X. C.; Liu, Z. P.; Wang, W. C. AIChE Journal, 2008, 54, 2717. (209) Palomar, J.; Gonzalez-Miquel, M.; Polo, A.; Rodriguez, F. Industrial & Engineering Chemistry Research, 2011, 50, 3452. (210) Sistla, Y. S.; Khanna, A. Journal of Chemical & Engineering Data, 2011, 56, 4045. (211) Gonzalez-Miquel, M.; Palomar, J.; Omar, S.; Rodriguez, F. Industrial & Engineering Chemistry Research, 2011, 50, 5739. (212) Sumon, K. Z.; Henni, A. Fluid Phase Equiliria, 2011, 310, 39. (213) Shannon, M. S.; Tedstone, J. M.; Danielsen, S. P. O.; Hindman, M. S.; Irvin, A. C.; Bara, J. E. Industrial & Engineering Chemistry Research, 2012, 51, 5565. (214) Gubbins, K. E.; Liu, Y. C.; Moore, J. D.; Palmer, J. C. Physical Chemistry Chemical Physics, 2011, 13, 58. (215) Moller, C.; Plesset, M. S. Physical Review, 1934, 46, 0618. (216) Riley, K. E.; Platts, J. A.; Rezac, J.; Hobza, P.; Hill, J. G. Journal of Physical Chemistry A, 2012, 116, 4159. (217) Hohenberg, P.; Kohn, W. Physical Review B, 1964, 136, B864. (218) Kohn, W.; Sham, L. J. Physical Review, 1965, 140, 1133. (219) Perdew, J. P.; Burke, K.; Wang, Y. Physical Review B, 1998, 57, 14999. (220) Frenkel, D.; Smit, B. Computational Sciences Series, 2002, 1, 1. 153 (221) Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E. Journal of Chemical Physics, 1953, 21, 1087. (222) Maginn, E. J. AIChE Journal, 2009, 55, 1304. (223) Verlet, L. Physical Review, 1967, 159, 98. (224) Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. Journal of the American Chemical Society, 1992, 114, 10024. (225) MacKerell, A. D.; Bashford, D.; Bellott, M.; Dunbrack, R. L.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; JosephMcCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher, W. E.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.; Wiorkiewicz-Kuczera, J.; Yin, D.; Karplus, M. Journal of Physical Chemistry B, 1998, 102, 3586. (226) Dauberosguthorpe, P.; Roberts, V. A.; Osguthorpe, D. J.; Wolff, J.; Genest, M.; Hagler, A. T. Proteins-Structure Function and Genetics, 1988, 4, 31. (227) Schuler, L. D.; Daura, X.; Van Gunsteren, W. F. Journal of Computational Chemistry, 2001, 22, 1205. (228) Jorgensen, W. L.; Maxwell, D. S.; TiradoRives, J. Journal of the American Chemical Society, 1996, 118, 11225. (229) Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. Journal of the American Chemical Society, 1995, 117, 5179. (230) Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M. C.; Xiong, G. M.; Zhang, W.; Yang, R.; Cieplak, P.; Luo, R.; Lee, T.; Caldwell, J.; Wang, J. M.; Kollman, P. Journal of Computational Chemistry, 2003, 24, 1999. (231) O'sullivan, A. C. Cellulose, 1997, 4, 173. (232) Nishiyama, Y.; Langan, P.; Chanzy, H. Journal of the American Chemical Society, 2002, 124, 9074. (233) Materials Studio, Accelryls Inc., San Diego, 2008. (234) Mulliken, R. S. Journal of Chemical Physics., 1955, 23, 1833. (235) Lopes, J. N. C.; Deschamps, J.; Padua, A. A. H. Journal of Physical Chemistry B, 2004, 108, 2038. 154 (236) Bayly, C. I.; Cieplak, P.; Cornell, W. D.; Kollman, P. A. Journal of Physical Chemistry, 1993, 97, 10269. (237) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Journal of Chemical Physics, 1983, 79, 926. (238) Mark, P.; Nilsson, L. Journal of Computational Chemistry, 2002, 23, 1211. (239) Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. C. Journal of Computational Chemistry, 2005, 26, 1701. (240) Hockney, R. W. Methods Compututional Physics, 1970, 9, 136. (241) Berendsen, H. J. C.; Postma, J. P. M.; Vangunsteren, W. F.; Dinola, A.; Haak, J. R. Journal of Chemical Physics, 1984, 81, 3684. (242) Darden, T.; York, D.; Pedersen, L. Journal of Chemical Physics, 1993, 98, 10089. (243) Honjo, G.; Watanabe, M. Nature, 1958, 181, 326. (244) Woodcock, C.; Sarko, A. Macromolecules, 1980, 13, 1183. (245) Sugiyama, J.; Vuong, R.; Chanzy, H. Macromolecules, 1991, 24, 4168. (246) Brandrup, J. I., E. H.; Grulke, E. A Polymer Handbook,4th ed.WileyInterscience: New York, 1999. (247) Ferrario, M.; Haughney, M.; McDonald, I. R.; Klein, M. L. Journal of Chemical Physics, 1990, 93, 5156. (248) Luzar, A.; Chandler, D. Nature, 1996, 379, 55. (249) Mazeau, K.; Bergenstrahle, M.; Berglund, L. A. Journal of Physical Chemistry B, 2007, 111, 9138. (250) Wada, M. Journal of Polymer Science Part B-Polymer Physics, 2002, 40, 1095. (251) Sturcova, A.; Davies, G. R.; Eichhorn, S. J. Biomacromolecules, 2005, 6, 1055. (252) Muller, M.; Diddens, I.; Murphy, B.; Krisch, M. Macromolecules, 2008, 41, 9755. (253) Tanaka, F.; Iwata, T. Cellulose, 2006, 13, 509. (254) Santiago Cintrón, M.; Johnson, G.; French, A. Cellulose, 2011, 1. (255) Gu, Z. Y.; Brennecke, J. F. Journal of Chemical and Engineering Data, 2002, 47, 339. 155 (256) Chandran, A.; Prakash, K.; Senapati, S. Chemical Physics, 2010, 374, 46. (257) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A., GAUSSIAN 03, Gaussian, Inc., 2004. (258) Remsing, R. C.; Hernandez, G.; Swatloski, R. P.; Massefski, W. W.; Rogers, R. D.; Moyna, G. Jounral of Physical Chemistry B, 2008, 112, 11071. (259) M ndez-Morales, T.; Carrete, J. s.; Cabeza, O. s.; Gallego, L. J.; Varela, L. M. Journal Physical Chemistry B, 2011, 115, 6995. (260) Ding, Z.-D.; Chi, Z.; Gu, W.-X.; Gu, S.-M.; Liu, J.-H.; Wang, H.-J. Carbohydrate Polymers, 2012, 89, 7. (261) Mazeau, K.; Heux, L. Journal of Physical Chemistry B, 2003, 107, 2394. (262) Shen, T. Y.; Langan, P.; French, A. D.; Johnson, G. P.; Gnanakaran, S. Journal of the American Chemical Society, 2009, 131, 14786. (263) Mason, P. E.; Neilson, G. W.; Enderby, J. E.; Saboungi, M. L.; Cuello, G.; Brady, J. W. Journal of Chemical Physics, 2006, 125, 224505. (264) Gupta, K. M.; Hu, Z. Q.; Jiang, J. W. Polymer, 2011, 52, 5904. (265) Berryman, P. J.; Faux, D. A.; Dunstan, D. J. Physical Review B, 2007, 76, 104303. (266) http://www.chemicalbook.com/ChemicalProductProperty_EN_CB313 0928.htm. (267) Gupta, K. M.; Hu, Z. Q.; Jiang, J. W. RSC Advances, 2013, 3, 12794. 156 (268) Boys, S. F.; Bernardi, F. Molecular Physics, 1970, 19, 553. (269) Li, B.; Asikkala, J.; Filpponen, I.; Argyropoulos, D. S. Industrial & Engineering Chemistry Research, 2010, 49, 2477. (270) Hu, Z. Q.; Jiang, J. W. Journal of Membrance Science, 2008, 324, 192. (271) Rocchi, C.; Bizzarri, A. R.; Cannistraro, S. Physical Review E, 1998, 57, 3315. (272) Liu, Z. P.; Huang, S. P.; Wang, W. C. Journal of Physical Chemistry B, 2004, 108, 12978. (273) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A., in 'GAUSSIAN 09', Wallingford CT, 2009. (274) Singh, U. C.; Kollman, P. A. Journal of Computational Chemistry, 1984, 5, 129. (275) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keefe, M.; Yaghi, O. M. Science, 2002, 295, 469. (276) Jiang, J. W.; Babarao, R.; Hu, Z. Q. Chemical Society Reviews, 2011, 40, 3599. (277) Babarao, R.; Hu, Z. Q.; Jiang, J. W.; Chempath, S.; Sandler, S. I. Langmuir, 2007, 23, 659. (278) Hirotani, A.; Mizukami, K.; Miura, R.; Takaba, H.; Miya, T.; Fahmi, A.; Stirling, A.; Kubo, M.; Miyamoto, A. Applied Surface Science, 1997, 120, 81. (279) Murthy, C. S.; Singer, K.; Klein, M. L.; McDonald, I. R. Molecular Physics, 1980, 41, 1387. 157 (280) Padua, A. A. H.; Lopes, J. N. C. Journal of Physical Chemistry B, 2004, 108, 16893. (281) Fredlake, C. P.; Crosthwaite, J. M.; Hert, D. G.; Aki, S. N. V. K.; Brennecke, J. F. Journal of Chemical and Engineering Data, 2004, 49, 954. (282) Domanska, U.; Krolikowska, M. Journal of Chemical and Engineering Data, 2010, 55, 2994. (283) Bogolitsyn, K. G.; Skrebets, T. E.; Makhova, T. A. Russian Journal of General Chemistry, 2009, 79, 125. (284) Chen, Y. F.; Hu, Z. Q.; Gupta, K. M.; Jiang, J. W. Journal of Physical Chemistry C, 2011, 115, 21736. (285) Hu, Y. F.; Liu, Z. C.; Xu, C. M.; Zhang, X. M. Chemical Society Reviews, 2011, 40, 3802. (286) Babarao, R.; Jiang, J. W. Langmuir, 2008, 24, 5474. (287) Zhang, L. L.; Xiao, Y. C.; Chung, T. S.; Jiang, J. W. Polymer, 2010, 51, 4439. (288) Maier, G. Angewandte Chemie-International Edition, 1998, 37, 2960. (289) Robeson, L. M. Journal of Membrance Science, 2008, 320, 390. (290) Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M. Science, 2008, 319, 939. (291) Liu, Y. L.; Kravtsov, V. C.; Larsen, R.; Eddaoudi, M. Chemical Communications, 2006, 14, 1488. (292) Nalaparaju, A.; Zhao, X. S.; Jiang, J. W. Journal of Physical Chemistry C, 2010, 114, 11542. (293) Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. Journal of the American Chemical Society, 1992, 114, 10024. (294) Hockney, R. W. Methods Computational Physics, 1970, 9, 136. (295) Gupta, K. M.; Chen, Y.; Hu, Z.; Jiang, J. Physical Chemistry Chemical Physics, 2012, 14, 5785. (296) Liu, J.; Keskin, S.; Sholl, D. S.; Johnson, J. K. Journal of Physical Chemistry C, 2011, 115, 12560. (297) Zhang, L. L.; Xiao, Y. C.; Chung, T. S.; Jiang, J. W. Polymer, 2010, 51, 4439. 158 (298) Mahurin, S. M.; Hillesheim, P. C.; Yeary, J. S.; Jiang, D.; Dai, S. RSC Advances, 2012, 2, 11813. (299) Maier, G. Angewandte Chemie-International Edition, 1998, 37, 2960. (300) Bara, J. E.; Carlisle, T. K.; Gabriel, C. J.; Camper, D. E.; FInotello, A.; Gin, D. L.; Noble, R. D. Industrial & Engineering Chemistry Research, 2009, 48, 2739. (301) Borodin, O. Journal of Physical Chemistry B, 2009, 113, 11463. (302) Mayo, S. L.; Olafson, B. D.; Goddard, W. A. Journal of Physical Chemistry, 1990, 94, 8897. (303) Torrie, G. M.; Valleau, J. P. Journal of Computational Physics, 1977, 23, 187. (304) Kumar, S.; Bouzida, D.; Swendsen, R. H.; Kollman, P. A.; Rosenberg, J. M. Journal of Compututional Chemistry, 1992, 13, 1011. (305) Boys, S. F.; Bernardi, F. Molecular Physics, 1970, 19, 553. (306) Tsuzuki, S.; Shinoda, W.; Saito, H.; Mikami, M.; Tokuda, H.; Watanabe, M. Journal of Physical Chemistry B, 2009, 113, 10641. (307) Del Popolo, M. G.; Voth, G. A. Journal of Physical Chemistry B, 2004, 108, 1744. (308) Maginn, E. J. Accounts of Chemical Research, 2007, 40, 1200. (309) Roscioli, J. R.; Nesbitt, D. J. Journal of Physical Chemistry Letters, 2010, 1, 674. (310) Perez-Blanco, M. E.; Maginn, E. J. Journal of Physical Chemistry B, 2011, 115, 10488. (311) Zhao, Y.; Liu, X.; Wang, J.; Zhang, S. ChemPhysChem, 2012, 13, 3126. (312) Mahurin, S. M.; Yeary, J. S.; Baker, S. N.; Jiang, D.-E.; Dai, S.; Baker, G. A. Journal of Membrane Science, 2012, 401–402, 61. (313) Seiler, M.; Jork, C.; Kavarnou, A.; Arlt, W.; Hirsch, R. AIChE Journal, 2004, 50, 2439. (314) Orchill s, A. V.; Miguel, P. J.; Vercher, E.; Mart nez-Andreu, A. Journal of Chemical & Engineering Data, 2009, 55, 1669. (315) Neves, C. M.; Granjo, J. F.; Freire, M. G.; Robertson, A.; Oliveira, N. M.; Coutinho, J. A. Green Chemistry, 2011, 13, 1517. 159 Journal Publications 1. Krishna M. Gupta and Jianwen Jiang, Systematic Investigation of Nitrile-Based Ionic Liquids for CO2 Capture: A Combination of Molecular Simulation and Ab Initio Calculation, Journal of Physical Chemistry C, 2014, 118, 31103118. 2. Tamas Panda, Krishna M. Gupta, Jianwen Jiang, and Rahul Banerjee, Enhancement of CO2 Uptake in Iso-reticular Co-based Zeolitic Imidazolate Frameworks via Metal Replacement, CrystEngComm, 2014, 16, 4677. 3. Krishna M. Gupta, Yifei Chen, and Jianwen Jiang, Ionic Liquid Membranes Supported by Hydrophobic and Hydrophilic Metal-Organic Frameworks for CO2 Capture, Journal of Physical Chemistry C, 2013, 117, 57925799. 4. Krishna M. Gupta, Zhongqiao Hu, and Jianwen Jiang, Cellulose Regeneration from a Cellulose/Ionic Liquid Mixture: The Role of AntiSolvents, RSC Advances, 2013, 3, 12794–12801. 5. Krishna M. Gupta, Zhongqiao Hu, and Jianwen Jiang, Molecular Insight into Cellulose Regeneration from Cellulose/Ionic Liquid Mixture: Effects of Water Concentration and Temperature, RSC Advances, 2013, 3, 4425– 4433. 6. Krishna M. Gupta, Yifei Chen, Zhongqiao Hu, and Jianwen Jiang, Metal-Organic Framework Supported Ionic Liquid Membranes for CO2 Capture: Anion Effects, Physical Chemistry Chemical Physics, 2012, 14, 5785–5794. 7. Krishna M. Gupta, Zhongqiao Hu, and Jianwen Jiang, Mechanistic Understanding of Interactions between Cellulose and Ionic Liquids: A Molecular Simulation Study, Polymer 2011, 52, 5904–5911. 8. Yifei Chen, Zhongqiao Hu, Krishna M. Gupta, and Jianwen Jiang, Ionic Liquid/Metal-Organic Framework Composite for CO2 Capture: A Computational Investigation, Journal of Physical Chemistry C, 2011, 115, 21736–21742. 160 Conference Contributions 1. Mechanistic Insight into Cellulose Dissolution in Ionic Liquids, Krishna M. Gupta, Zhongqiao Hu and Jianwen Jiang, AIChE Annual Meeting 2012, Pittsburgh, USA. 2. Atomistic Simulation to Design MOF-Supported Ionic Liquid Membranes for CO2 capture, Krishna M. Gupta, Yifei Chen, Zhongqiao Hu and Jianwen Jiang, AIChE Annual Meeting 2012, Pittsburgh, USA. 3. Investigation of Cellulose Regeneration from Cellulose/Ionic Liquid Mixture: Effects of Water Concentration and Temperature, Krishna M. Gupta, Zhongqiao Hu and Jianwen Jiang, ICMAT 2013, Singapore. 4. Hydrophobic/Hydrophilic Metal-Organic Frameworks Supported Ionic Liquid Membranes for CO2 Capture, Krishna M. Gupta, Yifei Chen, and Jianwen Jiang, ICMAT 2013, Singapore. 161 [...]... bonded atoms kb & k force constants of bond-stretching and angle-bending potentials Cn & k force constants of proper and improper torsional potentials bij bond distance between atoms i and j xxi ijk angle by atoms i, j and k ijkl & ijkl proper and improper torsional angle by atoms i, j, k and l ij & ij collision diameter and well depth for atoms i and j qi atomic charge of the atom i ε0 vacuum... particle i utotal total potential ubonded potential due to the interaction of bonded atoms unonbonded potential due to the interaction of nonbonded atoms ustretching potential due to the bond-stretching in bonded atoms ubending potential due to the angle-bending in bonded atoms uproper potential due to the proper torsionals in bonded atoms uimproper potential due to the improper torsionals in bonded atoms... [Ac] and (b) cellulosewater per cellulose in cellulose/ [BMIM][Ac]/water mixtures at 20, 50, and 80 wt% water 64 Figure 5.10 Initial and final configurations in cellulose/ [BMIM][Ac]/water mixtures at (a) 0, (b) 20, (c) 50, and (d) 80 wt% water For clarity, xii cellulose and anions in (a), and cellulose and water molecules in (b-d) are shown 65 Figure 5.11 Proposed mechanism for cellulose. .. in cellulose/ [BMIM][Ac] mixture C: cyan, H: white, O: red 66 Figure 5.12 (a) Staggered orientations of hydroxymethyl groups Torsional angle distributions for (b) cellulose in cellulose/ [BMIM][Ac]/water mixture at 80 wt% water and (c) cellulose in Iβ crystal 67 Figure 5.13 Radial distribution functions for cellulose around (a) OA and OB atoms of [Ac], (b) C1 atom of [BMIM]+, and (c) OW atom... (a) cellulose chain, (b) [BMIM] +, (c) [Ac] and (d) water N: blue, C: cyan, H: white and O: red 57 Figure 5.2 Radial distribution functions for cellulose around (a) OA and OB atoms of [Ac], (b) C1 atom of [BMIM]+, and (c) OW atom of water in cellulose/ [BMIM][Ac]/water mixtures at 0, 20, 50, and 80 wt% water 59 Figure 5.3 Radial distribution functions between cellulose chains in cellulose/ [BMIM][Ac]/water... thesis aims to provide microscopic insights into cellulose dissolution/regeneration and CO2 capture in ILs It is revealed that H-bonding is crucial to govern both cellulose dissolution and regeneration, and would facilitate the development of new ILs for cellulose processing Additionally, CO2 separation from flue gas in MOF-supported IL membranes surpassed the Robeson’s upper bound Therefore, MOF-supported... untapped and requires significant attention for its extraction, purification, and subsequent processing To convert cellulose to biofuels, the prime step is the depolymerization of cellulose to simple sugars or partial depolymerization to dimmers, trimers and other oligomers Cellulose is a polysaccharide composed of linear chains from several hundred to over ten thousand linked with β (1→4) D-glucose units... of cellulose- cellulose H-bonds increases resulting cellulose regeneration Cellulose regeneration is found to be prompted at a higher temperature Thereafter, the role of different antisolvents (water, ethanol, and acetone) is examined for cellulose regeneration Insightful structural and dynamic properties at a microscopic level reflect that water is a better candidate, rather than ethanol and acetone... 0, 20, 50, and 80 wt% water 60 Figure 5.4 Radial distribution functions of C1 atom of [BMIM] + around OA and OB atoms of [Ac] in cellulose/ [BMIM][Ac]/water mixtures at 0, 20, 50, and 80 wt% water 61 Figure 5.5 Radial distribution functions of OW atom of water around (a) OA and OB atoms of [Ac] and (b) C1 atom of [BMIM]+ in cellulose/ [BMIM][Ac]/water mixtures at 20, 50, and 80 wt%... increasing demand for energy and severe global warming are two major but contradictory challenges The growth in energy demand is attributed to population explosion and economic development International Energy Outlook predicted that global energy demand would rise by 45% from 2010 to 2035.70 Currently, fossil fuels (coal, oil, and gas) are supplying nearly 85% of total world energy demand.71 However, . IONIC LIQUIDS FOR CELLULOSE PROCESSING AND CARBON CAPTURE: FROM FIRST- PRINCIPLES CALCULATIONS TO ATOMISTIC SIMULATIONS KRISHNA MOHAN. Introduction 1 1.1 Development of Ionic Liquids 1 1.2 Structures of Ionic Liquids 2 1.3 Physical and Chemical Properties of Ionic Liquids 4 1.4 Applications of Ionic Liquids 7 1.4.1 Industrial-Scale. Simulation Models and Methods 42 4.2.1 Cellulose Crystal 42 4.2.2 Ionic Liquids 44 4.2.3 Cellulose/ Solvent Systems 45 4.3 Results and Discussion 46 4.3.1 Cellulose Crystal 46 4.3.2 Ionic Liquids