TOWARDS a CONSISTENT CHRONOLOGY TO EXPLAIN THE EVOLUTION OF THE RIBOSOME

199 473 0
TOWARDS a CONSISTENT CHRONOLOGY TO EXPLAIN THE EVOLUTION OF THE RIBOSOME

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

TOWARDS A CONSISTENT CHRONOLOGY TO EXPLAIN THE EVOLUTION OF THE RIBOSOME     ZHANG BO (B.SCI.,USTC) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN COMPUTATION & SYSTEMS BIOLOGY (CSB) SINGAPORE-MIT ALLIANCE NATIONAL UNIVERSITY OF SINGAPORE 2012   DECLARATION I hereby declare that this thesis is my original work and it has been written by me in its entirety. I have duly acknowledged all the sources of information which have been used in the thesis. This thesis has also not been submitted for any degree in any university previously Zhang Bo ____________________ Digitally signed by Zhang Bo DN: cn=Zhang Bo, o, ou, email=primrosebo33@gmail.com, c=US Date: 2013.06.06 21:28:21 +08'00' ZHANG BO 24th Aug. 2012       II   Acknowledgements It was not possible for me to realize the great support I have gotten from my friends and family until I finished my thesis and looked back over the journey past. They have helped and continually supported me along this long and fulfilling road. I would like to express my great thanks to my PhD supervisor, Professor Christopher W. V. Hogue, who is not only a mentor but also a dear friend. Throughout the four years study, I have been confused and lost my directions. I could not reach where I am today without his inspirational, supportive, kind and patient guidance, and editorial assistance in preparing this thesis. Many thanks go to my MIT-Singapore program co-advisor, Professor Gil Alterovitz, who provided encouraging and instructive comments about my projects and showed me great kindness when I was studying in MIT. A good support system is important in surviving and staying in graduate school. I am very grateful to my department, Singapore-MIT Alliance, for providing me four years Graduate Scholarship financial assistance. I am also grateful to our co-chair, Professor Gong Zhiyuan and former co-chair, Professor Hew Choy Leong and the staff and students in SMA, especially in Computation & Systems Biology. I also have to thank the members of my PhD committee and my examiners for their helpful advice and suggestions in general. I am so lucky to have been surrounded by wonderful colleagues. I will take this opportunity to thank all my workmates and lab mates who have     III   contributed to such a pleasant environment for the past four years: Shweta Ramdas who contributed to this project in her honors year; Zhao Chen, a wonderful friend; Liao Xuanhao who provided a great help in the wet lab and all my lab mates. I am sincerely grateful that I have this group of passionate people to work with in Hogue’s lab. I could always ask for advice and help. And Kootala Parasuraman Sowmya, our secretary, is always there for us. Also essential to my thesis were the software and applications, especially the Design Structure Matrix software developed by Loomeo. I will also thank a group of experts who helped keep my thesis real. They have given me the permission to include their beautiful and accurate figures in my thesis. I especially thank my mom and dad. They have sacrificed so much in their lives for my comfortable life and provided me unconditional love and care. I would not make this real without their support. I truly thank Li Qiushi for always standing by my side and sharing my dreams.       IV   Table of Contents Acknowledgements . III   Table of Contents . V   Summary VII   List of Figures IX   List of Tables . XI   Chapter Introduction .   1.1  Background  and  Significance   .  5   1.1.1  Ribosomal  Structure  and  Function    6   1.1.2  The  RNA  World  Theory  and  Other  Origin  Hypotheses    15   1.1.3  Hydrothermal  Vents    22   1.1.4  Current  Research  on  the  Evolutionary  Timeline  of  the  Ribosome    26   1.2  Objectives  and  Proposed  Solutions   .  52   1.2.1  Objectives  and  Specific  Aims    52   1.2.2  Research  Scope   .  56   Chapter Material and Methods 58   2.1  Chronology  Models  for  E.  coli  Ribosome   .  58   2.1.1  Preparation  for  the  Chronology  Models   .  58   2.1.2  The  Chronology  Models    60   2.2  Chronology  Models  for  the  E.  coli  Ribosome  -­‐  DSM    65   2.2.1  Design  Structure  Matrix  (DSM)   .  65   2.2.2  Domain  Mapping  Matrix  (DMM)    70   2.3  Visualization  of  the  Ribosomal  Evolution  Chronology   .  71   2.3.1  Video  of  Hydrothermal  Vent   .  72   2.3.2  Animation  of  Molecular  Structures   .  73   2.3.3  Animation  of  Molecular  Structures  -­‐  Software   .  74   2.4  Simplest  Proto-­‐Ribosome    75   2.5  Overview  of  Joint  DSM  Model  Development  Approach    76   Chapter Chronological Evolution of E. coli Ribosomal LSU . 84   3.1  DSM  Chronology  Models  for  LSU   .  84       V   3.1.1  “Proteins-­‐earliest”  Model   .  85   3.1.2  Hybrid  Model    96   3.1.3  Discussion  of  the  Optimal  and  Sub-­‐Optimal  Paths   .  100   3.2  Polypeptidyl-­‐Transferase  Center  (PTC)    103   3.3  Theory  in  the  Ribosomal  Evolution  between  Archaea  and  Bacteria    106   3.4  Discussion  for  the  Evolutionary  Model  of  LSU   .  111   Chapter Chronological Evolution of E. coli Ribosomal SSU . 117   4.1  Preliminary  Data  for  SSU    117   4.1.1  A-­‐minor  Interactions   .  118   4.1.2  Protein-­‐Protein  Interactions   .  120   4.2  Banded  Chronology  DSMs  Model  of  the  SSU   .  122   4.3  Discussion  of  the  Banded  DSM  Model  of  the  SSU   .  129   Chapter Chronological Evolution of the E. coli Ribosome 136   5.1  Inter-­‐Subunit  Interface    136   5.2  Joint  Chronology  of  the  SSU  and  LSU   .  138   5.3  Discussion  of  the  Joint  Chronology  of  the  E.  coli  Ribosome    149   Chapter Animation of the Ribosomal Evolution . 152   6.1  Visualization  of  the  Joint  Chronology  Model   .  152   6.2  Hydrothermal  Vent  System  Background    157   6.3  Animation  of  the  Joint  Chronology  of  the  Ribosome   .  158   6.4  Discussion  of  the  Animation  Process   .  158   Chapter The Structure of the Simplest Proto-Ribosome . 161   7.1  Three  Cores    161   7.2  Discussion  of  the  Proposed  r29-­‐PTC  Proto-­‐Ribosome  Model    167   Chapter Conclusion and Future Research 169   Bibliography 173   Appendices . 186       VI   Summary The ribosome comprises the structure and mechanism for the translation of nucleic acid gene sequences into proteins in all living creatures. The large subunit (LSU) of the ribosome is reducible to an ancient catalytic core peptidyl-transferase structure (PTC) (Agmon, Bashan et al. 2005). A model of hierarchical addition of E. coli 23S (where ‘S’ refers to the Sedimentation Coefficient) rRNA modular inserts (HIM) was proposed (Bokov and Steinberg 2009) explaining how inserts led from the PTC to the full ribosome. Based on this information, a detailed chronology of the ribosome was developed, including rRNA modules and ribosomal proteins (rproteins) in the large and small subunits (SSU) of E. coli using the Design Structure Matrix (DSM), and employing dependencies from 3D structure and topology. The DSM does not use sequence information, yet the results are remarkably well validated against other models of ribosomal evolution. The earliest period of structure accumulation is better fitted to a protein-free assembly than a protein-early model. For the first two proteins appearing in the chronology, L22c is the beta-strand protrusion of L22 and L32 binds via a bare alpha helix next to L22c in a crevice proximal to the polypeptide exit tunnel. These are congruent with a theory that the first proteins were simple units of secondary structure, prior to the evolution of folded forms. A feedback loop from these two crevices may provide selective pressure for fixation of initially random sequences for stronger binding forms that may have streamlined nascent peptide exit. Such feedback could have helped fix the earliest portion of the genetic code. While there is no L32 in the archaea, part     VII   of the space occupied by L32 was found filled with a structure arising from a sequence insert into archaeal L22 that may have displaced L32 from the archaeal ribosome. Decomposition of the SSU 3D structure into rRNA module inserts reveals two originating cores labeled r23 and r29. The r29 module is consistent with a functional form of the earliest proto-SSU and its structure validated by a new reduced mitochondrial SSU sequence. A banded DSM chronology shows how the SSU may have evolved in stages from these two core structures. The interface between the LSU and SSU together with the 5S fragment and all r-proteins were combined together into a final DSM of the entire E. coli ribosome, which was iteratively refined by constructing full animations of the chronology in the Maya software package. Docking supports a potential functional form of the earliest proto-ribosome comprising the PTC and r29, suggesting that the SSU and LSU co-evolved from the start. The chronology supports a transition from mini-tRNA to full-tRNA upon the build-up of the subunit interface, a period congruent with the fixation of the genetic code, and a last common ribosomal ancestor structure before the split of archaea and bacteria. With the 2D and 3D illustrations of the evolutionary process presenting the ribosomal chronology, the results represent the most complete story of ribosomal evolution so far presented.       VIII   List of Figures Figure 1.1 Structure of intact E. coli 70S ribosome. . 11   Figure 1.2 Ribosome architecture in prokaryotes and eukaryotes. . 12   Figure 1.3 Overview of the bacterial translation. 13   Figure 1.4 Timeline of evolution. . 18   Figure 1.5 RNA reactor from a hydrothermal vent pore network. . 24   Figure 1.6 Evolutionary transition of mini-tRNA to full-length tRNA. . 32   Figure 1.7 The symmetrial RNA dimer structures of PTC. 44   Figure 1.8 Hierarchical model of the LSU from Bokov and Steinberg. . 47   Figure 1.9 Secondary and tertiary structure of the SSU. 48   Figure 1.10 Onion-like model. 50   Figure 2.1 A brief introduction to the Design Structure Matrix (DSM). 67   Figure 2.2 LOOMEO SSU input structures. . 68   Figure 2.3 Domain Mapping Matrix structures in the LOOMEO. . 70   Figure 2.4 Domain mapping graph. 71   Figure 2.5 Project DSM analysis stages. 77   Figure 3.1 Interaction networks. . 84   Figure 3.2 Domain Mapping Matrix for the LSU. 88   Figure 3.3 DSM of modules and proteins insertion order. . 89   Figure 3.4 Hybrid model DSM and “proteins-earliest” model DSM. 95   Figure 3.5 LSU secondary structure and interaction schematic representation of the hybrid model DSM chronology. . 99   Figure 3.6 Half-point distance trend. 104   Figure 3.7 Positions of the PTC and rRNA modules in the LSU. 105       IX   Figure 3.8 Secondary structure of HM. 107   Figure 3.9 Ribbon structure of HM 50S subunit . 108   Figure 3.10 Comparison of L22. . 110   Figure 4.1 Example of the four types of the A-minor interactions. 118   Figure 4.2 A-minor interactions in 16S rRNA 120   Figure 4.3 Interaction networks. . 121   Figure 4.4 Example of contacts comprising SSU r-protein interactions between S14 and S10. . 122   Figure 4.5 Banded DSM model of SSU dependencies from E. coli. 125   Figure 4.6 Secondary structure schematic illustrating chronology of SSU rRNA modules and proteins 128   Figure 4.7 Secondary structures in M. leidyi mt-rRNAs. . 132   Figure 5.1 Intersubunit bridges of the E. coli ribosome. 137   Figure 5.2 DSM chronology of the entire E. coli ribosome 140   Figure 5.3 Adjusted Final Joint chronology . 144   Figure 5.4 Domain mapping graph of the two subunits 146   Figure 6.1 Top view of the 3D ribosomal surface structure using Autodesk Maya. 152   Figure 6.2 Animation frames of insertion steps and chronological milestones. . 156   Figure 6.3 Hydrothermal vent model. . 157   Figure 6.4 Movie capture. . 158   Figure 7.1 Docking trials of r29 and PTC . 165   Figure 7.2 Model of proposed r29-PTC proto-ribosome system. . 166       X   Bibliography Agmon,  I.  (2009).  "The  dimeric  proto-­‐ribosome:  structural  details  and   possible  implications  on  the  origin  of  life."  International  Journal  of   Molecular  Sciences  10(7):  2921-­‐2934.     Agmon,  I.,  A.  Bashan,  et  al.  (2005).  "Symmetry  at  the  active  site  of  the   ribosome:  structural  and  functional  implications."  Biological   Chemistry  386(9):  833-­‐844.     Anantharaman,  V.,  E.  V.  Koonin,  et  al.  (2002).  "Comparative  genomics  and   evolution  of  proteins  involved  in  RNA  metabolism."  Nucleic  Acids   Research  30(7):  1427-­‐1464.     Aravind,  L.  and  E.  V.  Koonin  (1999).  "Novel  predicted  RNA-­‐binding  domains   associated  with  the  translation  machinery."  Journal  of  Molecular   Evolution  48(3):  291-­‐302.     Baaske,  P.,  F.  M.  Weinert,  et  al.  (2007).  "Extreme  accumulation  of  nucleotides   in  simulated  hydrothermal  pore  systems."  Proceedings  of  the  National   Academy  of  Sciences  of  the  United  States  of  America  104(22):  9346-­‐ 9351.     Babb,  I.,  M.  De  Luca,  et  al.  (1988).  Global  Venting,  Midwater,  and  Benthic   Ecological  Processes.  Rockville,  Md.,  U.S.  Dept.  of  Commerce,  National   Oceanic  and  Atmospheric  Administration,  Oceanic  and  Atmospheric   Research,  Office  of  Undersea  Research.     Bada,  J.  L.  (2000).  Stanley  miller's  70th  birthday.  Origin  of  Life  and  Evolution   of  the  Biosphere,  Kluwer  Academic.  30:  107-­‐112.     Ban,  N.,  P.  Nissen,  et  al.  (2000).  "The  complete  atomic  structure  of  the  large   ribosomal  subunit  at  2.4  A  resolution."  Science  289(5481):  905-­‐920.     Battle,  D.  J.  and  J.  A.  Doudna  (2002).  "Specificity  of  RNA-­‐RNA  helix   recognition."  Proceedings  of  the  National  Academy  of  Sciences  of  the   United  States  of  America  99(18):  11676-­‐11681.     Becker,  T.,  S.  Bhushan,  et  al.  (2009).  "Structure  of  monomeric  yeast  and   mammalian  Sec61  complexes  interacting  with  the  translating   ribosome."  Science  326(5958):  1369-­‐1373.     Belousoff,  M.  J.,  C.  Davidovich,  et  al.  (2010).  "Ancient  machinery  embedded   in  the  contemporary  ribosome."  Biochemical  Society  Transactions   38(2):  422-­‐427.     173     Ben-­‐Shem,  A.,  N.  Garreau  de  Loubresse,  et  al.  (2011).  "The  structure  of  the   eukaryotic  ribosome  at  3.0  Å  resolution."  Science  334(6062):  1524-­‐ 1529.     Berg  JM,  T.  J.,  Stryer  L.  (2002).  Purine  bases  can  be  synthesized  de  novo  or   recycled  by  salvage  pathways.  Biochemistry.  5th  edition.  New  York,  W   H  Freeman.     Berk,  V.  and  J.  H.  Cate  (2007).  "Insights  into  protein  biosynthesis  from   structures  of  bacterial  ribosomes."  Current  Opinion  in  Structural   Biology  17(3):  302-­‐309.     Bernhardt,  H.  S.  and  W.  P.  Tate  (2010).  "The  transition  from  noncoded  to   coded  protein  synthesis:  did  coding  mRNAs  arise  from  stability-­‐ enhancing  binding  partners  to  tRNA?"  Biology  Direct  5:  16.     Bhattacharya,  D.,  T.  Helmchen,  et  al.  (1995).  "Comparisons  of  nuclear-­‐ encoded  small-­‐subunit  ribosomal  RNAs  reveal  the  evolutionary   position  of  the  Glaucocystophyta."  Molecular  Biology  and  Evolution   12(3):  415-­‐420.     Bocharov,  E.  V.,  A.  G.  Sobol,  et  al.  (2004).  "From  structure  and  dynamics  of   protein  L7/L12  to  molecular  switching  in  ribosome."  Journal  of   Biological  Chemistry  279(17):  17697-­‐17706.     Bokov,  K.  and  S.  V.  Steinberg  (2009).  "A  hierarchical  model  for  evolution  of   23S  ribosomal  RNA."  Nature  457(7232):  977-­‐980.     Branciamore,  S.  and  M.  Di  Giulio  (2011).  "The  presence  in  tRNA  molecule   sequences  of  the  double  hairpin,  an  evolutionary  stage  through  which   the  origin  of  this  molecule  is  thought  to  have  passed."  Journal  of   Molecular  Evolution  72(4):  352-­‐363.     Brimacombe,  R.  (2000).  "The  bacterial  ribosome  at  atomic  resolution."   Structure  8:  R195–R200.     Brock,  D.  (1978).  Thermophilic  Microorganisms  and  Life  at  High   Temperatures.  New  York,  Heidelberg,  Berlin.     Butcher,  S.  E.  and  A.  M.  Pyle  (2011).  "The  molecular  interactions  that  stabilize   RNA  tertiary  structure  RNA  motifs,  patterns,  and  networks."  Accounts   of  Chemical  Research  44(12):  1302-­‐1311.     Caetano-­‐Anolles,  D.,  K.  M.  Kim,  et  al.  (2011).  "Proteome  evolution  and  the   metabolic  origins  of  translation  and  cellular  life."  Journal  of  Molecular   Evolution  72(1):  14-­‐33.       174   Caetano-­‐Anolles,  G.  (2002).  "Tracing  the  evolution  of  RNA  structure  in   ribosomes."  Nucleic  Acids  Research  30(11):  2575-­‐2587.     Caetano-­‐Anolles,  G.,  H.  S.  Kim,  et  al.  (2007).  "The  origin  of  modern  metabolic   networks  inferred  from  phylogenomic  analysis  of  protein   architecture."  Proceedings  of  the  National  Academy  of  Sciences  of  the   United  States  of  America  104(22):  9358-­‐9363.     Caetano-­‐Anolles,  G.,  M.  Wang,  et  al.  (2009).  "The  origin,  evolution  and   structure  of  the  protein  world."  The  Biochemical  Journal  417(3):  621-­‐ 637.     Caldon,  C.  E.,  P.  Yoong,  et  al.  (2001).  "Evolution  of  a  molecular  switch:   universal  bacterial  GTPases  regulate  ribosome  function."  Molecular   Microbiology  41(2):  289-­‐297.     Cannone,  J.  J.,  S.  Subramanian,  et  al.  (2002).  "The  comparative  RNA  web   (CRW)  site:  an  online  database  of  comparative  sequence  and   structure  information  for  ribosomal,  intron,  and  other  RNAs."  BMC   Bioinformatics  3:  2.     Carter,  A.  P.,  W.  M.  Clemons,  et  al.  (2000).  "Functional  insights  from  the   structure  of  the  30S  ribosomal  subunit  and  its  interactions  with   antibiotics."  Nature  407(6802):  340-­‐348.     Cech,  T.  R.  (2011).  "The  RNA  worlds  in  context."  Cold  Spring  Harbor   Perspectives  in  Biology  4(7):  a006742.     Clark,  C.  G.  (1987).  "On  the  evolution  of  ribosomal  RNA."  Journal  of  Molecular   Evolution  25(4):  343-­‐350.     Corbett,  K.  D.  and  T.  Alber  (2001).  "The  many  faces  of  Ras:  recognition  of   small  GTP-­‐binding  proteins."  Trends  in  Biochemical  Sciences  26(12):   710-­‐716.     Crease,  T.  J.  and  J.  K.  Colbourne  (1998).  "The  unusually  long  small-­‐subunit   ribosomal  RNA  of  the  crustacean,  Daphnia  pulex:  sequence  and   predicted  secondary  structure."  Journal  of  Molecular  Evolution  46(3):   307-­‐313.     Crick,  F.  H.  (1968).  "The  origin  of  the  genetic  code."  Journal  of  Molecular   Biology  38(3):  367-­‐379.     Crick,  F.  H.,  S.  Brenner,  et  al.  (1976).  "A  speculation  on  the  origin  of  protein   synthesis."  Origin  of  Life  7(4):  389-­‐397.     175     Di  Giulio,  M.  (1995).  "Was  it  an  ancient  gene  codifying  for  a  hairpin  RNA  that,   by  means  of  direct  duplication,  gave  rise  to  the  primitive  tRNA   molecule?"  Journal  of  Theoretical  Biology  177(1):  95-­‐101.     Di  Giulio,  M.  (1999).  "The  non-­‐monophyletic  origin  of  the  tRNA  molecule."   Journal  of  Theoretical  Biology  197(3):  403-­‐414.     Di  Giulio,  M.  (2004).  "The  origin  of  the  tRNA  molecule:  implications  for  the   origin  of  protein  synthesis."  Journal  of  Theoretical  Biology  226(1):  89-­‐ 93.     Di  Giulio,  M.  (2006).  "The  non-­‐monophyletic  origin  of  the  tRNA  molecule  and   the  origin  of  genes  only  after  the  evolutionary  stage  of  the  last   universal  common  ancestor  (LUCA)."  Journal  of  Theoretical  Biology   240(3):  343-­‐352.     Di  Tommaso,  P.,  S.  Moretti,  et  al.  (2011).  "T-­‐Coffee:  a  web  server  for  the   multiple  sequence  alignment  of  protein  and  RNA  sequences  using   structural  information  and  homology  extension."  Nucleic  Acids   Research  39(Web  Server  issue):  W13-­‐17.     Ditlev  E.  Brodersen,  W.  M.  C.  J.,  Andrew  P.  Carter  Brian  T.  Wimberly  and  V.   Ramakrishnan  (2002).  "Crystal  structure  of  the  30  S  ribosomal  subunit   from  Thermus  thermophilus  structure  of  the  proteins  and  their   interactions  with  16  S  RNA."  Journal  of  Molecular  Biology  316:  725-­‐ 768.     Dragon,  F.  and  L.  Brakier-­‐Gingras  (1993).  "Interaction  of  Escherichia  coli   ribosomal  protein  S7  with  16S  rRNA."  Nucleic  Acids  Research  21(5):   1199-­‐1203.     Edmond,  J.  M.,  K.  L.  Vondamm,  et  al.  (1982).  "Chemistry  of  hot  springs  on  the   east  pacific  rise  and  their  effluent  dispersal."  Nature  297(5863):  187-­‐ 191.     Eigen,  M.  (1971).  "Selforganization  of  matter  and  the  evolution  of  biological   macromolecules."  Die  Naturwissenschaften  58(10):  465-­‐523.     Forget,  B.  G.  and  S.  M.  Weissman  (1969).  "The  nucleotide  sequence  of   ribosomal  5  S  ribonucleic  acid  from  KB  cells."  The  Journal  of  Biological   Chemistry  244(12):  3148-­‐3165.     Fournier,  G.  P.  and  J.  P.  Gogarten  (2007).  "Signature  of  a  primitive  genetic   code  in  ancient  protein  lineages."  Journal  of  Molecular  Evolution   65(4):  425-­‐436.         176   Fournier,  G.  P.  and  J.  P.  Gogarten  (2010).  "Rooting  the  ribosomal  tree  of  life."   Molecular  Biology  and  Evolution  27(8):  1792-­‐1801.     Fox,  G.  E.  (2010).  "Origin  and  evolution  of  the  ribosome."  Cold  Spring  Harbor   Perspectives  in  Biology  2(9):  a003483.     Gabashvili,  I.  S.,  R.  K.  Agrawal,  et  al.  (2000).  "Solution  structure  of  the  E.  coli   70S  ribosome  at  11.5  A  resolution."  Cell  100(5):  537-­‐549.     Gao,  H.,  J.  Sengupta,  et  al.  (2003).  "Study  of  the  structural  dynamics  of  the  E.   coli  70S  ribosome  using  real-­‐space  refinement."  Cell  113(6):  789-­‐801.     Gao,  N.  and  J.  Frank  (2006).  "A  library  of  RNA  bridges."  Nature  Chemical   Biology  2(5):  231-­‐232.     Gesteland,  R.  F.,  T.  R.  Cech,  et  al.  (2006).  The  RNA  World:  the  Nature  of   Modern  RNA  Suggests  a  Prebiotic  RNA  World,  Cold  Spring  Harbor   Laboratory  Press.     Gongadze,  G.  M.  (2011).  "5S  rRNA  and  ribosome."  Biochemistry  (Mosc)   76(13):  1450-­‐1464.     Grondek,  J.  F.  and  G.  M.  Culver  (2004).  "Assembly  of  the  30S  ribosomal   subunit:  positioning  ribosomal  protein  S13  in  the  S7  assembly   branch."  RNA  10(12):  1861-­‐1866.     Guerrier-­‐Takada,  C.,  K.  Gardiner,  et  al.  (1983).  "The  RNA  moiety  of   ribonuclease  P  is  the  catalytic  subunit  of  the  enzyme."  Cell  35(3  Pt  2):   849-­‐857.     Haldane,  J.  B.  S.  (1949).  What  is  Life?,  L.  Drummond.     Harish,  A.  and  G.  Caetano-­‐Anolles  (2012).  "Ribosomal  history  reveals  origins   of  modern  protein  synthesis."  PLoS  One  7(3):  e32776.     Harms,  J.,  F.  Schluenzen,  et  al.  (2001).  "High  resolution  structure  of  the  large   ribosomal  subunit  from  a  mesophilic  eubacterium."  Cell  107(5):  679-­‐ 688.     Hartman,  H.  and  T.  F.  Smith  (2010).  "GTPases  and  the  origin  of  the  ribosome."   Biology  Direct  5:  36.     Holland,  T.  A.,  S.  Veretnik,  et  al.  (2006).  "Partitioning  protein  structures  into   domains:  why  is  it  so  difficult?"  Journal  of  Molecular  Biology  361(3):   562-­‐590.       177     Horan,  L.  H.  and  H.  F.  Noller  (2007).  "Intersubunit  movement  is  required  for   ribosomal  translocation."  Proceedings  of  the  National  Academy  of   Sciences  of  the  United  States  of  America  104(12):  4881-­‐4885.     Hsiao,  C.,  S.  Mohan,  et  al.  (2009).  "Peeling  the  onion:  ribosomes  are  ancient   molecular  fossils."  Molecular  Biology  and  Evolution  26(11):  2415-­‐ 2425.     Hury,  J.,  U.  Nagaswamy,  et  al.  (2006).  "Ribosome  origins:  the  relative  age  of   23S  rRNA  Domains."  Origins  of  Life  and  Evolution  of  the  Biosphere   36(4):  421-­‐429.     Itoh,  T.,  K.  Takemoto,  et  al.  (1999).  "Evolutionary  instability  of  operon   structures  disclosed  by  sequence  comparisons  of  complete  microbial   genomes."  Molecular  Biology  and  Evolution  16(3):  332-­‐346.     Joseph,  S.  (2003).  "After  the  ribosome  structure:  how  does  translocation   work?"  RNA  9(2):  160-­‐164.     Josko,  B.  (2012).  DANSE  -­‐  designing  for  adaptability  and  evolution  in  system   of  systems  engineering.  IEEE  SoSE  2012.     Joyce,  G.  F.  (2002).  "The  antiquity  of  RNA-­‐based  evolution."  Nature   418(6894):  214-­‐221.     Joyce,  G.  F.  (2004).  "Directed  evolution  of  nucleic  acid  enzymes."  Annual   Review  of  Biochemistry  73:  791-­‐836.     Kabsch,  W.  and  C.  Sander  (1983).  "Dictionary  of  protein  secondary  structure:   pattern  recognition  of  hydrogen-­‐bonded  and  geometrical  features."   Biopolymers  22(12):  2577-­‐2637.     Kelley,  D.  S.,  J.  A.  Karson,  et  al.  (2005).  "A  serpentinite-­‐hosted  ecosystem:  the   Lost  City  hydrothermal  field."  Science  307(5714):  1428-­‐1434.     Klimov,  P.  B.  and  L.  L.  Knowles  (2011).  "Repeated  parallel  evolution  of   minimal  rRNAs  revealed  from  detailed  comparative  analysis."  The   Journal  of  Heredity  102(3):  283-­‐293.     Klinge,  S.,  F.  Voigts-­‐Hoffmann,  et  al.  (2011).  "Crystal  structure  of  the   eukaryotic  60S  ribosomal  subunit  in  complex  with  initiation  factor  6."   Science  334(6058):  941-­‐948.     Klinge,  S.,  F.  Voigts-­‐Hoffmann,  et  al.  (2012).  "Atomic  structures  of  the   eukaryotic  ribosome."  Trends  in  Biochemical  Sciences  37(5):  189-­‐198.         178   Klipcan,  L.  and  M.  Safro  (2004).  "Amino  acid  biogenesis,  evolution  of  the   genetic  code  and  aminoacyl-­‐tRNA  synthetases."  Journal  of  Theoretical   Biology  228(3):  389-­‐396.     Koc,  E.  C.,  W.  Burkhart,  et  al.  (2001).  "The  large  subunit  of  the  mammalian   mitochondrial  ribosome.  Analysis  of  the  complement  of  ribosomal   proteins  present."  The  Journal  of  Biological  Chemistry  276(47):  43958-­‐ 43969.     Koonin,  E.  V.  (2007).  "An  RNA-­‐making  reactor  for  the  origin  of  life."   Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States   of  America  104(22):  9105-­‐9106.     Koonin,  E.  V.  and  W.  Martin  (2005).  "On  the  origin  of  genomes  and  cells   within  inorganic  compartments."  Trends  in  Genetics  21(12):  647-­‐654.     Korostelev,  A.,  S.  Trakhanov,  et  al.  (2006).  "Crystal  structure  of  a  70S   ribosome-­‐tRNA  complex  reveals  functional  interactions  and   rearrangements."  Cell  126(6):  1065-­‐1077.     Korostelev,  A.  A.  (2011).  "Structural  aspects  of  translation  termination  on  the   ribosome."  RNA  17(8):  1409-­‐1421.     Kozak,  M.  (1989).  "Circumstances  and  mechanisms  of  inhibition  of  translation   by  secondary  structure  in  eucaryotic  mRNAs."  Molecular  and  Cellular   Biology  9(11):  5134-­‐5142.     Kruger,  K.,  P.  J.  Grabowski,  et  al.  (1982).  "Self-­‐splicing  RNA:  autoexcision  and   autocyclization  of  the  ribosomal  RNA  intervening  sequence  of   Tetrahymena."  Cell  31(1):  147-­‐157.     Kurland,  C.  G.  (1977).  "Structure  and  function  of  the  bacterial  ribosome."   Annual  Review  of  Biochemistry  46:  173-­‐200.     Lecompte,  O.,  R.  Ripp,  et  al.  (2002).  "Comparative  analysis  of  ribosomal   proteins  in  complete  genomes:  an  example  of  reductive  evolution  at   the  domain  scale."  Nucleic  Acids  Research  30(24):  5382-­‐5390.     Lee,  N.,  Y.  Bessho,  et  al.  (2000).  "Ribozyme-­‐catalyzed  tRNA  aminoacylation."   Nature  Structural  Biology  7(1):  28-­‐33.     Leipe,  D.  D.,  Y.  I.  Wolf,  et  al.  (2002).  "Classification  and  evolution  of  P-­‐loop   GTPases  and  related  ATPases."  Journal  of  Molecular  Biology  317(1):   41-­‐72.     Madigan,  M.  T.  and  B.  L.  Marrs  (1997).  "Extremophile."  Scientific  American   276(4):  66–71.     179       Maizels,  N.  and  A.  M.  Weiner  (1987).  "Peptide-­‐specific  ribosomes,  genomic   tags,  and  the  origin  of  the  genetic  code."  Cold  Spring  Harbor  Symposia   on  Quantitative  Biology  52:  743-­‐749.     Maizels,  N.  and  A.  M.  Weiner  (1994).  "Phylogeny  from  function  evidence   from  the  molecular  fossil  record  that  tRNA  originated  in  replication,   not  translation."  Proceedings  of  the  National  Academy  of  Sciences  of   the  United  States  of  America  91:  6729-­‐6734.     Maki,  T.  (2012).  Architecture  migration  using  DSM  in  a  large-­‐scale  software   project.  14th  International  Dependency  and  Structure  Modeling   Conference.     Matadeen,  R.,  P.  Sergiev,  et  al.  (2001).  "Direct  localization  by  cryo-­‐electron   microscopy  of  secondary  structural  elements  in  Escherichia  coli  23  S   rRNA  which  differ  from  the  corresponding  regions  in  Haloarcula   marismortui."  Journal  of  Molecular  Biology  307(5):  1341-­‐1349.     Michael  J.  Russell,  R.  M.  D.,  Allan  J.  Hall,  John  A.  Sherringham  (1994).  "A   hydrothermally  precipitated  catalytic  iron  sulphide  membrane  as  a   first  step  toward  life."  Journal  of  Molecular  Evolution  39:  231-­‐243.     Mileikowsky,  C.  (2000).  "Natural  transfer  of  viable  microbes  in  space  1.  From   mars  to  earth  and  earth  to  mars."  Icarus  145(2):  391-­‐427.     Miller,  S.  L.  and  J.  L.  Bada  (1988).  "Submarine  hot  springs  and  the  origin  of   life."  Nature  334(6183):  609-­‐611.     Miller,  S.  L.  and  L.  E.  Orgel  (1974).  The  Origins  of  Life  on  the  Earth,  Prentice-­‐ Hall.     Moore,  P.  B.  (2002).  "The  structural  basis  of  large  ribosomal  subunit   function."  Annual  Review  of  Biochemistry  72:  813-­‐850.     Moore,  P.  B.  (2005).  "A  ribosomal  coup:  E.  coli  at  last."  Science  310(5749):   793-­‐795.     Moore,  P.  B.  (2009).  "The  ribosome  returned."  Journal  of  Biology  8(1):  8.     Moore,  P.  B.  and  T.  A.  Steitz  (2002).  "The  involvement  of  RNA  in  ribosome   function."  Nature  418(6894):  229-­‐235.     Moore,  P.  B.  and  T.  A.  Steitz  (2011).  "The  roles  of  RNA  in  the  synthesis  of   protein."  Cold  Spring  Harbor  Perspectives  in  Biology  3(11):  a003780.         180   Murzin,  A.  G.,  S.  E.  Brenner,  et  al.  (1995).  "SCOP:  a  structural  classification  of   proteins  database  for  the  investigation  of  sequences  and  structures."   Journal  of  Molecular  Biology  247(4):  536-­‐540.     Mushegian,  A.  (2005).  "Protein  content  of  minimal  and  ancestral  ribosome."   RNA  11(9):  1400-­‐1406.     Nagel,  G.  M.  and  R.  F.  Doolittle  (1991).  "Evolution  and  relatedness  in  two   aminoacyl-­‐tRNA  synthetase  families."  Proceedings  of  the  National   Academy  of  Sciences  of  the  United  States  of  America  88(18):  8121-­‐ 8125.     Nelson,  A.  L.,  G.  J.  Barlow,  et  al.  (2009).  "Fitness  functions  in  evolutionary   robotics:  a  survey  and  analysis."  Robotics  and  Autonomous  Systems   57(4):  345-­‐370.     Nissen,  P.,  J.  Hansen,  et  al.  (2000).  "The  structural  basis  of  ribosome  activity   in  peptide  bond  synthesis."  Science  289(5481):  920-­‐930.     Nissen,  P.,  J.  A.  Ippolito,  et  al.  (2001).  "RNA  tertiary  interactions  in  the  large   ribosomal  subunit:  the  A-­‐minor  motif."  Proceedings  of  the  National   Academy  of  Sciences  of  the  United  States  of  America  98(9):  4899-­‐ 4903.     Noller,  H.  F.  (1984).  "Structure  of  ribosomal  RNA."  Annual  Review  of   Biochemistry  53:  119-­‐162.     Noller,  H.  F.  (2005).  "RNA  structure:  reading  the  ribosome."  Science   309(5740):  1508-­‐1514.     Noller,  H.  F.  (2012).  "Evolution  of  protein  synthesis  from  an  RNA  world."  Cold   Spring  Harbor  Perspectives  in  Biology  4(4):  a003681.     O'Donoghue,  P.  and  Z.  Luthey-­‐Schulten  (2003).  "On  the  evolution  of  structure   in  aminoacyl-­‐tRNA  synthetases."  Microbiology  and  Molecular  Biology   Reviews  67(4):  550-­‐573.     Orgel,  L.  E.  (1968).  "Evolution  of  the  genetic  apparatus."  Journal  of  Molecular   Biology  38(3):  381-­‐393.     Oro,  J.,  S.  L.  Miller,  et  al.  (1990).  "The  origin  and  early  evolution  of  life  on   Earth."  Annual  Review  of  Earth  and  Planetary  Sciences  18:  317-­‐356.     Pauling,  L.  and  R.  B.  Corey  (1951).  "The  polypeptide-­‐chain  configuration  in   hemoglobin  and  other  globular  proteins."  Proceedings  of  the  National   Academy  of  Sciences  of  the  United  States  of  America  37(5):  282-­‐285.       181     Penny,  D.  (2005).  "An  interpretive  review  of  the  origin  of  life  research."   Biology  &  Philosophy  20(4):  633-­‐671.     Pett,  W.,  J.  F.  Ryan,  et  al.  (2011).  "Extreme  mitochondrial  evolution  in  the   ctenophore  Mnemiopsis  leidyi:  Insight  from  mtDNA  and  the  nuclear   genome."  Mitochondrial  DNA  22(4):  130-­‐142.     Poole,  A.  M.,  D.  C.  Jeffares,  et  al.  (1998).  "The  path  from  the  RNA  world."   Journal  of  Molecular  Evolution  46(1):  1-­‐17.     Rabl,  J.,  M.  Leibundgut,  et  al.  (2011).  "Crystal  structure  of  the  eukaryotic  40S   ribosomal  subunit  in  complex  with  initiation  factor  1."  Science   331(6018):  730-­‐736.     Randau,  L.,  R.  Munch,  et  al.  (2005).  "Nanoarchaeum  equitans  creates   functional  tRNAs  from  separate  genes  for  their  5'-­‐  and  3'-­‐halves."   Nature  433(7025):  537-­‐541.     Richardson,  A.  O.  and  J.  D.  Palmer  (2007).  "Horizontal  gene  transfer  in   plants."  Journal  of  Experimental  Botany  58(1):  1-­‐9.     Roberts,  R.  B.  (1958).  Microsomal  Particles  and  Protein  Synthesis.  New  York,   Published  on  behalf  of  the  Washington  Academy  of  Sciences,   Washington,  D.C.,  by  Pergamon  Press.     Rodnina,  M.  V.,  T.  Daviter,  et  al.  (2002).  "Structural  dynamics  of  ribosomal   RNA  during  decoding  on  the  ribosome."  Biochimie  84(8):  745-­‐754.     Salama,  J.  J.,  I.  Donaldson,  et  al.  (2001).  "Automatic  annotation  of  BIND   molecular  interactions  from  three-­‐dimensional  structures."   Biopolymers  61(2):  111-­‐120.     Scheffzek,  K.  and  M.  R.  Ahmadian  (2005).  "GTPase  activating  proteins:   structural  and  functional  insights  18  years  after  discovery."  Cellular   and  Molecular  Life  Sciences  62(24):  3014-­‐3038.     Schmeing,  T.  M.  and  V.  Ramakrishnan  (2009).  "What  recent  ribosome   structures  have  revealed  about  the  mechanism  of  translation."  Nature   461(7268):  1234-­‐1242.     Schrum,  J.  P.,  T.  F.  Zhu,  et  al.  (2010).  "The  origins  of  cellular  life."  Cold  Spring   Harbor  Perspectives  in  Biology  2(9):  a002212.     Schuwirth,  B.  S.,  M.  A.  Borovinskaya,  et  al.  (2005).  "Structures  of  the  bacterial   ribosome  at  3.5  A  resolution."  Science  310(5749):  827-­‐834.         182   Selmer,  M.,  C.  M.  Dunham,  et  al.  (2006).  "Structure  of  the  70S  ribosome   complexed  with  mRNA  and  tRNA."  Science  313(5795):  1935-­‐1942.     Smirnov,  A.  V.,  N.  S.  Entelis,  et  al.  (2009).  "Specific  features  of  5S  rRNA   structure  —  its  interactions  with  macromolecules  and  possible   functions."  Biochemistry  (Moscow)  73(13):  1418-­‐1437.     Smith,  T.  F.,  J.  C.  Lee,  et  al.  (2008).  "The  origin  and  evolution  of  the   ribosome."  Biology  Direct  3:  16.     Spiess,  F.  N.,  K.  C.  Macdonald,  et  al.  (1980).  "East  pacific  rise:  hot  springs  and   geophysical  experiments."  Science  207(4438):  1421-­‐1433.     Sponer,  J.  E.,  K.  Reblova,  et  al.  (2007).  "Leading  RNA  tertiary  interactions:   structures,  energies,  and  water  insertion  of  A-­‐minor  and  P-­‐ interactions.  A  quantum  chemical  view."  The  Journal  of  Physical   Chemistry  111(30):  9153-­‐9164.     Sprang,  S.  R.  (1997).  "G  protein  mechanisms:  insights  from  structural   analysis."  Annual  Review  of  Biochemistry  66:  639-­‐678.     Steitz,  J.  A.  and  K.  Jakes  (1975).  "How  ribosomes  select  initiator  regions  in   mRNA:  base  pair  formation  between  the  3'  terminus  of  16S  rRNA  and   the  mRNA  during  initiation  of  protein  synthesis  in  Escherichia  coli."   Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States   of  America  72:  4734-­‐4738.     Steward,  D.  V.  (1981).  Systems  analysis  and  management  :  structure,   strategy,  and  design.  New  York.     Strecker,  A.  (1850).  "Ueber  die  künstliche  Bildung  der  Milchsäure  und  einen   neuen,  dem  Glycocoll  homologen  Körper."  European  Journal  of   Organic  Chemistry  75:  27–45.     Sun,  F.  J.  and  G.  Caetano-­‐Anolles  (2008).  "The  origin  and  evolution  of  tRNA   inferred  from  phylogenetic  analysis  of  structure."  Journal  of  Molecular   Evolution  66(1):  21-­‐35.     Sun,  F.  J.  and  G.  Caetano-­‐Anolles  (2009).  "The  evolutionary  history  of  the   structure  of  5S  ribosomal  RNA."  Journal  of  Molecular  Evolution  69(5):   430-­‐443.     Takyar,  S.,  R.  P.  Hickerson,  et  al.  (2005).  "mRNA  helicase  activity  of  the   ribosome."  Cell  120(1):  49-­‐58.     Tamura,  K.  (2011).  "Ribosome  evolution:  emergence  of  peptide  synthesis   machinery."  Journal  of  Biosciences  36(5):  921-­‐928.     183     Tamura,  K.  and  P.  Schimmel  (2001).  "Oligonucleotide-­‐directed  peptide   synthesis  in  a  ribosome-­‐  and  ribozyme-­‐free  system."  Proceedings  of   the  National  Academy  of  Sciences  of  the  United  States  of  America   98(4):  1393-­‐1397.     Taylor,  D.  J.,  J.  Nilsson,  et  al.  (2007).  "Structures  of  modified  eEF2  80S   ribosome  complexes  reveal  the  role  of  GTP  hydrolysis  in   translocation."  The  EMBO  journal  26(9):  2421-­‐2431.     Tobin,  C.,  C.  S.  Mandava,  et  al.  (2010).  "Ribosomes  lacking  protein  S20  are   defective  in  mRNA  binding  and  subunit  association."  Journal  of   Molecular  Biology  397(3):  767-­‐776.     Valle,  M.,  A.  Zavialov,  et  al.  (2003).  "Locking  and  unlocking  of  ribosomal   motions."  Cell  114(1):  123-­‐134.     Venema,  J.  and  D.  Tollervey  (1999).  "Ribosome  synthesis  in  Saccharomyces   cerevisiae."  Annual  Review  of  Genetics  33:  261-­‐311.     Vysotskaya,  V.  S.,  D.  V.  Shcherbakov,  et  al.  (1997).  "Sequencing  and  analysis   of  the  Thermus  thermophilus  ribosomal  protein  gene  cluster   equivalent  to  the  spectinomycin  operon."  Gene  193(1):  23-­‐30.     Wächtershäuser,  G.  (2000).  "Life  as  we  don't  know  it."  Science  289(5483):   1307-­‐1308.     Weiner,  A.  M.  and  N.  Maizels  (1987).  "tRNA-­‐like  structures  tag  the  3'  ends  of   genomic  RNA  molecules  for  replication:  implications  for  the  origin  of   protein  synthesis."  Proceedings  of  the  National  Academy  of  Sciences   of  the  United  States  of  America  84(21):  7383-­‐7387.     Wimberly,  B.  T.,  D.  E.  Brodersen,  et  al.  (2000).  "Structure  of  the  30S  ribosomal   subunit."  Nature  407(6802):  327-­‐339.     Woese,  C.  R.  (2002).  "On  the  evolution  of  cells."  Proceedings  of  the  National   Academy  of  Sciences  99(13):  8742-­‐8747.     Woese,  C.  R.,  R.  Gutell,  et  al.  (1983).  "Detailed  analysis  of  the  higher-­‐order   structure  of  16S-­‐like  ribosomal  ribonucleic  acids."  Microbiological   Reviews  47(4):  621-­‐669.     Woese,  C.  R.,  O.  Kandler,  et  al.  (1990).  "Towards  a  natural  system  of   organisms:  proposal  for  the  domains  Archaea,  Bacteria,  and  Eucarya."   Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States   of  America  87(12):  4576-­‐4579.         184   Woese,  C.  R.,  G.  J.  Olsen,  et  al.  (2000).  "Aminoacyl-­‐tRNA  synthetases,  the   genetic  code,  and  the  evolutionary  process."  Microbiology  and   Molecular  Biology  Reviews  64(1):  202-­‐236.     Wolf,  Y.  I.  and  E.  V.  Koonin  (2007).  "On  the  origin  of  the  translation  system   and  the  genetic  code  in  the  RNA  world  by  means  of  natural  selection,   exaptation,  and  subfunctionalization."  Biology  Direct  2(1):  14.     Xu,  D.,  S.  Song,  et  al.  (2011).  Simulation-­‐based  assessment  of  change   propagation  effect  in  an  aircraft  design  progress.  Proceedings  of  the   2011  Winter  Simulation  Conference,  Phoenix,  AZ.     Yonath,  A.  (1984).  "Some  X-­‐ray  diffraction  patterns  from  single  crystals  of  the   large  ribosomal  subunit  from  B.  stearothermophilus."  Journal  of   Molecular  Biology  177:  201-­‐206.     Yusupov,  M.  M.,  G.  Z.  Yusupova,  et  al.  (2001).  "Crystal  structure  of  the   ribosome  at  5.5  A  resolution."  Science  292(5518):  883-­‐896.     Yusupova,  G.  Z.,  M.  M.  Yusupov,  et  al.  (2001).  "The  path  of  messenger  RNA   through  the  ribosome."  Cell  106(2):  233-­‐241.     Yutin,  N.,  P.  Puigbo,  et  al.  (2012).  "Phylogenomics  of  prokaryotic  ribosomal   proteins."  PLoS  one  7(5):  e36972.     Zenkin,  N.  (2012).  "Hypothesis:  emergence  of  translation  as  a  result  of  RNA   helicase  evolution."  Journal  of  Molecular  Evolution  74(5-­‐6):  249-­‐256.       185     Appendices Supplementary Table 1: Boundaries of rRNA modules in SSU/LSU The crystal structure used for LSU (PDB ID: 2AW4) and SSU (PDB ID: 2AVY) are downloaded from Protein Data Bank (http://www.rcsb.org/pdb). The boundaries of the 60 rRNA modules in LSU and 29 rRNA modules in SSU are presented here, including ribosomal proteins that are divided into two segments. The number of the first and the last nucleotides is provided. According to the criteria used by Bokov and Steinberg, each rRNA module is considered as an individual double helix or an arrangement of stacked nucleotides according to the A-minor interactions. The boundaries of each module is arranged to make a close position of the 5’ and 3’ termini to each other. All RNA-protein and protein-protein distances were computed using the protein visualization software Rasmol and command line queries, with results captured into text files for further analysis. Supplementary Table 2: Inter-subunit bridges The inter-subunit bridges are listed according to Gao et al (2003). The constituent components of the two subunits from the T. thermophilus ribosome are shown. For each bridge, there exists a counterpart in the E. coli structure. Corresponding numbers in the E. coli are expanded with the description in the study of Gabashvili et al (2000). The locations of each bridge in the two subunits from our models are listed as well.     186   Supplementary Information 3: Manual DSM adjustments The following steps are the record of how manual decisions are overlaid on the DSM process. 1. Transferring the hierarchical model of Bokov and Steinberg into a plausible chronological DSM (PEM). The original LSU DSM dependencies are taken from the work from the Bokov & Steinberg model. Similar criteria are used in the construction of the SSU PEM with the help of a set of Perl script in deciding the rRNA insertion steps and rRNA-protein binding sites. The automated DSM is abandoned as the automated DSM is only upper-triangular matrix and there is not any further algorithm embedded in the software can find the biological boundary path with proteins earliest. 2. LSU PEM to HybridDSM Adjustment               Units   48   45   55   56   53   L22c   Move  Left   After  57   After  48   After  45   After  55   After  56           10   11   37,  31   L32   18,  51   L22e   L3       After  L32   After  51     Move  Right             After  8   modules   After  L22c   After  L22c       After  L22   12   L14     After  22   Reasons    modules    modules    modules    modules    modules   The  first  protein  with  β-­‐strand  pair  structure   Binding  crevice  for  L32   The  second  protein  with  α-­‐helix  structure   Binding  crevice  for  L22e   Composite  of  L22   After  the  basic  a/b  structure  and  binding   crevice  is  formed   After  the  basic  a/b  structure  and  protein-­‐ rRNA  contraint   Units: include rRNA modules and r-proteins 3. Joint Chronology From the assumption adopted in the Hybrid-LSU DSM and BandedSSU DSM models, the same principle of parsimony that the emergence   187     of r-proteins occurs immediately after the forming of the complete protein binding crevice through the rRNA modules’ insertion, but maintaining the order of rRNA events prior to the first LSU proteins. Adjustments   Units     r29,  PTC,   r23     r28,  59,   r22     r25,  58,   r17     r27,  57   Positions   Beginning   Reasons   Three-­‐core  origin   Continual   1st  round  of  rRNA  modules  for  the  three  cores     2nd  round  of  rRNA  modules  for  the  three  cores       Interface   formation  start   Till  interface   formation  end   After  L22e   The  binding  of  the  r29  and  r23  core;  3rd  round  of  rRNA   modules  for  the  two  subunits     8th  round  of  rRNA  modules  for  the  two  subunits  and   the  end  of  band  2  in  BandedDSM   The  first  protein  with  β-­‐strand  structure   The  binding  crevices  for  the  second  protein  with  a-­‐helix   structure;   Interface  between  the  two  subunits,  9  interface   bridges  formed  following  the  auto-­‐sorted  DSM   The  left  units  within  the  3rd  band  of  the  BandedDSM   Continual   The  left  units  within  the  4th  band  of  the  BandedDSM   After  S16     L5,  L18,  L25  appeared   rRNA  modules  within  the  5th  band  of  the  BandedDSM     rRNA  modules  and  r-­‐proteins  of  LSU  following   HybridDSM   Follow  BandedDSM  and  evenly  spread  and  interleaved   in  the  LSU  stages,  with  feedback  from   animation/visualization.       …     r4,  54,  r6         L22c   37,  31,   L32   18 .L22e       r10,  r13,   S7,  S13   r26,  r3,   r2,  S19   5S   r11,  r9,   r12   Units  of   LSU   Units  of   SSU   10   11   12   13   14     Supplementary 4: DVD 1. The movie represents the rRNA modules and r-proteins insertion steps along the ribosomal evolution, following the Joint Chronology DSM result. Format: .m4v Software to open the movie: QuickTime     188   [...]... of nucleic acid gene sequences into proteins in all living creatures It may also be possible that the early ribosome, called the proto -ribosome, was present and influential in the early stages of the RNA world according to the “helicase hypothesis” (Zenkin 2012) that posits that the necessary base pairing of RNA strands in the RNA world required enzymatic separation and that a proto -ribosome may have... into an active protein This section mainly focuses on the translational mechanism of the bacterial ribosomes, which happens in the cell’s cytoplasm Generally, bacterial translation can be divided into three phases, initiation, elongation and termination (Figure 1.3)   Figure 1.3 Overview of the bacterial translation aa-tRNA, aminoacyl-tRNA; EF elongation factor; IF, initiation factor; RF, release factor... Venkatraman Ramakrishnan, Thomas A Steitz and Ada E Yonath for their role in elucidating the crystal structure of the ribosome and its role in the development and understanding of the mechanisms of bacterial ribosome- binding natural product antibiotics Although ribosomes from bacteria, archaea and eukaryotes are responsible for protein synthesis, several significant differences in the structures and... is attached to the new amino acid from the A- site tRNA leaving a deacylated P-site tRNA Following the binding of the GTPase elongation factor G (EF-G), the mRNA shifts by precisely one codon and the tRNAs translocate with respect to the 30S subunit via a rotation of the tRNA molecule from A to P site (Joseph 2003) When an mRNA stop codon moves into the A site, termination occurs The terminal signal... recognized by the class I release factors (RF1 or RF2), which cleaves the nascent polypeptide chain and releases the newly synthesized protein from the ribosome After that, the class II release factors (RF3) triggers the dissociation of class I factors, leaving mRNA and a deacylated tRNA in the P site Next, ribosome recycling factor (RRF) carries out the recycling of ribosome together with EF-G The ribosome. .. proteins across yeast to humans (Venema and Tollervey 1999) Although the core architectures of the prokaryotic and     11   eukaryotic ribosomes are conserved, several additional proteins and new rRNA elements appear in the eukaryotic ribosomes, with important changes in the two subunits Eukaryotic ribosome synthesis largely takes place both in the cell cytoplasm and a specialized nuclear compartment, the. .. clear, such as the first step in initiation, peptidyltransferase reaction, movement of tRNAs and mRNA and so on As the highresolution structures are reported faster using Cryo-EM, an increasing number of functional states structures continues to shed light on the detail of translation of the ribosome involving GTPase factors and other factors (Schmeing and Ramakrishnan 2009) As the core of the ribosome. .. appreciation of the thermal circulation in the element balance of the ocean, these structures further stimulate the advances in the establishment of the hydrothermal-vent origin -of- life theory (Miller and Bada 1988) The discovery of a submarine hydrothermal vent field called Lost City in December 2000 provides one of the most convincing geological sites similar to where life may have originated Although the. .. The interface between the two subunits mainly consists of rRNA The smaller subunit binds to the mRNA through the cleft between the ‘head’ and ‘body’, while the larger subunit binds to the tRNA and the amino acids     10   There are three tRNA binding sites The A site binds to the aminoacyl-tRNA, the P site holds the peptidyl-tRNA with the nascent polypeptide chain, while the deacylated P-site tRNA... (Guerrier-Takada, Gardiner et al 1983) As the discovery of the ribozymes led to speculation that there might be RNA forms capable of self-catalysis at the origin of life, the term ‘RNA World’ was coined by Gilbert on 1986 The premise is accepted that in the early stages of life’s evolution, RNA could cleave, ligate phosphodiester bonds and     16   work as a biosynthetic catalyst and a self-replicating template The . to construct a plausible and detailed evolutional chronology of the 3D structure of the E. coli ribosome, together with a detailed consideration of the environmental factors that may explain. group of passionate people to work with in Hogue’s lab. I could always ask for advice and help. And Kootala Parasuraman Sowmya, our secretary, is always there for us. Also essential to my thesis. animations of the chronology in the Maya software package. Docking supports a potential functional form of the earliest proto -ribosome comprising the PTC and r29, suggesting that the SSU and

Ngày đăng: 09/09/2015, 10:17

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan