Design and preparation of oxygen electrocatalysts for nonaqueous lithium oxygen batteries

179 557 0
Design and preparation of oxygen electrocatalysts for nonaqueous lithium oxygen batteries

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

DESIGN AND PREPARATION OF OXYGEN ELECTROCATALYSTS FOR NONAQUEOUS LITHIUM-OXYGEN BATTERIES Lu Meihua (M. Sci., National University of Singapore) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMICAL and BIOMOLECULAR ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2014 Declartion DECLARATION I hereby declare that the thesis is my original work and it has been written by me in its entirety. I have duly acknowledged all the sources of information which have been used in the thesis. This thesis has also not been submitted for any degree in any university previously. Lu Meihua 13 August 2014 i Acknowledgement   ACKNOWLEDGEMENT First and foremost, my heartfelt thanks and sincere gratitude to my supervisor, Professor Lee Jim Yang for his constant guidance, help, timely advice and continuous encouragement all these years. I appreciate the candor and the many sessions of indepth discussions which have sharpened my thought process. His dedication and enthusiasm for scientific research, his knowledge which is both broad-based and focused, and his stories on the successful integration of ideas across different disciplines, have always been a source of inspiration. I would like to express my sincere thanks to all my friends and colleagues in the research group, in particular, Dr. Xu Chaohe, Dr. Yu Yue, Dr. Ji Ge, Dr. Chen Dongyun, Dr. Qu Jianglan, Dr. Liu Bo, Dr. Zhang Chao, Dr. Fang Chunliu, Dr. Ma Yue, Dr. Zhang Qingbo, Dr. Yang Shiliu, Dr. Li Jinfa, Mr. Ding Bo, Mr. Yao Qiaofeng, Mr. Zhan Yi, Mr. Qu Baihua, Mr. Yang Liuqing, Mr. Jiang Xi, Mr. Chia Zhiwen, Mr. Cheng Chin Hsien, Mr. Bao Ji, and. I thank them for their valuable suggestions and stimulating discussions. I am indebted to the technical staff in the department especially Mr. Boey Kok Hong, Mr. Chia Phai Ann, Dr. Yuan Zeliang, Mr. Mao Ning, Ms. Lee Chai Keng, Mr. Liu Zhicheng, and Ms. Lim Kwee Mei. Their superb technical service and support are essential for the timely completion of this study. Last but not least, I’d like to thank the continuous support from my family members. Without their support and encouragement, this work can not be done. ii Acknowledgement   The financial supports by the way of Research Scholarship from the National University of Singapore (NUS) are greatly acknowledged. iii Table of content  TABLE OF CONTENT DECLARATION . I  ACKNOWLEDGEMENT . II  TABLE OF CONTENT . IV  SUMMARY . VIII  LIST OF TABLES . XI  LIST OF FIGURES .XII  LIST OF SCHEMES XVII  LIST OF ABBREVIATIONS XVIII  CHAPTER 1  INTRODUCTION 1  1. 1  Background 1  1. 2  Objectives and scope 4  CHAPTER 2  LITERATURE REVIEW . 9  2. 1  The dawn of lithium oxygen batteries . 9  2. 2  The components of lithium oxygen batteries and their issues . 11  2.2.1  Major cell configurations of LOBs . 11  2.2.2  Lithium anode . 15  2.2.3  Electrolyte . 16  2.2.3.1  Aprotic Solvent . 16  2.2.3.2  Other solvents . 22  2.2.4  Lithium salts 23  2.2.5  Oxygen cathode . 24  2. 3  Cathode catalysts . 25  2.3.1  Carbon based materials . 26  2.3.2  Noble metals 34  iv Table of content  2.3.3  Transition metal oxides . 37  2.3.4  Redox mediators 47  CHAPTER 3  NITROGEN-DOPED HOLLOW MESOPOROUS CARBON SPHERES FOR THE IMPROVEMENT OF THE CATALYTIC PERFORMANCE OF AuPt NANOPARTICLES IN NON-AQUEOUS LITHIUM OXYGEN BATTERIES . 52  3. 1  Introduction 52  3. 2  Experimental Section . 55  3.2.2  Synthesis the AuPt (1:1)/HMCMS composite: . 56  3.2.3  Materials Characterization: . 56  3. 3  Results and Discussion 58  3.3.1  Morphology and Structures . 58  3.3.2  Full Cell Tests . 64  3. 4  Conclusions 71  CHAPTER 4  EFFECTIVENESS OF Au/Ag NANOCLUSTER-MNO2 NANOWIRE HYBRIDS FOR OXYGEN ELECTROCATALYSIS IN NONAQUEOUS SOLUTION 73  4. 1  Introduction 73  4. 2  Experimental Section . 76  4.2.1  Synthesis of -MnO2 NWs: 76  4.2.2  Synthesis of Au cluster-α-MnO2 NW (Au-MnO2) and Ag cluster-α-MnO2 NW (Ag-MnO2) hybrids: 76  4.2.3  4. 3  Materials Characterization: . 77  Results and Discussion 77  4.3.1  Morphology and Structures . 77  v Table of content  4.3.2  4. 4  Full Cell Tests . 84  Conclusions 93  CHAPTER 5  COBALT OXIDE NANOFLOWER-CARBON NANOTUBE COMPOSITE 94  5. 1  Introduction 94  5. 2  Experimental Section . 97  5.2.1  Synthesis of CoO-CNT hybrid: . 97  5.2.4  Electrochemical Measurements: . 98  5. 3  Results and Discussion 98  5.3.1  Morphology and Structures . 98  5.3.2  Full Cell Tests . 105  5. 4  Conclusions 113  CHAPTER 6  LANTHANUM COABLT OXIDE - REDUCED GRAPHENE OXIDE COMPOSITES 114  6. 1  Introduction 114  6. 2  Experimental Section . 117  6.2.5  6. 3  Materials Characterization: . 119  Results and Discussion 120  6.3.1  Morphology and Structures . 120  6.3.2  Full Cell Tests . 129  6. 4  Conclusions 140  CHAPTER 7  CONCLUSION AND FUTURE WORK . 142  7. 1  Conclusions 142  7. 2  Future Work . 146  vi Table of content  7.2.1  Optimization of mass and charge transport properties of CoO-based catalysts . 146  7.2.2  Substitutes for the commonly-used carbon paper electrode substrate 147  vii Summary  SUMMARY Nonaqueous lithium-oxygen batteries (LOBs) have drawn substantial publicity for nearly two decades primarily because of the lure of an extremely high specific energy which can be used to build large scale electrical energy storage systems (EES). Their theoretical specific energy of 11,680 Wh.kg-1 (based on the weight of lithium only) is comparable to that of gasoline (13,000 Wh.kg-1) and significantly higher than those of the state-of-the-art lithium ion batteries (LIBs). However, the commercialization of LOBs is fraught with many technical challenges such as the instability of the lithium anode, electrolyte decomposition, and the sluggish kinetics of the oxygen cathode. Among them, the slow kinetics of the oxygen reduction reaction (ORR) during discharge and of the oxygen evolution reaction (OER) during recharge is the most critical one. The development of effective oxygen electrocatalysts is the only solution to improve the reaction kinetics at the oxygen electrode. This thesis research presents our designs of oxygen electrocatalysts that could improve the capacity, rate capability, and cycle stability for nonaqueous LOBs. Noble metal alloys, noble metal clusters, simple and complex transition metal oxides (perovskite), and selective carbon nanomaterials (multiwall carbon nanotubes, nitrogenated hollow mesoporous carbon spheres and nitrogenated reduced graphene oxide sheets) were used in various combinations to form hybrid catalytic systems for evaluation in full LOB systems. The results of this thesis research are discussed over chapters. Chapter contains primarily statements of purpose and defines the scope of work. Chapter provides an overview of recent literature relevant to this research. Chapter presents the first viii Summary  composite catalyst for oxygen electrocatalysis in this thesis study - AuPt alloy nanoparticles supported on hollow mesoporous carbon microspheres (AuPt/HMCMS). Electrochemical measurements indicated that this catalyst was able to deliver a high specific capacity of 6000 mAh/g at a relatively high current density of 100 mA/g. A full cell with this catalyst could be cycled steadily to a capacity of 1000 mAh/g at 100 mA/g for 70 cycles. Chapter explores the hitherto unreported use of metal clusters in conjunction with MnO2 as potential oxygen electrocatalysts. The hybrids were in the form of Au clusters on -MnO2 nanowires (Au-MnO2) and Ag clusters on -MnO2 nanowire (Ag-MnO2). The former was the better of the two, which also out-performed MnO2 nanowires without any metal clusters. In fact the Au-MnO2 catalyst was as good as the AuPt/HMCMS catalyst (Chapter 3) in term of capacity and cycling stability in full cell tests. The development of non-noble metal catalyst systems are discussed in Chapter and Chapter 6. Chapter describes the preparation of carbon-coated flowerlike aggregates of cobalt oxide NPs on multiwall carbon nanotubes (CoO-CNT) as a hybrid catalyst. Each CoO NP was coated with thin layer of nitrogenated carbon and the CoO nanoflowers were anchored onto the CNTs to increase the extrinsic conductivity of individual CoO NP and the hybrid. The CoO-CNTs catalyst delivered excellent full cell performance. Morphology examination of the catalyst during discharge and charge explained the effectiveness of the CoO-CNTs system for OER; indicated the effectiveness of the charge transfer property modification. Chapter reports the performance of hybrids of LaCoO3 nanoparticles (LCO) with reduced graphene oxide (rGO) nanosheets. The rGO content was investigated at two levels 7.5wt% and 11.5wt% resulting in two composites designated as LCO-rGO-7.5 and LCO-rGO-11.5 respectively. The LCO-rGO-11.5 catalyst surpassed LCO-rGO-7.5, rGO and LaCoO3 in terms of specific capacity in full cells tests although the LCOix Chapter 6  as a cathode catalyst in nonaqueous LOBs was evaluated. Cells with the composite catalysts generally performed better than cells with pristine rGO or pristine LCO NP aggregates catalysts in term of (higher) capacity, (smaller) voltage gap and (longer) cycling life. Between the two composite catalysts, the LCO-rGO-10.5 catalyst showed higher capacity and better rate performance but the LCO-rGO-7.5 catalyst was better in cyclability (a minimum of 160 cycles vs. 70 cycles). The improvement in battery performance due to the composite catalysts could be attributed to several reasons: a) an increase in extrinsic conductivity due to the presence of rGO nanosheets, which lowered the charge transfer resistance in discharge/charge reactions; b) the encapsulation of LCO NP aggregates in rGO nanosheets inhibited the aggregation of LCO NP aggregates and the aggregation-induced loss of active sites for the oxygen reactions; c) the LCO NP aggregates prevented the restacking of rGO nanosheets. The free volume created as such could accommodate the solid Li2O2 discharge product phase better and also facilitate mass transfer during discharge/charge processes. The higher cycle stability of the LCO-rGO-7.5 composite could be due to the presence of a Co3O4 phase which was not found in the LCO-rGO-10.5 composite. Co3O4 is known to be a competent OER catalyst for LOBs with good capacity retention. Together with the LCO NP aggregates it improved the capacity retention at typical DOD to prolong the cycle life. 141 Chapter 7   CHAPTER CONCLUSION AND FUTURE WORK 7. Conclusions This thesis is an attempt to develop effective catalysts for the oxygen reactions in nonaqueous LOBs. Nonaqueous LOBs are selected for the study because they have the highest theoretical capacity among all variants of LOBs. The use of LOBs (instead of LABs) allows the results to be interpreted without the interference effects from atmospheric impurities such as CO2, N2 and moisture. While the concept of LABs was demonstrated as early as 1996, [3] many of the current catalysts are still afflicted by large overpotentials, low specific capacity, poor rate capability and unstable cyclability. This is primarily because of the accumulation of an insulating discharge reaction product (solid Li2O2) in the oxygen electrode. Therefore the catalyst design, in addition to selecting intrinsically active ORR and OER components; should also contain sufficient porosity to store the discharge product and to facilitate the transport of electrons and ions. In addition, the balance between cost and performance is also an important design consideration. The four catalysts in this study were all designed based on these principles where one or more oxygen electrocatalysts were combined with a conducting porous support with good charge and mass transfer properties. In some cases the catalyst support also provided co-catalyst functions to enhance the overall performance. These four catalysts were: (1) hollow mesoporous carbon microspheres (HMCMS) with AuPt nanoparticles (AuPt/HMCMS) (Chapter 3), (2) hybrids of Au or Ag nanoclusters (NCs) and α-MnO2 nanowires (NWs) (Au-MnO2 and Ag-MnO2) (Chapter 4), (3) carbon-coated flower-like aggregates of CoO NPs on carbon nanotubes (CNTs) (CoO-CNT) (Chapter 5); and (4) aggregates of lanthanum 142 Chapter 7   cobalt oxide NPs wrapped with nitrogenated reduced graphene oxide (rGO) nanosheets (LCO-rGO) (Chapter 6). The major findings of this thesis study are the following: 1. The AuPt/HMCMS composite catalyst was designed primarily to evaluate the effects of catalyst structure and electrical conductivity on cell performance. The composite catalyst has notably improved the capacity, rate performance and cycle stability of un-supported AuPt NP and HMCMS-only catalysts. It also surpassed the performance of the AuPt-Vulcan XC-72 carbon catalyst in recent literature. [8] This study demonstrates that a proficient oxygen electrocatalyst (AuPt) could be improved further by using the HMCMS structure to enhance diffusion in the electrolyte and the transport of charged species. 2. The catalytic activity of noble metals was modified by rendering them as noble metal nanoclusters. Specifically PEDOT-protected Au-MnO2 and Ag-MnO2 hybrids were synthesized for the first time and evaluated as nonaqueous LOB cathode catalysts. -MnO2 NWs, which are the best bifunctional MnOx catalyst for LOB applications [30], were used to immobilize the NCs. The activities of the hybrid catalysts in full cells can be ranked in the following order: Au-MnO2 Ag-MnO2 pristine α-MnO2. This part of the work demonstrates that Au and Ag NCs are effective oxygen catalyst in nonaqueous solution. The method of preparation of NC-catalysts is expected to be translatable to other types of metal NCs. 3. Representative first-row transition metal oxides were then evaluated as low-cost alternatives to the noble metal catalysts. CoO was selected as a model catalyst since 143 Chapter 7   it has shown reasonable ORR/OER activity in nonaqueous LOBs, although its performance to date has been limited by conductivity. The CoO catalyst was synthesized as flower-like aggregates of carbon-coated NPs deposited on CNTs. The use of two carbon nanoforms was deliberate and contributed to improving the extrinsic conductivity of CoO. The CoO-CNT hybrid catalyst prepared as such delivered very good full cell performance (capacity, rate and cycling) relative to CNTs and unsupported CoO NPs (without carbon coating). The performance enhancements could be attributed to the effectiveness of the dual-carbon modification in improving the charge transport property of the catalyst. 4. Aside from binary transition oxides, the effectiveness of multi-metallic oxides in nonaqueous oxygen electrocatalysis was also evaluated (Chapter 6). Specifically aggregates of LCO NPs with the perovskite structure were dispersed in rGO nanosheets and evaluated as oxygen electrocatalysts. The effects of the rGO content were examined at two levels - 7.5wt% and 11.5wt% resulting in two composites designated as LCO-rGO-7.5 and LCO-rGO-11.5 respectively. It was found that the LCO NP aggregates decorated only on one side of the rGO nanosheets in LCOrGO-10.5 composite and on both sides of the rGO nanosheets in the LCO-rGO-7.5 composite. In comparison with pristine rGO nanosheets, pristine LCO NP aggregates and the most proficient perovskite oxide catalyst in the literature, [122, 129] the LCO-rGO-10.5 catalyst surpassed them in capacity and rate performance, while the LCO-rGO-7.5 catalyst suppressed them in cycle stability. 144 Chapter 7   Capacity, rate capability and cycling performance comparisons of the four Table 7.1 catalysts in this study. Catalyst Discharge/charge capacity at 100 mA/g (mAh/g) Voltage gap at a capacity of 1000 mAh/g (V) AuPt/HMCMS 6028/5999 1.18 Au-MnO2 5784/5020 1.25 Ag-MnO2 4890/4812 1.29 CoO-CNT 6794/6548 1.17 LCO-rGO-10.5 5197/4649 1.33 LCO-rGO-7.5 3765/3360 1.46 Capacity reduction at different current densities compared with the capacity at 100 mA/g (%) 5% @200 mA/g; 23% @500 mA/g 33% @200 mA/g; 59% @ 500 mA/g 40% @200 mA/g; 58% @500 mA/g 60% @200 mA/g; 70% @500 mA/g 36% @200 mA/g; 60% @500 mA/g 25% @200 mA/g; 45% @500 mA/g DOD of cycling (mAh/g) Cycle number 1000 75 1000 60 1000 15 1000 98 600 70 600 160 Table 7.1 summarizes the performance of the four catalysts at a glance. Among them the CoO-CNT hybrid catalyst bested the other three catalysts in terms of capacity (highest), OER-ORR voltage gap (lowest) and cycle life at a DOD of 1000 mAh/g (longest). Bearing in mind that pristine CoO has the lowest conductivity; the impressive showing of the CoO-CNT hybrid catalyst indicated the importance of conductivity on catalyst performance. The AuPt/HMCMS composite catalyst, on the other hand, showed the best rate performance among all catalysts, demonstrating the effectiveness of the highly porous catalyst structure on rate performance. The morphology of Li2O2 on the catalyst surface was examined at preset discharge and charge voltages. The morphology of Li2O2 after discharge varied significantly among the four catalysts. The discharge products were more porous, flake- or film-like on the “better” catalysts. It is likely that these morphologies are more conducive to Li+ and 145 Chapter 7   electron transfer in Li2O2, and hence the latter could be decomposed more readily to improve cell performance. We would like to emphasis the empirical basis of this implied causality, more in-depth studies are needed to establish the linkage between Li2O2 morphology, catalyst and cell performance. 7. Future Work This study examined catalysts which were designed to modify the catalyst conductivity (CoO-CNT and Au/Ag NC-MnO2 NW hybrids), the transfer properties (AuPt/HMCMS) or both (LCO-rGO composites). The results indicated that the former is by far the most important to full cell performance. The conductivity modifications in this thesis study were based on carbon-coating of the catalytically active components and by anchoring the latter to an intrinsically conductive matrix (CoO-CNT hybrid and the LCO-rGO composites). Mass transfer properties were also modulated by creating a more porous catalyst structure with storage volume for the discharge product (AuPt/HMCMS). Due to the limit of time, the charge and mass transfer properties of the catalyst were not optimized in the study. The catalyst support and the porous skeleton were all carbon-based materials, and there are doubts about their stability at high voltages. [91] In view of the above, the following activities may be proposed for future work. 7.2.1 Optimization of mass and charge transport properties of CoO-based catalysts Due to time constraints, there was no attempt to optimize the carbon coating on the CoO NPs in the CoO-CNT hybrid catalyst (the “overall-best” catalyst in this project) for conductivity. Since the results of this thesis project suggest conductivity has an 146 Chapter 7   overriding influence on cell performance, it is believed that the performance of the CoO NPs may be enhanced by increasing the quality of the carbon coating. For example the uniformity of the carbon coating may be improved by the selfpolymerization of dopamine; followed by calcination at higher temperatures (700 C). Moreover, a more porous CoO aggregate structure or CoO NPs supported on a porous conducting substrate may also be used to enhance the rate performance of CoO-based catalysts. The cell performance is expected to be significantly enhanced by applying extrinsic conductivity and mass transfer modifications concurrently. 7.2.2 Substitutes for the commonly-used carbon paper electrode substrate There are reports which show that carbon may undergo corrosion at high voltages, especially in the presence of Li2O2. [91] Carbon may also promote electrolyte decomposition during discharge and charge processes, increasing the polarization in the charge process and consequently reducing the cycling performance. More robust electrode materials may be used to replace carbon which is ubiquitously used as the electrode substrate. Conducting oxides such as antimony doped tin oxide (ATO, conducting oxide) can be a potential candidate. It is a low cost material because of the natural abundance of antimony and tin and it has demonstrated high electrochemical stability. ATO aggregates with Ru NPs (ATO-Ru) have been used to form thin film LOB cathodes. [193] The cell performance was not satisfactory because the ATO-Ru film was not as porous as the common carbon substrate. A possible solution is to use porous ATO nanofibers as the electrode substrate. The ATO nanofibers can be pressed into pellets to imitate a carbon electrode formed from carbon nanofibers. Different catalysts can then be loaded onto the porous ATO pellets to enhance the cathode performance. 147 References   REFERENCES [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] P. G. Bruce, S. A. Freunberger, L. J. Hardwick, J.-M. Tarascon, Nature Materials 2012, 11, 19. D. Capsoni, M. Bini, S. Ferrari, E. Quartarone, P. Mustarelli, Journal of Power Sources 2012, 220, 253. K. M. Abraham, Z. Jiang, Journal of the Electrochemical Society 1996, 143, 1. T. Ogasawara, A. Debart, M. Holzapfel, P. Novak, P. G. Bruce, Journal of the American Chemical Society 2006, 128, 1390. X.-h. Yang, P. He, Y.-y. Xia, Electrochemistry Communications 2009, 11, 1127. H. G. Jung, Y. S. Jeong, J. B. Park, Y. K. Sun, B. Scrosati, Y. J. Lee, ACS Nano 2013, 7, 3532. J. Lu, Y. Lei, K. C. Lau, X. Luo, P. Du, J. Wen, R. S. Assary, U. Das, D. J. Miller, J. W. Elam, H. M. Albishri, D. A. El-Hady, Y. K. Sun, L. A. Curtiss, K. Amine, Nature Communications 2013, 4, 2383. Y. C. Lu, Z. Xu, H. A. Gasteiger, S. Chen, K. Hamad-Schifferli, Y. Shao-Horn, Journal of the American Chemical Society 2010, 132, 12170. Y. Yang, Q. Sun, Y. S. Li, H. Li, Z. W. Fu, Journal of Power Sources 2013, 223, 312. Y. Lei, J. Lu, X. Luo, T. Wu, P. Du, X. Zhang, Y. Ren, J. Wen, D. J. Miller, J. T. Miller, Y. K. Sun, J. W. Elam, K. Amine, Nano Letters 2013, 13, 4182. G. Zhao, Z. Xu, K. Sun, Journal of Materials Chemistry A 2013, 1, 12862. T. F. Hung, S. G. Mohamed, C. C. Shen, Y. Q. Tsai, W. S. Chang, R. S. Liu, Nanoscale 2013, 5, 12115. J.-H. Lee, R. Black, G. Popov, E. Pomerantseva, F. Nan, G. A. Botton, L. F. Nazar, Energy & Environmental Science 2012, 5, 9558. Z. Liu, S. W. Tay, X. Li, Chemical Communications 2011. B. Sun, J. Zhang, P. Munroe, H.-J. Ahn, G. Wang, Electrochemistry Communications 2013, 31, 88. L. Wang, X. Zhao, Y. Lu, M. Xu, D. Zhang, R. S. Ruoff, K. J. Stevenson, J. B. Goodenough, Journal of The Electrochemical Society 2011, 158, A1379. L. Zhang, S. Zhang, K. Zhang, G. Xu, X. He, S. Dong, Z. Liu, C. Huang, L. Gu, G. Cui, Chemical Communications 2013, 49, 3540. Y. Chen, F. Li, D.-M. Tang, Z. Jian, C. Liu, D. Golberg, A. Yamada, H. Zhou, Journal of Materials Chemistry A 2013, 1, 13076. V. Etacheri, D. Sharon, A. Garsuch, M. Afri, A. A. Frimer, D. Aurbach, Journal of Materials Chemistry A 2013, 1, 5021. P. Kichambare, J. Kumar, S. Rodrigues, B. Kumar, Journal of Power Sources 2011, 196, 3310. Y. Li, J. Wang, X. Li, D. Geng, R. Li, X. Sun, Chemical Communications 2011, 47, 9438. Y. Li, J. Wang, X. Li, J. Liu, D. Geng, J. Yang, R. Li, X. Sun, Electrochemistry Communications 2011, 13, 668. H. Nie, H. Zhang, Y. Zhang, T. Liu, J. Li, Q. Lai, Nanoscale 2013, 5, 8484. F. Li, R. Ohnishi, Y. Yamada, J. Kubota, K. Domen, A. Yamada, H. Zhou, Chemical Communications 2013, 49, 1175. M. Olivares-Marín, P. Palomino, J. M. Amarilla, E. Enciso, D. Tonti, Journal of Materials Chemistry A 2013, 1, 14270. 148 References   [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] S. Dong, X. Chen, K. Zhang, L. Gu, L. Zhang, X. Zhou, L. Li, Z. Liu, P. Han, H. Xu, J. Yao, C. Zhang, X. Zhang, C. Shang, G. Cui, L. Chen, Chemical Communications 2011, 47, 11291. G. Li, R. Jin, Accounts of Chemical Research 2013, 46, 1749. H. Yin, H. Tang, D. Wang, Y. Gao, Z. Tang, ACS Nano 2012, 6, 8288. W. Chen, S. Chen, Angewandte Chemie International Edition 2009, 48, 4386. A. Debart, A. J. Paterson, J. Bao, P. G. Bruce, Angewandte Chemie International Edition 2008, 47, 4521. J.-S. Lee, S. Tai Kim, R. Cao, N.-S. Choi, M. Liu, K. T. Lee, J. Cho, Advanced Energy Materials 2011, 1, 34. J. Read, Journal of The Electrochemical Society 2002, 149, A1190. J. Read, K. Mutolo, M. Ervin, W. Behl, J. Wolfenstine, A. Driedger, D. Foster, Journal of The Electrochemical Society 2003, 150, A1351. J. Read, Journal of The Electrochemical Society 2006, 153, A96. Y.-C. Lu, H. A. Gasteiger, M. C. Parent, V. Chiloyan, Y. Shao-Horn, Electrochemical and Solid-State Letters 2010, 13, A69. S. J. Visco, B. D. Katz, Y. S. Nimon, L. C. De Jonghe, Google Patents, 2007. J. P. Zheng, R. Y. Liang, M. Hendrickson, E. J. Plichta, Journal of The Electrochemical Society 2008, 155, A432. R. S. Assary, J. Lu, P. Du, X. Luo, X. Zhang, Y. Ren, L. A. Curtiss, K. Amine, ChemSusChem 2013, 6, 51. J. Hassoun, H. G. Jung, D. J. Lee, J. B. Park, K. Amine, Y. K. Sun, B. Scrosati, Nano Letters 2012, 12, 5775. K. Xu, Chemical Reviews 2004, 104, 4303. F. Mizuno, S. Nakanishi, Y. Kotani, S. Yokoishi, H. Iba, Electrochemistry 2010, 78, 403. W. Xu, K. Xu, V. V. Viswanathan, S. A. Towne, J. S. Hardy, J. Xiao, Z. Nie, D. Hu, D. Wang, J.-G. Zhang, Journal of Power Sources 2011, 196, 9631. S. A. Freunberger, Y. Chen, Z. Peng, J. M. Griffin, L. J. Hardwick, F. Barde, P. Novak, P. G. Bruce, Journal of the American Chemical Society 2011, 133, 8040. B. D. McCloskey, D. S. Bethune, R. M. Shelby, G. Girishkumar, A. C. Luntz, The Journal of Physical Chemistry Letters 2011, 2, 1161. J. Xiao, J. Hu, D. Wang, D. Hu, W. Xu, G. L. Graff, Z. Nie, J. Liu, J.-G. Zhang, Journal of Power Sources 2011, 196, 5674. W. Xu, V. V. Viswanathan, D. Wang, S. A. Towne, J. Xiao, Z. Nie, D. Hu, J.G. Zhang, Journal of Power Sources 2011, 196, 3894. V. S. Bryantsev, J. Uddin, V. Giordani, W. Walker, D. Addison, G. V. Chase, Journal of the Electrochemical Society 2012, 160, A160. T. Kuboki, T. Okuyama, T. Ohsaki, N. Takami, Journal of Power Sources 2005, 146, 766. D. Xu, Z. L. Wang, J. J. Xu, L. L. Zhang, X. B. Zhang, Chemical Communications 2012, 48, 6948. S. S. Zhang, J. Read, Journal of Power Sources 2011, 196, 2867. J. Xu, H. Ye, Electrochemistry Communications 2005, 7, 829. H. D. Lim, K. Y. Park, H. Gwon, J. Hong, H. Kim, K. Kang, Chemical Communications 2012, 48, 8374. V. S. Bryantsev, V. Giordani, W. Walker, M. Blanco, S. Zecevic, K. Sasaki, J. Uddin, D. Addison, G. V. Chase, The Journal of Physical Chemistry A 2011, 115, 12399. 149 References   [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] V. S. Bryantsev, Chemical Physics Letters 2013, 558, 42. W. Walker, V. Giordani, J. Uddin, V. S. Bryantsev, G. V. Chase, D. Addison, Journal of the American Chemical Society 2013, 135, 2076. C. O. Laoire, S. Mukerjee, E. J. Plichta, M. A. Hendrickson, K. M. Abraham, Journal of The Electrochemical Society 2011, 158, A302. X. Zhang, L. Wang, Chemical Communications 2012. L. Cecchetto, M. Salomon, B. Scrosati, F. Croce, Journal of Power Sources 2012, 213, 233. J. P. Zheng, P. Andrei, M. Hendrickson, E. J. Plichta, Journal of The Electrochemical Society 2011, 158, A43. R. Black, S. H. Oh, J. H. Lee, T. Yim, B. Adams, L. F. Nazar, Journal of the American Chemical Society 2012, 134, 2902. S. A. Freunberger, Y. Chen, N. E. Drewett, L. J. Hardwick, F. Bardé, P. G. Bruce, Angewandte Chemie International Edition 2011, 50, 8609. H. G. Jung, J. Hassoun, J. B. Park, Y. K. Sun, B. Scrosati, Nature Chemistry 2012, 4, 579. M. J. Trahan, S. Mukerjee, E. J. Plichta, M. A. Hendrickson, K. M. Abraham, Journal of the Electrochemical Society 2013, 160, A259. F. Li, H. Kitaura, H. Zhou, Energy & Environmental Science 2013, 6, 2302. Y. Lu, S. K. Das, S. S. Moganty, L. A. Archer, Advanced Materials 2012, 24, 4430. Z. H. Cui, W. G. Fan, X. X. Guo, Journal of Power Sources 2013, 235, 251. E. Nasybulin, W. Xu, M. H. Engelhard, Z. Nie, S. D. Burton, L. Cosimbescu, M. E. Gross, J.-G. Zhang, The Journal of Physical Chemistry C 2013, 117, 2635. T. Zhang, H. Zhou, Nature Communications 2013, 4, 1817. B. O. Jeong, S. W. Kwon, T. J. Kim, E. H. Lee, S. H. Jeong, Y. Jung, Journal of Nanoscience and Nanotechnology 2013, 13, 7870. G. Q. Zhang, J. P. Zheng, R. Liang, C. Zhang, B. Wang, M. Hendrickson, E. J. Plichta, Journal of The Electrochemical Society 2010, 157, A953. H. Kitaura, H. Zhou, Advanced Energy Materials 2012, 2, 889. Y. Cui, Z. Wen, X. Liang, Y. Lu, J. Jin, M. Wu, X. Wu, Energy & Environmental Science 2012, 5, 7893. R. R. Mitchell, B. M. Gallant, C. V. Thompson, Y. Shao-Horn, Energy & Environmental Science 2011, 4, 2952. S. Liu, Z. Wang, C. Yu, Z. Zhao, X. Fan, Z. Ling, J. Qiu, Journal of Materials Chemistry A 2013, 1, 12033. H. D. Lim, K. Y. Park, H. Song, E. Y. Jang, H. Gwon, J. Kim, Y. H. Kim, M. D. Lima, R. Ovalle Robles, X. Lepro, R. H. Baughman, K. Kang, Advanced Materials 2013, 25, 1348. J. Xiao, D. Mei, X. Li, W. Xu, D. Wang, G. L. Graff, W. D. Bennett, Z. Nie, L. V. Saraf, I. A. Aksay, J. Liu, J. G. Zhang, Nano Letters 2011, 11, 5071. E. Yoo, H. Zhou, ACS Nano 2011, 5, 3020. W. Zhang, J. Zhu, H. Ang, Y. Zeng, N. Xiao, Y. Gao, W. Liu, H. H. Hng, Q. Yan, Nanoscale 2013, 5, 9651. Z.-L. Wang, D. Xu, J.-J. Xu, L.-L. Zhang, X.-B. Zhang, Advanced Functional Materials 2012, 22, 3699. M. Mirzaeian, P. J. Hall, Electrochimica Acta 2009, 54, 7444. S. B. Ma, D. J. Lee, V. Roev, D. Im, S.-G. Doo, Journal of Power Sources 2013, 244, 494. 150 References   [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] Z. Y. Guo, D. D. Zhou, X. L. Dong, Z. J. Qiu, Y. G. Wang, Y. Y. Xia, Advanced Materials 2013, 25, 5668. Y. Yang, Q. Sun, Y.-S. Li, H. Li, Z.-W. Fu, Journal of The Electrochemical Society 2011, 158, B1211. G. O. Shitta-Bey, M. Mirzaeian, P. J. Hall, Journal of the Electrochemical Society 2012, 159, A315. M. Marinaro, S. K. Eswara Moorthy, J. Bernhard, L. Jorissen, M. WohlfahrtMehrens, U. Kaiser, Beilstein Journal of Nanotechnology 2013, 4, 665. Y. Zhang, H. Zhang, J. Li, M. Wang, H. Nie, F. Zhang, Journal of Power Sources 2013, 240, 390. J. B. Park, J. Lee, C. S. Yoon, Y. K. Sun, ACS Applied Mater Interfaces 2013, 5, 13426. J. Li, H. Zhang, Y. Zhang, M. Wang, F. Zhang, H. Nie, Nanoscale 2013, 5, 4647. X. Lin, L. Zhou, T. Huang, A. Yu, Journal of Materials Chemistry A 2013, 1, 1239. R. Mi, H. Liu, H. Wang, K.-W. Wong, J. Mei, Y. Chen, W.-M. Lau, H. Yan, Carbon 2014, 67, 744. M. M. Ottakam Thotiyl, S. A. Freunberger, Z. Peng, P. G. Bruce, Journal of the American Chemical Society 2013, 135, 494. Y. Shen, D. Sun, L. Yu, W. Zhang, Y. Shang, H. Tang, J. Wu, A. Cao, Y. Huang, Carbon 2013, 62, 288. D. Zhu, L. Zhang, M. Song, X. Wang, Y. Chen, chemical communications 2013, 49, 9573. D. Oh, J. F. Qi, Y. C. Lu, Y. Zhang, Y. Shao-Horn, A. M. Belcher, Nature Communications 2013, 4, 8. W. Fan, X. Guo, D. Xiao, L. Gu, The Journal of Physical Chemistry C 2014, 118, 7344. B. Sun, P. Munroe, G. Wang, Scientific Reports 2013, 3, 2247. F. J. Li, Y. Chen, D. M. Tang, Z. L. Jian, C. Liu, D. Golberg, A. Yamada, H. S. Zhou, Energy & Environmental Science 2014, 7, 1648. E. Yilmaz, C. Yogi, K. Yamanaka, T. Ohta, H. R. Byon, Nano Letters 2013, 13, 4679. D. Su, H.-S. Kim, W.-S. Kim, G. Wang, Journal of Power Sources 2013, 244, 488. A. K. Thapa, Y. Hidaka, H. Hagiwara, S. Ida, T. Ishihara, Journal of The Electrochemical Society 2011, 158, A1483. A. K. Thapa, T. Ishihara, Journal of Power Sources 2011, 196, 7016. G. Q. Zhang, J. P. Zheng, R. Liang, C. Zhang, B. Wang, M. Au, M. Hendrickson, E. J. Plichta, Journal of The Electrochemical Society 2011, 158, A822. Y. Cao, Z. Wei, J. He, J. Zang, Q. Zhang, M. Zheng, Q. Dong, Energy & Environmental Science 2012, 5, 9765. T. T. Truong, Y. Liu, Y. Ren, L. Trahey, Y. Sun, ACS Nano 2012, 6, 8067. Y. Qin, J. Lu, P. Du, Z. Chen, Y. Ren, T. Wu, J. T. Miller, J. Wen, D. J. Miller, Z. Zhang, K. Amine, Energy & Environmental Science 2013, 6, 519. A. Zahoor, H. S. Jang, J. S. Jeong, M. Christy, Y. J. Hwang, K. S. Nahm, RSC Advances 2014, 4, 8973. M. Zhang, Q. Xu, L. Sang, F. Ding, X.-j. Liu, L.-f. Jiao, Transactions of Nonferrous Metals Society of China 2014, 24, 164. 151 References   [108] A. K. Thapa, K. Saimen, T. Ishihara, Electrochemical and Solid-State Letters 2010, 13, A165. [109] L. Zhang, X. Zhang, Z. Wang, J. Xu, D. Xu, L. Wang, Chemical Communications 2012, 48, 7598. [110] A. Débart, J. Bao, G. Armstrong, P. G. Bruce, Journal of Power Sources 2007, 174, 1177. [111] R. Black, J. H. Lee, B. Adams, C. A. Mims, L. F. Nazar, Angewandte Chemie International Edition 2013, 52, 392. [112] A. Riaz, K. N. Jung, W. Chang, S. B. Lee, T. H. Lim, S. J. Park, R. H. Song, S. Yoon, K. H. Shin, J. W. Lee, Chemical Communications 2013, 49, 5984. [113] H.-D. Lim, H. Gwon, H. Kim, S.-W. Kim, T. Yoon, J. W. Choi, S. M. Oh, K. Kang, Electrochimica Acta 2013, 90, 63. [114] Y. Cui, Z. Wen, Y. Liu, Energy & Environmental Science 2011, 4, 4727. [115] Q. C. Liu, J. J. Xu, Z. W. Chang, X. B. Zhang, Journal of Materials Chemistry A 2014, 2, 6081. [116] C. S. Park, K. S. Kim, Y. J. Park, Journal of Power Sources 2013, 244, 72. [117] B. Sun, H. Liu, P. Munroe, H. Ahn, G. X. Wang, Nano Research 2012, 5, 460. [118] Y. M. Cui, Z. Y. Wen, S. J. Sun, Y. Lu, J. Jin, Solid State Ionics 2012, 225, 598. [119] W. Zhang, Y. Zeng, C. Xu, H. Tan, W. Liu, J. Zhu, N. Xiao, H. H. Hng, J. Ma, H. E. Hoster, R. Yazami, Q. Yan, RSC Advances 2012, 2, 8508. [120] G. Zhao, L. Zhang, T. Pan, K. Sun, Journal of Solid State Electrochemistry 2013, 17, 1759. [121] S. H. Lim, D. H. Kim, J. Y. Byun, B. K. Kim, W. Y. Yoon, Electrochimica Acta 2013, 107, 681. [122] J.-J. Xu, Z.-L. Wang, D. Xu, F.-Z. Meng, X.-B. Zhang, Energy & Environmental Science 2014, 7, 2213. [123] M. Yuasa, T. Matsuyoshi, T. Kida, K. Shimanoe, Journal of Power Sources 2013, 242, 216. [124] Y. Zhao, L. Xu, L. Mai, C. Han, Q. An, X. Xu, X. Liu, Q. Zhang, Proceedings of the National Academy of Sciences of the United States of America 2012, 109, 19569. [125] R. S. Kalubarme, G.-E. Park, K.-N. Jung, K.-H. Shin, W.-H. Ryu, C.-J. Park, Journal of The Electrochemical Society 2014, 161, A880. [126] T. Takeguchi, T. Yamanaka, H. Takahashi, H. Watanabe, T. Kuroki, H. Nakanishi, Y. Orikasa, Y. Uchimoto, H. Takano, N. Ohguri, M. Matsuda, T. Murota, K. Uosaki, W. Ueda, Journal of the American Chemical Society 2013, 135, 11125. [127] X. Han, Y. Hu, J. Yang, F. Cheng, J. Chen, Chemical Communications 2014, 50, 1497. [128] K.-N. Jung, J.-I. Lee, W. B. Im, S. Yoon, K.-H. Shin, J.-W. Lee, Chemical Communications 2012, 48, 9406. [129] J. J. Xu, D. Xu, Z. L. Wang, H. G. Wang, L. L. Zhang, X. B. Zhang, Angewandte Chemie International Edition 2013, 52, 3887. [130] S. C. Ma, L. Q. Sun, L. N. Cong, X. G. Gao, C. Yao, X. Guo, L. H. Tai, P. Mei, Y. P. Zeng, H. M. Xie, R. S. Wang, Journal of Physical Chemistry C 2013, 117, 25890. [131] H. L. Wang, Y. Yang, Y. Y. Liang, G. Y. Zheng, Y. G. Li, Y. Cui, H. J. Dai, Energy & Environmental Science 2012, 5, 7931. 152 References   [132] Y. Li, L. L. Zou, J. Li, K. Guo, X. W. Dong, X. W. Li, X. Z. Xue, H. F. Zhang, H. Yang, Electrochimica Acta 2014, 129, 14. [133] S. H. Oh, R. Black, E. Pomerantseva, J.-H. Lee, L. F. Nazar, Nature Chemistry 2012, 4, 1004. [134] C. Jin, Z. B. Yang, X. C. Cao, F. L. Lu, R. Z. Yang, International Journal of Hydrogen Energy 2014, 39, 2526. [135] S. H. Oh, L. F. Nazar, Advanced Energy Materials 2012, 2, 903. [136] H. D. Lim, H. Song, J. Kim, H. Gwon, Y. Bae, K. Y. Park, J. Hong, H. Kim, T. Kim, Y. H. Kim, X. Lepro, R. Ovalle-Robles, R. H. Baughman, K. Kang, Angewandte Chemie International Edition 2014, 53, 3926. [137] Y. Chen, S. A. Freunberger, Z. Peng, O. Fontaine, P. G. Bruce, Nature Chemistry 2013,5,489. [138] Z. Peng, S. A. Freunberger, Y. Chen, P. G. Bruce, Science 2012, 337, 563. [139] B. Sun, X. Huang, S. Chen, P. Munroe, G. Wang, Nano Letters 2014, 14, 3145. [140] Y. L. Li, J. J. Wang, X. F. Li, J. Liu, D. S. Geng, J. L. Yang, R. Y. Li, X. L. Sun, Electrochemistry Communications 2011, 13, 668. [141] K. N. Wood, R. O'Hayre, S. Pylypenko, Energy & Environmental Science 2014, 7, 1212. [142] H. Liu, Y. Xing, Electrochemistry Communications 2011, 13, 646. [143] Z. Jian, P. Liu, F. Li, P. He, X. Guo, M. Chen, H. Zhou, Angewandte Chemie International Edition2014, 53, 442. [144] J. Sun, J. Zhang, M. Zhang, M. Antonietti, X. Fu, X. Wang, Nature Communications 2012, 1139. [145] C. Xiao, X. Chu, Y. Yang, X. Li, X. Zhang, J. Chen, Biosensors and Bioelectronics 2011, 26, 2934. [146] A. S. M. Darling, R. A.; Chaston, J. C., Journal of the Institute of Metals. 1953, 18, 125. [147] B. J. Schultz, R. V. Dennis, J. P. Aldinger, C. Jaye, X. Wang, D. A. Fischer, A. N. Cartwright, S. Banerjee, RSC Advances 2014, 4, 634. [148] Y. Liang, H. Wang, J. Zhou, Y. Li, J. Wang, T. Regier, H. Dai, Journal of the American Chemical Society 2012, 134, 3517. [149] C. Xu, M. Tian, L. Liu, H. Zou, L. Zhang, W. Wang, Journal of The Electrochemical Society 2012, 159, D217. [150] D. Zhai, H. H. Wang, J. Yang, K. C. Lau, K. Li, K. Amine, L. A. Curtiss, Journal of the American Chemical Society 2013, 135, 15364. [151] C. Jeyabharathi, S. S. Kumar, G. V. Kiruthika, K. L. Phani, Angewandte Chemie International Edition 2010, 49, 2925. [152] Y. Negishi, M. Mizuno, M. Hirayama, M. Omatoi, T. Takayama, A. Iwase, A. Kudo, Nanoscale 2013, 5, 7188. [153] Y. Z. Lu, W. Chen, Journal of Power Sources 2012, 197, 107. [154] M. S. El-Deab, T. Ohsaka, Journal of the Electrochemical Society 2006, 153, A1365. [155] A. Longo, L. F. Liotta, G. D. Carlo, F. Giannici, A. M. Venezia, A. Martorana, Chemistry of Materials 2010, 22, 3952. [156] Y. Gorlin, C. J. Chung, J. D. Benck, D. Nordlund, L. Seitz, T. C. Weng, D. Sokaras, B. M. Clemens, T. F. Jaramillo, Journal of the American Chemical Society 2014, 136, 4920. [157] F. W. T. Goh, Z. L. Liu, X. M. Ge, Y. Zong, G. J. Du, T. S. A. Hor, Electrochimica Acta 2013, 114, 598. 153 References   [158] Q. E. Tang, L. H. Jiang, J. Qi, Q. Jiang, S. L. Wang, G. Q. Sun, Applied Catalysis B-Environmental 2011, 104, 337. [159] X. Wang, Y. Li, Journal of the American Chemical Society 2002, 124, 2880. [160] J. Y. Hong, S. Huh, Journal of Colloid and Interface Science 2014, 418, 360. [161] S. S. Kumar, C. S. Kumar, J. Mathiyarasu, K. L. Phani, Langmuir 2007, 23, 3401. [162] Q. F. Yao, Y. Yu, X. Yuan, Y. Yu, J. P. Xie, J. Y. Lee, Small 2013, 9, 2696. [163] M. S. Bootharaju, T. Pradeep, Langmuir 2011, 27, 8134. [164] X. Yuan, T. J. Yeow, Q. B. Zhang, J. Y. Lee, J. P. Xie, Nanoscale 2012, 4, 1968. [165] L. Jin, L. Xu, C. Morein, C.-h. Chen, M. Lai, S. Dharmarathna, A. Dobley, S. L. Suib, Advanced Functional Materials 2010, 20, 3373. [166] W. Yang, J. Salim, C. Ma, Z. Ma, C. Sun, J. Li, L. Chen, Y. Kim, Electrochemistry Communications 2013, 28, 13. [167] K.-N. Jung, A. Riaz, S.-B. Lee, T.-H. Lim, S.-J. Park, R.-H. Song, S. Yoon, K.H. Shin, J.-W. Lee, Journal of Power Sources 2013, 244, 328. [168] J. Xiao, D. Wang, W. Xu, D. Wang, R. E. Williford, J. Liu, J.-G. Zhang, Journal of The Electrochemical Society 2010, 157, A487. [169] X. J. Lin, X. Lu, T. Huang, Z. L. Liu, A. S. Yu, Journal of Power Sources 2013, 242, 855. [170] H. Wang, K. Xie, L. Y. Wang, Y. Han, Rsc Advances 2013, 3, 8236. [171] M. A. Correa-Duarte, A. Kosiorek, W. Kandulski, M. Giersig, L. M. LizMarzán, Chemistry of Materials 2005, 17, 3268. [172] Y. Liang, H. Wang, P. Diao, W. Chang, G. Hong, Y. Li, M. Gong, L. Xie, J. Zhou, J. Wang, T. Z. Regier, F. Wei, H. Dai, Journal of the American Chemical Society 2012, 134, 15849. [173] T. A. Saleh, Applied Surface Science 2011, 257, 7746. [174] S. C. Petitto, E. M. Marsh, G. A. Carson, M. A. Langell, Journal of Molecular Catalysis A: Chemical 2008, 281, 49. [175] T. Ramanathan, F. T. Fisher, R. S. Ruoff, L. C. Brinson, Chemistry of Materials 2005, 17, 1290. [176] Z. H. Zhang, M. H. Lu, H. R. Xu, W. S. Chin, Chemistry-a European Journal 2007, 13, 632. [177] Z. R. Ismagilov, A. E. Shalagina, O. Y. Podyacheva, A. V. Ischenko, L. S. Kibis, A. I. Boronin, Y. A. Chesalov, D. I. Kochubey, A. I. Romanenko, O. B. Anikeeva, T. I. Buryakov, E. N. Tkachev, Carbon 2009, 47, 1922. [178] J. J. Xu, Z. L. Wang, D. Xu, L. L. Zhang, X. B. Zhang, Nature Communications. 2013, 4, 2438. [179] R. R. Mitchell, B. M. Gallant, Y. Shao-Horn, C. V. Thompson, The Journal of Physical Chemistry Letters 2013, 4, 1060. [180] Y. Hu, X. Han, F. Cheng, Q. Zhao, Z. Hu, JOURNAL Chen, Nanoscale 2014, 6, 177. [181] H. Cheng, K. Scott, Journal of Power Sources 2010, 195, 1370. [182] J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, Y. Shao-Horn, Science 2011, 334, 1383. [183] J. Suntivich, H. A. Gasteiger, N. Yabuuchi, H. Nakanishi, J. B. Goodenough, Y. Shao-Horn, Nature Chemistry 2011, 3, 546. [184] W. Zhou, J. Zhu, C. Cheng, J. Liu, H. Yang, C. Cong, C. Guan, X. Jia, H. J. Fan, Q. Yan, C. M. Li, T. Yu, Energy & Environmental Science 2011, 4, 4954. [185] C. Su, K. P. Loh, Accounts of Chemical Research 2013, 46, 2275. 154 References   [186] G. Ji, B. Ding, Z. Sha, J. S. Wu, Y. Ma, J. Y. Lee, Nanoscale 2013, 5, 5965. [187] L. Yu, Y. Shen, Y. Huang, Journal of Alloys and Compounds 2014, 595, 185. [188] N. Jung, S. Kwon, D. Lee, D. M. Yoon, Y. M. Park, A. Benayad, J. Y. Choi, J. S. Park, Advance Materials 2013, 25, 6854. [189] B. D. Adams, C. Radtke, R. Black, M. L. Trudeau, K. Zaghib, L. F. Nazar, Energy & Environmental Science 2013, 6, 1772. [190] Y.-C. Lu, Y. Shao-Horn, The Journal of Physical Chemistry Letters 2013, 4, 93. [191] B. M. Gallant, R. R. Mitchell, D. G. Kwabi, J. Zhou, L. Zuin, C. V. Thompson, Y. Shao-Horn, The Journal of Physical Chemistry C 2012, 116, 20800. [192] Y.-C. Lu, B. M. Gallant, D. G. Kwabi, J. R. Harding, R. R. Mitchell, M. S. Whittingham, Y. Shao-Horn, Energy & Environmental Science 2013, 6, 750. [193] F. Li, D. M. Tang, Z. Jian, D. Liu, D. Golberg, A. Yamada, H. Zhou, Advance Materials 2014, 26, 4659. 155 Publications   Publications Xu, C. H.; Lu, M. H.; Zhan, Y.; Lee, J. Y. A Bifunctional Oxygen Electrocatalyst from Coupling Monodisperse MnCo2O4 Nanoparticles to Nitrogen enriched Carbon Nanofibers RSC Advances (accepted) Qu, J. L.; Lu, M. H.; Xu, C. H.; Ding, B.; Zhan, Y.; Yang, J.; Lee, J. Y. Oxide-onMetal as an Inverted Design of Oxygen Electrocatalysts for Non-aqueous Li-O2 Batteries Nanoscale (minor revision) Zhan, Y.; Xu, C. H.; Lu, M. H.; Liu, Z. L.; Lee, J. Y. Mn and Co co-substituted Fe3O4 nanoparticles on nitrogen-doped reduced graphene oxide for oxygen electrocatalysis in alkaline solution Journal of Materials Chemistry A (accepted) 156 [...]... SEM of MMCSAs; (c)-(d) TEM of MMCSAs [82] 31  Figure 2.12  (a) Discharge curves of Li–O2 batteries at a current density of 50 mA/g with different wt% of MMCSAs in the cathode catalyst makeup: a) 0, b) 5, c) 10, d) 30, e) 50, and f) 80 wt%.; (b) cycling performance of Li–O2 batteries at 250 mA/g for a DOD of 1000 mA/g using a cathode catalyst of 30 wt% MMCSAs and (c) discharge/charge curves of a... preparation of Au-MnO2 hybrid 77 Scheme 6.1 Schematic for the synthesis of LCO-rGO composites 120 xvii List of abbreviations    LIST OF ABBREVIATIONS LOBs Lithium oxygen batteries LABS Lithium air batteries EES Electrical storage systems LIBs Lithium ion batteries ORR Oxygen reduction reaction OER Oxygen evolution reaction Li Lithium O2 Oxygen Au Gold HMCMS Hollow mesoporous carbon microspheres... reaction (ORR) and the oxygen evolution reaction (OER) on the cathode is a most serious issue since it can severely undermine the capacity, rate performance and cycle stability of the batteries The slow kinetics can only be avoided with the use of effective catalysts The design and preparation of oxygen electrocatalysts has therefore become a central research activity in the development of LOBs, which... specific energy of lithium- based rechargeable batteries can be obtained with the use of lithium metal as the anode, and a very light weight cathode material The lithium air batteries (LABs) especially the nonaqueous LABs epitomize such an approach The theoretical specific energy of LABs is extremely high (11,680 Wh/kg based on lithium only) and comparable to that of gasoline (13,000 Wh/kg) and Jiang in... components of LOBs in some detail and their issues The third section reviews the current progress in cathode catalysts for LOBs central to this thesis research 2 1 The dawn of lithium oxygen batteries Lithium oxygen batteries were first demonstrated by Abraham and Jiang in 1996 [3] Their ultrahigh specific energy (both theoretical and projected practical) is the most luring feature for EVs and HEVs (hybrid... b) Electrochemical curves and c) cyclability and the end of charge and end -of- discharge voltages of CNT fibril electrode with LiI catalyst d) Cyclability of CNT fibril electrode in the presence of LiI catalyst at a DOD of 3000 mAh/g [136] 50  Figure 3.4  Nitrogen adsorption−desorption isotherms of (a) HMCMS and (c) AuPt/HMCMS composite Pore size distributions of (b) HMCMS and (d) AuPt/HMCMS composite... actually lithium oxygen batteries (LOBs) There are many challenges in the implementation of the LOB technology: the long-term stability of the lithium anode, electrolyte stability to superoxide radical anions (  , an oxygen reduction intermediate product); Li+ selective separators; and 2 improvement of the kinetics of cathode reactions Among them the sluggish kinetics of oxygen reactions such as the oxygen. .. XPS spectra (a) Survey scans of the CoO-CNT hybrid, CoO and CNTs; (b) CoO-CNT and CoO in the Co 2p region and (c) the N 1s region of CoO-CNT, CoO and CNTs 104  Figure 5.8  Frist cycle discharge-charge profiles of (A) CoO-CNT hybrid and (B) CoO particles and (C) CNTs at current density of 100 mA/g 105  Figure 5.9  Charge-discharge profiles of cells with the CoO-CNT hybrid as cathode catalyst... cycling performance The thesis ends with some overall concluding remarks and suggestions for future work in Chapter 7 x List of tables  LIST OF TABLES Table 2.1.  Comparison of the electrochemical performance of the MnO2-based electrodes in LOBs 39  Table 2.2.  Comparison of the electrochemical performance of cobalt oxide-based electrodes in LOBs 42  Table 2.3.  Comparison of the electrochemical... configurations for LOBs [31] 11  Figure 2.3  Proposed reactions between carbonate solvents and oxygen species to explain the various compounds detected in discharge: Li propyl dicarbonate, Li formate, Li acetate, Li2CO3, CO2, and H2O [43] 18  Figure 2.6  (a) First cycle of discharge and charge of the Li–O2 battery with a MWCNTP cathode at 500 mAh/g between 2.3 and 4.6 V and (b) 50 cycles of discharge and . DESIGN AND PREPARATION OF OXYGEN ELECTROCATALYSTS FOR NONAQUEOUS LITHIUM -OXYGEN BATTERIES Lu Meihua (M. Sci., National University of Singapore) A THESIS SUBMITTED FOR THE. Background 1 1. 2 Objectives and scope 4 CHAPTER 2 LITERATURE REVIEW 9 2. 1 The dawn of lithium oxygen batteries 9 2. 2 The components of lithium oxygen batteries and their issues 11 2.2.1.  LIST OF ABBREVIATIONS LOBs Lithium oxygen batteries LABS Lithium air batteries EES Electrical storage systems LIBs Lithium ion batteries ORR Oxygen reduction reaction OER Oxygen evolution

Ngày đăng: 09/09/2015, 11:14

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan