Synthesis and optoelectronic applications of star shaped donor acceptor p conjugated materials

170 427 0
Synthesis and optoelectronic applications of star shaped donor acceptor p conjugated materials

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

SYNTHESIS AND OPTOELECTRONIC APPLICATIONS OF STAR-SHAPED DONOR-ACCEPTOR π-CONJUGATED MATERIALS WANG GUAN NATIONAL UNIVERSITY OF SINGAPORE 2012 SYNTHESIS AND OPTOELECTRONIC APPLICATIONS OF STAR-SHAPED DONOR-ACCEPTOR π-CONJUGATED MATERIALS WANG GUAN (B.Sc., Soochow University) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMSITRY NATIONAL UNIVERSITY OF SINGAPORE 2012 ACKNOWLEDGEMENTS As I am about to complete my PhD thesis, I would like to give my gratitude to all who have helped and companied me throughout my PhD study. Firstly, I would like to thank my supervisor Associate Professor Lai Yee Hing and my co-supervisor Associate Professor Liu Bin for giving me the opportunity to embark on my graduate studies and providing an enjoyable research environment. I would like to thank my seniors Dr Cai Li Ping, Dr Pu Kan Yi and Dr Li Kai for their selfless help with my project. I would like to thank the postdoc fellows Dr Yin Xiong, Dr Ding Dan, Dr Liu Jie, Dr Shi Hai Bin and Dr Zhou Li for their kind help when there is a need. I would also like to thank the other PhD students, Mr Pramanik Tanay, Ms Zhan Ruo Yu, Mr Wang Long, Mr Geng Jun Long, Ms Liang Jing, Mr Xue Zhao Sheng, Ms Angela Tan Hiong Jun and Mr Feng Guang Xue. I would like to thank National University of Singapore, Department of Chemistry for offering me the NUS Research Scholarship. I would like thank members of the staff from Department of Chemistry, Mdm Irene Teo, Mr Lee Yoon Kuang, Mdm Lim Nyoon Keow, Mdm Han Yan Hui, Mr Wong Chee Ping, Dr Wu Ji’en, Mdm Wong Lai Kwai, Mdm Lai Hui Ngee, Mdm Leng Lee Eng, Ms Zing Tan Tsze Yin, Mr Tan Khai Seng and members of the staff from Department of Chemical and Biomolecular Engineering, Mr Boey Kok Hong, Ms Lee Chai Keng, Mr Tan Evan. They have been very nice to me and helped me a lot with my research. i I would like to thank my good friends, Mr Teo Yiwei, Mr Shao Jinjun, Mr Wang Yu, Ms Huang Yan, Ms Xu Yang and Ms Ge Dan Dan for the happiness they have brought to me. I cherish our friendship and may it last forever. I would like thank my parents and my sister. My family has always been my constant power to move on in my life everyday. I would like to thank my girlfriend and her parents. My girlfriend has always been a supportive listening ear and has sacrificed a lot for me. ii THESIS DECLARATION The work in this thesis is the original work of WANG GUAN, performed independently under the supervision of Assoc Prof LAI YEE-HING, (in the laboratory S5-01-01), Department of Chemistry, and under the supervision of Assoc Prof LIU BIN, (in the laboratory E5-B11 & B14), Department of Chemical and Biomolecular Engineering, National University of Singapore, between Aug, 2008 and Aug, 2012. The content of the thesis has been partly published in: 1) Chem. Mater. 2011, 23, 4428; 2) Chem. Eur. J. 2012, 18, 9705; 3) Polym. Chem. 2012, 3, 2464. WANG GUAN Name Signature Date iii TABLE OF CONTENTS ACKNOWLEDGEMENTS i THESIS DECLARATION iii TABLE OF CONTENTS iv SUMMARY . vii LIST OF PUBLICATIONS . x LIST OF SCHEMES . xiv LIST OF FIGURES . xv LIST OF ABBREVIATIONS . xix Chapter 1: Introduction 1.1 TPA: Main Concepts and Theoretical Considerations 1.2 Molecular Strategies for Designing TPA Materials 1.3 Water-Soluble TPA Materials for Bioimaging Applications with TPM . 16 1.4 Aim of Study and Thesis Outline 19 Chapter 2: Paracyclophane Based TPA Materials . 22 Introduction 22 Results and Discussion . 24 Synthesis and Characterization . 24 Summary 34 Experimental Sections 35 Materials and Instruments 35 Synthesis . 35 Chapter 3. Triphenylamine and Pyrene Based TPA Materials with Tunable Emission 51 Blue Emissive Triphenylamine Based Oligomer for Generic Two-Photon Fluorescence Cellular Imaging . 51 Introduction 51 Results and Discussion . 53 iv Synthesis and Characterization . 53 Self-Assembly in Water 57 Linear Optical Properties 59 TPA Properties . 62 Two-Photon Fluorescence Imaging of Living Cells . 66 Cytotoxicity Study 67 Conclusion 68 Experimental Section . 69 Materials and Instruments 69 Synthesis . 69 TPA Measurement 75 Cell Culture and Incubation 76 Cell Viability 76 Two-photon Fluorescence Imaging 77 Green Emissive Triphenylamine Based Oligomer for Targeted Two-photon Fluorescence Cellular Imaging . 78 Introduction 78 Results and Discussion . 80 Syntheis and Characterization 80 Self-Assembly Study 85 Linear Optical Properties 86 TPA Properties . 88 Targeted Two-photon Fluorescence Cancer Cell Imaging . 91 Cytotoxicity and Photo-Stability Study 95 Conclusion 96 Experimental Sections 97 Materials and Instruments 97 Synthesis . 98 Cell Culture and Incubation 106 Cell Viability 106 v One- and Two-Photon Fluorescence Imaging 107 Red Emissive Pyrene Based Oligomer for Generic Two-photon Fluorescence Cellular Imaging . 109 Introduction 109 Results and Discussion . 110 Synthesis and Characterization . 110 Linear Optical Properties 115 TPA Properties . 119 One- and Two-Photon Fluorescence Imaging 120 Cell Viability 124 Conclusion 125 Experimental Sections 125 Materials and Methods . 125 Synthesis . 126 Cell Culture and Incubation 131 Cell Viability 131 One- and Two-Photon Fluorescence Imaging 132 Chapter Conclusion and Future Work 133 References 137  vi SUMMARY The research on conjugated materials (e.g. conjugated polymers and oligomers) is of significant theoretical importance and plays a vital role in developing commercially applicable materials. In the past two decades, star-shaped donor-acceptor π-conjugated oligomers have become very popular not only due to their unique structure-two-photon absorption (TPA) properties relationships, but also because materials based on them are promising candidates for TPA based applications, e.g. two-photon microscopy (TPM) bioimaging. Design and synthesis of novel star-shaped donor-acceptor structures provides a platform for structure-TPA properties relationships study and yields promising TPA materials. Despite the versatility in known star-shaped donor-acceptor structures, more studies are still in need to provide new synthetic methodologies and to complement current structures. Also, there is a strong demand of water-soluble TPA materials for the powerful non-invasive TPM cellular imaging applications. Yet, the problem associated with the decreased TPA cross section (δ) in water for cationic water-soluble materials as compared to their counterparts in organic solvents is limitedly addressed. Besides, the lack of tailored TPA materials for targeted cancer cells imaging and the lack of water-soluble red-emissive TPA materials to overcome interference by cell auto-fluorescence still need to be addressed. In this thesis, a series of star-shaped donor-acceptor conjugated materials is reported to address the abovementioned challenges. Our strategy of systematically varying the cores (donors), linkers, and peripheries (acceptors) of star-shaped vii donor-acceptor structures successfully helped us synthesize TPA materials with large TPA δ and tunable emission from blue to red in water. Molecular engineering strategies using sugar moieties were also developed for enhanced TPA δ and a targeting functionality. A new synthetic methodology through dithia[3,3]paracyclophane was explored to complement the current studies on the TPA properties of [2,2]paracyclophane ([2,2]PcP) based chromophores. A series of 4,7,12,15-tetrasubstituted [2,2]PcPs with push-pull systems (Chapter 2) were attempted to be synthesized. The dithia[3,3]paracyclophane route via photo-desulfurization underwent well to yield 4,7,12,15-tetrabiphenyl[2,2]paracyclophane -amino)-1-phenyl]-[2,2]paracyclophane. and 4,7,12,15-tetra-[4-(N,N’-diphenyl However, the final step of photo-desulfurization did not occur for the dithia[3,3]paracyclophanes with nitrophenyl substitutions. This is due to the decreased reactivity of intermediate radicals, which could not undergo intraannular cyclization. The low possibility in tuning emission wavelength of [2,2]PcP chromophores into red spectral region via weak transannular conjugation triggered us to search for other structures. We next synthesized an octupolar glucose functionalized triphenylamine based oligomer via Suzuki coupling (TFBS, in Part I, Chapter 3), which possesses enhanced TPA δ (~1100 GM, GM is the unit of TPA δ) in water due to its intrinsic self-assembly properties. Inspired by this study, we then synthesized a vinylene linked glucopyranose conjugated material via Wittig coupling (TVFVBN-S-NH2, in Part II, Chapter 3), which shows further enhanced TPA δ in the longer wavelength range viii Chapter Conclusion and Future Work In this PhD project, we have designed and synthesized a series of conjugated materials featuring star-shaped donor-acceptor structures and successfully tailored them into useful TPA materials with special secondary functionalities for TPEF cellular imaging applications. Firstly, the synthesis of a series of 4,7,12,15-tatrasubstituted [2,2]PcPs with different combinations of donor and acceptor groups was attempted through the dithia[3,3]paracyclophane route for investigation on their TPA properties and potential non-linear optoelectronic applications. It was found that dithia[3,3]paracyclophanes bearing different patterns of donor-acceptor substitutions could be prepared under high dilution conditions. However, the desulfurization for dithia[3,3]paracyclophanes via photo irradiation underwent smoothly for the those substituted with only donor groups, while none of the dithia[3,3]paracyclophanes with acceptor groups could be converted into their corresponding [2,2]PcPs. The failure for the intraannular cyclization between radicals generated from dithia[3,3]paracyclophanes is due to the severely decreased reactivity. This could be further related to a decreased electron density of the neighbor aromatic ring, which is due to the substitution by electron withdrawing nitro groups. Hence, this study provides a reference for future design and synthesis of symmetrical and asymmetrical [2,2]PcPs based materials. A star-shaped glycosylated donor-acceptor based TPA material (TFBS) was then developed for living cells TPEF imaging. It was found that the glucose substitution molecular engineering strategy could yield a robust TPA material with higher quantum 133 yield (η) and larger TPA cross sections (δ) compared to its cationic counterpart. The enhanced TPA δ (~570-1200 GM at λ = 730-800 nm range) and η are ascribed to the formation of nanoparticles for TFBS in water, which provides relatively hydrophobic microenvironment for the molecular backbone of TFBS. As a result, the non-irradiative decay caused by interaction between water and TFBS was reduced. It was also found that TFBS nanoparticles could be effectively internalized by living human cervical cancer cells (Hela Cells) and the cells was successfully imaged using TPM. TFBS also showed negligible cytotoxicity, which makes TFBS a potential probe for long-term clinical applications. Thus, we have demonstrated an effective molecular engineering strategy of glycosylation to develop robust TPA materials with water-solubility, self-assembly ability and large TPA δ for TPM applications. Next, a glucopyranose functionalized star-shaped material was designed and synthesized for targeted TPEF imaging of cancer cells. The molecular backbone (TVFVBN) was linked via fluorene-vinylene, which possesses larger δ values (~3000 GM vs ~2500 GM in toluene) and red-shifted emission wavelength as compared to TFBN from Chapter 3, Part I due to an increased co-planarity and elongated π-conjugation. The precursor TVFVBN-S-NH2 was found to self-assemble into spherical nanoparticles in water with η of 0.21 and a large TPA δ value of ~1100 GM at 740 nm based on molecules. Furthermore, TVFVBN-S-NH2 has reactive amine groups, which allows further conjugation to biorecognition moieties. For demonstration, folic acid was conjugated to TVFVBN-S-NH2 to yield TVFVBN-S-NH2FA, which was also found to possess similar self-assembly and 134 optical properties to TVFVBN-S-NH2. Due to the specific folic acid-folate receptor interaction on the cell membrane of MCF-7 cells, targeted TPEF imaging was successfully demonstrated using TVFVBN-S-NH2FA. As such, we have successfully synthesized a TPA material with red-shifted emission wavelength and larger TPA δ via replacement of the single bond linkers with vinylene linkers. Furthermore, we have improved the strategy of glycosylation to develop TPA materials for targeted cancer cells imaging. Finally, a star-shaped pyrene based material (Pyrene4BTF-PEG-TAT) with a push-pull system and red emission was designed and synthesized for one- and two-photon imaging applications. It was found that the donor-acceptor pair of pyrene-benzothiadizole was well matched to bring in advantageous optical properties in aqueous such as large Stokes shift of 181 nm, large TPA δ of ~500 GM in the NIR region and emission in the red spectra window. The large TPA cross section is due to the effective ICT from center to peripheries as visualized by DFT calculations. It was also found that Pyrene4BTF-PEG-TAT could self-assemble into nanoparticles in water and consequently provides a relatively hydrophobic microenvironment for the molecular backbone of the oligomer. Also, the Pyrene4BTF-PEG-TAT nanoparticles could be effectively internalized by Hela cells and give both one- and two-photon fluorescence images in a high contrast manner. This is the first example of water-soluble TPA materials based on a pyrene center. Thus, we have successfully tuned the emission wavelength into the red spectral window by carefully selecting the donor-acceptor pair and provided very useful information for future design and 135 synthesis of red emissive TPA materials for bioimaging applications. In summary, this PhD project not only dealt with synthetic methodologies, but also investigated molecular engineering strategies and unraveled the underlying mechanisms to provide useful guidelines for the future development of TPA materials in biological applications. The following studies are recommended for future improvements: In terms of molecular design, the donor-acceptor pairs adopted in this thesis were limited to triphenylamine, pyrene, benzothiazole and benzothiadizole. It is vital to search for more donor-acceptor pairs to develop materials with larger TPA cross sections and red-shifted emission wavelengths. Bridged triphenylamine is a planar and electron rich structure,204 and it is thus a good choice. In addition, only glucose and glucopyranose were investigated in this thesis due to the limited scope of the PhD study. However, there is a variety of sugar compounds, which show specific binding properties to receptors on cell membranes. For example, galactose could bind Hepatocyte205 and vimentin shows N-acetylglucosamine binding lectin like activity.206 As such, the synthesis of TPA materials with large TPA cross sections and intrinsic targeting properties from sugar moieties is plausible. Besides the in vitro cell imaging demonstrated in this thesis, further use of our conjugated molecules for in vivo biological applications, such as in vivo tumor diagnosis is recommended. 136 References Bre´das, J. L.; Beljonne, D.; Coropceanu, V.; Cornil, J. Chem. Rev. 2004, 104, 4971. Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P. L.; Urano, Y. Chem. Rev. 2010, 110, 2620. Thomas III, S. W.; Joly, G. D.; Swager, T. M. Chem. Rev. 2007, 107, 1339. Liu,B.; Bazan, G. C. Chem. Mater. 2004, 16, 4467. Liu, B.; Gaylord, B. S.; Wang, S.; Bazan, G. C. J. Am. Chem. Soc. 2003, 125, 6705. Wang, S.; Hong, J.W.; Bazan, G. C. Org. Lett. 2005, 7, 1907. Kanibolotsky, A. L.; Berridge, R.; Skabara, P. J.; Perepichka, I. F.; Bradley, D. D. C.; Koeberg, M. J. Am. Chem. Soc. 2004, 126, 13695. LaFratta, C. N.; Fourkas, J. T.; Baldacchini, T.; Farrer, R. A. Angew. Chem. Int. Ed. 2007, 46, 6238. Parthenopoulos, D. A.; Rentzepis, P. M. Science 1989, 245, 843. 10 Kawata, S.; Kawata, Y. Chem. Rev. 2000, 100, 1777. 11 Spangler, C. W. J. Mater. Chem. 1999, 9, 2013. 12 Zipfel, W. R.; Williams, R. M.; Webb, W.W. Nat. Biotechnol. 2003, 21, 1369. 13 Helmchen, F.; Denk, W.; Nat. Methods 2005, 2, 932. 14 Fisher, W. G.; Partridge, Jr., W. P.; Dees, C.; Wachter, E. A. Photochem. Photobiol. 1997, 66, 141. 15 He, G.S.; Markowicz, P.P.; Lin, T.-C.; Prasad, P.N. Nature 2002, 415, 767. 16 Goppert-Mayer, M. Ann. Phys. 1931, 9, 273. 17 Butcher, P.N.; Cotter, D.; Knight, P. L.; Miller A. The Elements of Nonlinear Optics, Cambridge, N.Y., Cambridge University Press, 1990. 18 Sauter, E.G. Nonlinear Optics, N.Y. Wiley, 1996. 19 Sutherland, R.L.; McLean, D.G.; Kirkpatrick, S. Handbook of Nonlinear Optics, Basel, N.Y., Marcel Dekker, Inc., U.S.A., 2003. 20 Kaiser, W.; Garrett, C. G. B. Phys. Rev. Lett. 1961, 7, 229. 137 21 Albota, M.; Beljonne, D.; Brédas, J.; Ehrlich, J. E.; Fu, J.; Heikal, A. A.; Hess, S.; Kogej, T.; Levin, M. D.; Marder, S. R.; McCord-Maughon, D.; Perry, J. W.; Röckel, H.; Rumi, M.; Subramaniam, G.; Webb, W.; Wu, X.; Xu, C. Science 1998, 281, 1653. 22 Cumpston, B. H.; Ananthavel, S. P.; Barlow, S.; Dyer, D. L.; Ehrlich, J. E.; Erskine, L. L.; Heikal, A. A.; Kuebler, S. M.; Lee, I. L. S.; McCord-Maughon, D.; Qin, J.; RoÈckel, H.; Rumi, M.; Wu, X.; Marder, S. R.; Perry, J. W. Nature, 1999, 389, 51. 23 He, G. S.; Tan, L.-S.; Zheng, Q.; Prasad. P. N. Chem. Rev., 2008, 108, 1245. 24 Pawlicki, M.; Collins, H. A.; Denning, R. G.; Anderson, H. L. Angew. Chem. Int. Ed. 2009, 48, 3244. 25 Terenziani, F.; Katan, C.; Badaeva, E.; Tretiak, S.; Blanchard-Desce, M. Adv. Mater. 2008, 20, 4641. 26 Mongin, O.; Porres, L.;Charlot,M.; Katan, C.;Blanchard-Desce,M.Chem.;Eur. J. 2007, 13, 1481. 27 Kim, H. M.; Cho, B. R. Chem.Commun. 2009, 153. 28 Jagatap, B. N.; Meath, W. J. J. Opt. Soc. Am. B 2002, 19, 2673. 29 Ramakrishna, G.; Goodson, T., III. J. Phys. Chem. A 2007, 111, 993. 30 Nguyen, K. A.; Rogers, J. E.; Slagle, J. E.; Day, P. N.; Kannan, R.; Tan, L.-S.; Fleitz, P. A.; Pachter, R. J. Phys. Chem. A 2006, 110, 13172. 31 Porres, L.; Charlot, M.; Entwistle, C. D.; Beeby, A.; Marder, T. B.; Blanchard-Desce, M. Proc. SPIE Int. Soc. Opt. Eng. 2005, 5934, 1. 32 Marder, S. R.; Torruellas, W. E.; Blanchard-Desce, M.; Ricci, V.; Stegeman, G. I.; Gilmour, S.; Bredas, J. L.; Li, J.; Bublitz, G. U.; Boxer, S. G. Science 1997, 276, 1233. 33 Norman, P.; Luo, Y.; Ågren, H. Chem. Phys. Lett. 1998, 296, 8. 34 Norman, P.; Luo, Y.; Ågren, H. Opt. Commun. 1999, 168, 297. 35 Lee, S.; Thomas, K. R. J.; Thayumanavan, S.; Bardeen, C. J. J. Phys. Chem. A 2005, 109, 9767. 36 Reinhardt, B. A. Photonics Sci. News 1999, 4, 21. 37 Marder, S. R. Chem. Commun. 2006, 131. 38 Reinhardt, B. A.; Brott, L. L.; Clarson, S. J.; Dillard, A. G.; Bhatt, J. C.; Kannan, R.; Yuan, L.; He, G. S.; Prasad, P. N. Chem. Mater. 1998, 10, 1863. 138 39 Zyss, J.; Ledoux, I. Chem. Rev. 1994, 94, 77. 40 He, G. S.; Swiatkiewicz, J.; Jiang, Y.; Prasad, P. N.; Reinhardt, B. A.; Tan, L.-S.; Kannan, R. J. Phys. Chem. A 2000, 104, 4805. 41 Joshi, M. P.; Swiatkiewicz, J.; Xu, F.; Prasad, P. N.; Reinhardt, B. A.; Kannan, R. Opt. Lett. 1998, 23, 1742. 42 Gaylord, B. S.; Wang, S.; Heeger, A. J.; Bazan, G. C. J. Am. Chem. Soc. 2001, 123, 6417. 43 Jones, R. M.; Bergstedt, T. S.; Buscher, C. T.; McBranch, D.; Whitten, D. Langmuir, 2001, 17, 2568. 44 Jones, R. M.; Bergstedt, T. S.; Buscher, C. T.; McBranch, D.; Whitten, D. J. Am. Chem. Soc. 2001, 123, 6726. 45 Belfield, K. D.; Hagan, D. J.; Van Stryland, E. W.; Schafer, K. J.; Negres, R. A. Org. Lett. 1999, 1, 1575 46 De Boni, L.; Rodrigues, J. J. J.; dos Santos, D. S. J.; Silva, C. H. T. P.; Balogh, D. T.; O. N. Oliveira, J.; Zilio, S. C.; Misoguti, L.; Mendoncüa, C. R. Chem. Phys. Lett. 2002, 361, 209. 47 Lin, T.-C.; He, G. S.; Prasad, P. N.; Tan, L.-S. J. Mater. Chem. 2004, 14, 982. 48 Stellacci, F.; Bauer, C. A.; Meyer-Friedrichsen, T.; Wenseleers, W.; Marder, S. R.; Perry, J. W. J. Am. Chem. Soc. 2003, 125, 328. 49 Ventelon, L.; Moreaux, L.; Mertz, J.; Blanchard-Desce, M. Synth. Met. 2002, 127, 17. 50 Aujard, I.; Benbrahim, C.; Gouget, M.; Ruel, O.; Baudin, J.-B.; Neveu, P.; Jullien, L. Chem. Eur. J. 2006, 12, 6865. 51 Strehmel, B.; Sarker, A. M.; Detert, H. ChemPhysChem 2003, 4, 249. 52 Porres, L.; Mongin, O.; Katan, C.; Charlot, M.; Pons, T.; Mertz, J.; Blanchard-Desce, M. Org. Lett. 2004, 6, 47. 53 Le Droumaguet, C.; Mongin, O.; Werts, M. H. V.; Blanchard-Desce, M. Chem. Commun. 2005, 2802. 54 Lee, H. J.; Sohn, J.; Hwang, J.; Park, S. Y.; Choi, H.; Cha, M. Chem. Mater. 2004, 16, 456. 55 Riehl, D.; Izard, N.; Vivien, L.; Anglaret, E.; Doris, E.; Menard, C.; Mioskowski, C.; Porres, L.; Mongin, O.; Charlot, M.; Blanchard-Desce, M.; Anemian, R.; Mulatier, 139 J.-C.; Barsu, C.; Andraud, C. Proc. SPIE Int. Soc. Opt. Eng. 2003, 5211, 124. 56 Bhawalkar, J. D.; He, G. S.; Park, C. K.; Zhao, C. F.; Ruland, G.; Prasad, P. N. Opt. Commun. 1996, 124, 33. 57 Wang, X.; Krebs, L. J.; Al-Nuri, M.; Pudavar, H. E.; Ghosal, S.; Liebow, C.; Nagy, A. A.; Schally, A. V.; Prasad, P. N. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 11081. 58 Huang, Z.-L.; Lei, H.; Li, N.; Qiu, Z.-R.; Wang, H.-Z.; Guo, J.-D.; Luo, Y.; Zhong, Z.-P.; Liu, X.-F.; Zhou, Z.-H. J. Mater. Chem. 2003, 13, 708. 59 Shao, P.; Huang, B.; Chen, L.; Liu, Z.; Qin, J.; Gong, H.; Ding, S.; Wang, Q. J. Mater. Chem. 2005, 15, 4502. 60 Kannan, R.; He, G. S.; Yuan, L.; Xu, F.; Prasad, P. N.; Dombroskie, A. G.; Reinhardt, B. A.; Baur, J. W.; Vaia, R. A.; Tan, L.-S. Chem. Mater. 2001, 13, 1896. 61 He, G. S.; Gvishi, R.; Prasad, P. N.; Reinhardt, B. A. Opt. Commun. 1995, 117, 133. 62 Belfield, K. D.; Schafer, K. J.; Mourad, W.; Reinhardt, B. A. J. Org. Chem. 2000, 65, 4475. 63 Abbotto, A.; Beverina, L.; Bozio, R.; Facchetti, A.; Ferrante, C.; Pagani, G. A.; Pedron, D.; Signorini, R. Org. Lett. 2002, 4, 1495. 64 Cao, D.-X.; Fang, Q.; Wang, D.; Liu, Z.-Q.; Xue, G.; Xu, G.-B.; Yu, W.-T. Eur. J. Org. Chem. 2003, 3628. 65 Charlot, M.; Izard, N.; Mongin, O.; Riehl, D.; Blanchard-Desce, M. Chem. Phys. Lett. 2006, 417, 297. 66 Parent, M.; Mongin, O.; Kamada, K.; Katan, C.; Blanchard-Desce, M. Chem. Commun. 2005, 2029. 67 Kim, O.-K.; Lee, K.-S.; Woo, H. Y.; Kim, K.-S.; He, G. S.; Swiatkiewicz, J.; Prasad, P. N. Chem. Mater. 2000, 12, 284. 68 Cho, B. R.; Son, K. H.; Lee, S. H.; Song, Y.-S.; Lee, Y.-K.; Jeon, S.-J.; Choi, J. H.; Lee, H.; Cho, M. J. Am. Chem. Soc. 2001, 123, 10039. 69 Yang, W. J.; Kim, C. H.; Jeong, M.-Y.; Lee, S. K.; Piao, M. J.; Jeon, S.-J.; Cho, B. R. Chem. Mater. 2004, 16, 2783. 70 Meng, F.; Li, B.; Qian, S.; Chen, K.; Tian, H. Chem. Lett. 2004, 33, 470. 71 Cui, Y.-Z.; Fang, Q.; Xue, G.; Xu, G.-B.; Yin, L.; Yu, W.-T. Chem. Lett. 2005, 34, 644. 140 72 Kannan, R.; He, G. S.; Lin, T.-C.; Prasad, P. N.; Vaia, R. A.; Tan, L.-S. Chem. Mater. 2004, 16, 185. 73 Kato, S.; Matsumoto, T.; Shigeiwa, M.; Gorohmaru, H.; Maeda, S.; Ishi-i, T.; Mataka, S. Chem. Eur. J. 2006, 12, 2303. 74 Fang, Z.; Zhang, X.; Lai, Y.-H.; Liu, B. Chem Comm, 2009, 920. 75 Fang, Z.; Teo, T.-L.; Cai, L.; Lai, Y.-H.; Samoc, A.; Samoc, M. Org. Lett. 2009, 11, 1. 76 Kim, H. M.; Lee, Y. O.; Lim, C. S.; Kim, J. S.; Cho, B. R. J. Org. Chem. 2008, 73, 5172. 77 Zheng, Q.; He, G. S.; Prasad, P. N. Chem. Mater. 2005, 17, 6004. 78 Shao, J.; Guan, Z.; Yan, Y.; Jiao, C.; Xu, Q.-H.; Chi, C. J. Org. Chem. 2011, 76, 780. 79 Zheng, Q.; Ohulchanskyy, T. Y.; Sahoo, Y.; Prasad, P. N. J. Phys. Chem. C 2007, 111, 16846. 80 Zeng, Z.; Guan, Z.; Xu, Q.-H.; Wu, J. Chem. Eur. J. 2011, 14, 3837. 81 Woo, H. Y.; Hong, J. W.; Liu, B.; Mikhailovsky, A.; Korystov, D.; Bazan, G. C. J. Am. Chem. Soc. 2005, 127, 820. 81 Bartholomew, G. P.; Rumi, M.; Pond, S. J. K.; Perry, J. W.; Tretiak, S.; Bazan, G. C. J. Am. Chem. Soc. 2004, 126, 11529. 83 Bartholomew, G. P.; Bazan, G. C. J. Am. Chem. Soc. 2002, 124, 5183. 84 Konig, B.; Knieriem, B.; Meijere, A. Chem. Ber. 1993, 126, 1643. 85 Vögtle, F. Cyclophane chemistry: synthesis, structures and reactions., Wiley New York, 1993. 86 Joshi, M. P.; Swiatkiewicz, J.; Xu, F.; Prasad, P. N.; Reinhardt, B. A.; Kannan, R. Opt. Lett. 1998, 23, 1742. 87 Giuliano, C.R.; Hess, L.D. IEEE J. Quant. Electron 1967, QE-3, 358. 88 Huff, L.; DeShazer, L.G. J. Appl. Phys. 1969, 40, 4336. 89 Huff, L.; DeShazer, L.G. J. Opt. Soc. Am. 1970, 60, 157. 90 Yang, W. J.; Kim, D. Y.; Kim, C. H.; Jeong, M.-Y.; Lee, S. K.; Jeon, S.-J.; Cho, B. R. Org. Lett. 2004, 6, 1389. 141 91 Marini, A.; Muñoz-Losa, A.; Biancardi, A.; Mennucci, B. J Phys. Chem. B, 2010, 114, 17128. 92 Mongin, O.; Porrès, L.; Katan, C.; Pons, T.; Mertz, J.; Blanchard-Desce, M. Tetrahedron Lett. 2003, 44, 8121. 93 C. Xu, W. Zipfel, J. B. Shear, R. M. Williams and W. W. Webb, P. N. Proc. Natl. Acad. Sci. U.S.A, 1996, 93, 10763; 94 Gratton, E. Science, 2011, 331, 1016. 95 Rubart, M. Circ. Res., 2004, 95, 1154. 96 Helmchen, F.; Denk, W. Nat. Methods, 2005, 2, 932; 97 Xie, X. S.; Yu, J. Wang, W. Y. Science 2006, 312, 228. 98 Diaspro, A.; Shepard, C. J. R. Two-Photon Microscopy: Basic Principles and Architectures, 2002, Wiley & Sons, New York. 99 Woo, H. Y.; Korystov, D.; Mikhailovsky, A.; Nguyen, T.-Q.; Bazan, G. C. J. Am. Chem. Soc. 2005, 127, 13794. 100 So, P. T. C.; Dong, C. Y.; Masters, B. R.; Berland, K. M. Annu. Rev. Biomed. Eng. 2000, 2, 399. 101 Xu, C.; Williams, R. M.; Zipfel, W.; Webb, W. W. Bioimaging 1996, 4, 198. 102 Xu, C.; Webb, W. W. J. Opt. Soc. Am. B 1996, 13, 481 103 Margineanu, A.; Hofkens, J.; Cotlet, M.; Habuchi, S.; Stefan, A.; Qu, J.; Kohl, C.; Müllen, K.; Vercammen, J.; Engelborghs, Y.; Gensch, T.; Schryver, F. C. D. J. Phys. Chem. B 2004, 108, 12242. 104 Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V.; Brivanlou, A. H.; Alibchaber, A. Science 2002, 298, 1759. 105 Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N. Nano Lett. 2004, 4, 11. 106 Smith, A. M.; Duan, H.; Mohs, A. M.; Nie, S. Adv. Drug Delivery Rev. 2008, 60, 1226. 107 Drobizhev, M.; Makarov, N. S.; Tillo, S. E.; Hughes, T. E.; Rebane, A. Nat. Methods 2011, 8, 393. 108 Müller-Taubenberger, A.; I. Anderson, K. Appl. Microbiol. Biotechnol. 2007, 77, 1. 142 109 Woo, H. Y.; Liu, B.; Kohler, B.; Korystov, D.; Mikhailovsky, A.; Bazan, G. C. J. Am. Chem. Soc. 2005, 127, 14721. 110 Jager, W. F.; Volkers, A. A.; Neckers, D. C. Macromolecules 1995, 28, 8153. 111 Tian, Y.; Chen, C.-Y.; Cheng, Y.-J.; Young, A. C.; Tucker, N. M.; Jen, A. K.-Y. Adv. Funct. Mater. 2007, 17, 1691. 112 Pu, K.-Y.; Li, K.; Liu, B. Adv. Funct. Mater. 2010, 20, 2770. 113 Weissleder, R.; Ntziachristos, V. Nat. Med. 2003, 9, 123. 114 Ferrari, M. Nat. Rev. Cancer 2005, 5, 161. 115 White, N. S.; Errington, R. J. Adv. Drug Delivery Rev. 2005, 57, 17. 116 Smith, A. M.; Duan, H.; Mohs, A. M.; Nie, S. Adv. Drug Delivery Rev. 2008, 60, 1226. 117 Li, K.; Pan, J.; Feng, S.-S.; Wu, A. W.; Pu, K.-Y.; Liu, Y.; Liu, B. Adv. Funct. Mater. 2009, 19, 3535. 118 Lu, T.; Sun, J.; Chen, X.; Zhang, P.; Jing, X. Macromol. Biosci. 2009, 9, 1059. 119 Li, K.; Liu, Y.; Pu, K.-Y.; Feng, S.-S.; Zhan, R.; Liu, B. Adv. Funct. Mater. 2011, 21, 287. 120 Yong, K.-T.; Qian, J.; Roy, I.; Lee, H. H.; Bergey, E. J.; Tramposch, K. M.; He, S.; Swihart, M. T.; Maitra, A.; Prasad, P. N. Nano Lett. 2007, 7, 761. 121 Khanadeev, V. A.; Khlebtsov, B. N.; Staroverov, S. A.; Vidyasheva, I. V.; Skaptsov, A. A.; Ileneva, E. S.; Bogatyrev, V. A.; Dykman, L. A.; Khlebtsov, N. G. J Biophotonics. 2011, 4, 74. 122 Morales, A. R.; Schafer-Hales, K. J.; Marcus, A. I.; Belfield, K. D. Bioconjugate Chem. 2008, 19, 2559. 123 Morales, A. R.; Yanez, C. O.; Schafer-Hales, K. J.; Marcus, A. I.; Belfield, K. D. Bioconjugate Chem. 2009, 20, 1992. 124 Morales, A. R.; Luchita, G.; Yanez, C. O.; Bondar, M. V.; Przhonskab,O. V.; Belfield, K. D. Org. Biomol. Chem. 2010, 8, 2600. 125 Weissleder, R.; Ntziachristos, V. Nat Med 2003, 9, 123. 126 Zheng, Q.; Xu, G.; Prasad, P. N. Chem. Eur. J. 2008, 14, 5812. 127 Zhang, D.; Wang, Y.; Xiao, Y.; Qian, S.; Qian, X. Tetrahedron 2009, 65, 8099. 143 128 Justin Thomas, K. R.; Lin, J. T.; Velusamy, M.; Tao, Y.-T.; Chuen C.-H. Adv. Funct. Mater. 2004, 14, 83. 129 Kato, S.; Matsumoto, T.; Shigeiwa, M.; Gorohmaru, H.; Maeda, S.; Ishi-i, T.; Mataka, S. Chem. Eur. J. 2006, 12, 2303. 130 Tian, Y.; Wu, W.-C.; Chen, C.-Y.; Jang, S.-H.; Zhang, M.; Strovas, T.; Anderson, J.; Cookson, B.; Li, Y.; Meldrum, D.; Chen, W.-C.; Jen, A. K.-Y. J. Biomed. Mater. Res. Part A 2009, 1068. 131 Kato, S.; Matsumoto, T.; Ishi-i, T.; Thiemann, T.; Shigeiwa, M.; Gorohmaru, H.; Maeda, S.; Yamashita, Y.; Mataka, S. Chem. Commun. 2004, 2342. 132 Tian, Y.; Wu, W.-C.; Chen, C.-Y.; Strovas, T.; Jin, Y.; Su, F.; Meldrum, D.; Jen, A. K.-Y. J. Mater. Chem. 2010, 20, 1728. 133 Wang, B.; Wang, Y.; Hua, J.; Jiang, Y.; Huang, J.; Qian, S.; Tian, H. Chem. Eur. J. 2011, 17, 2647. 134 Noh, S. B.; Kim, R. H.; Kim, W. J.; Kim, S.; Lee, K.-S.; Cho, N. S.; Shim, H.-K.; Pudavarb, H. E.; Prasad, P. N. J. Mater. Chem. 2010, 20, 7422. 135 Hong, J. W.; Benmansour, H.; Bazan, G. C. Chem. Eur. J. 2003, 9, 3186. 136 Bartholomew. G. P.; Bazan, G. C. Synthesis, 2002, 9, 1245. 137 Vögtle, F.; Rossa, L. Angew. Chem., Int. Ed. Engl. 1979, 18, 515. 138 Mitchell, R. H.; Boekelheide, V. J. Am. Chem. Soc. 1974, 96, 1547. 139 Boekelheide, V.; Reingold, I. D.; Tuttle, M. J. Chem. Soc., Chem.Comm. 1973, 406. 140 Bruhin, J.; Jenny, W. Tetrahedron Lett. 1973, 1215. 141 Lai, Y.-H.; Yap, A. H. T.; Novak, I. J. Org. Chem. 1994, 12, 3381. 142 Jensen, W. B. J. Chem. Educ. 2009, 86, 545. 143 Williams, C. R.; Harpp, D. N. J. Sulfur Chem. 1990, 10, 103. 144 Ashram, M.; Miller, D. O.; Bridson, J. N.; Georghiou, P. E. J. Org. Chem. 1997, 62, 6477. 145 Yamato, T.; Ide, S.; Tokuhisa, K.; Tashiro, M. J. Org. Chem.1992, 57, 271. 146 Font-Sanchis, E.; Aliaga, C.; Cornejo, R.; Scaiano, J. C. Org. Lett., 2005, 5, 1515. 147 Stubenrauch, C. Curr. Opin. Colloid Interface Sci. 2001, 6, 160. 144 148 Koo, C.-K.; Wong, K.-L.; Man, C. W.-Y.; Lam, Y.-W.; So, L. K.-Y.; Tam, H.-L.; Tsao, S.-W.; Cheah, K.-W.; Lau, K.-C.; Yang, Y.-Y.; Chen, J.-C.; Lam, M. H.-W. Inorg. Chem. 2009, 48, 878. 149 Koo, C.-K.; Wong, K.-L.; Man, C. W.-Y.; Tam, H.-L.; Tsao, S.-W.; Cheah, K.-W.; Lam, M. H.-W. Inorg. Chem. 2009, 48, 7501. 150 Koo, C.-K.; So, L. K.-Y.; Wong, K.-L.; Ho, Y.-M.; Lam, Y.-W.; Lam, M. H.-W.; Cheah, K.-W.; Cheng, C. C.-W.; Kwok, W.-M. Chem. Eur. J. 2010, 16, 3942. 151 Ohulchanskyy, T. Y.; Pudavar1, H. E.; Yarmoluk, S. M.; Yashchuk, V. M.; Bergey, E. J.; Prasad, P. N. Photochem. Photobiol. 2003, 77, 138. 152 Dyrager, C.; Friberg, A.; Dahlén, K.; Fridén-Saxin, M.; Börjesson, K.; Wilhelmsson, L. M.; Smedh, M.; Grøtli, M.; Luthman, K. Chem. Eur. J. 2009, 15, 9417. 153 McRae, R. L.; Phillips, R. L.; Kim, I.-B.; Bunz, U. H. F.; Fahrni, C. J. J. Am. Chem. Soc. 2008, 130, 7851. 154 Warther, D.; Bolze, F.; Léonard, J.; Gug, S.; Specht, A.; Puliti, D.; Sun, X.-H.; Kessler, P.; Lutz, Y.; Vonesch, J.-L.; Winsor, B.; Nicoud, J.-F.; Goeldner, M. J. Am. Chem. Soc. 2010, 132, 2585. 155 Jiang, Y.; Wang, Y.; Wang, B.; Yang, J.; He, N.; Qian, S.; Hua, J. Chem. Asian J. 2011, 6, 157. 156 Liu, B.; Wang, S.; Bazan, G. C.; Mikhailovsky, A. J. Am. Chem. Soc. 2003, 125, 13306. 157 Liu, B.; Bazan, G. C. J. Am. Chem. Soc. 2006, 128, 1188. 158 Liu, B.; Bazan, G. C. Chem. Asian J. 2007, 2, 499. 159 Liu, B.; Bazan, G. C. J. Am. Chem. Soc. 2004, 126, 1942. 160 Pu, K.-Y.; Fang, Z.; Liu, B. Adv. Funct. Mater. 2008, 18, 1321. 161 Pu, K. Y.; Pan, S. Y. H.; Liu, B. J. Phys. Chem. B 2008, 112, 9295. 162 Xue, C.; Jog, S. P.; Murthy, P.; Liu, H. Biomacromolecules 2006, 7, 2470. 163 Xue, C.; Donuru, V. R. R.; Liu, H. Macromolecules 2006, 39, 5747. 164 Pu, K.-Y.; Shi, J.; Wang, L.; Cai, L.; Wang, G.; Liu, B. Macromolecules 2010, 43, 9690. 165 Eastoe, J.; Rogueda, P.; Harrison, B. J.; Howe, A. M.; Pitt, A. R. Langmuir 1994, 12, 4429. 145 166 Chu, B. Laser Light Scattering: Basic Principles and Practice, 2nd ed., Academic Press, San Diego, CA 1991. 167 Pu, K.-Y.; Liu, B. Adv. Funct. Mater. 2009, 19, 277. 168 Makarov, N. S.; Drobizhev, M.; Rebane, A. Opt. Express 2008, 16, 4029. 169 Hrobarikova, V.; Hrobarik, P.; Gajdos, P.; Fitilis, I.; Fakis, M.; Persephonis, P.; Zahradnik, P. J. Org. Chem. 2010, 75, 3053. 170 Yao, S.; Ahn, H.-Y.; Wang, X.; Fu, J.; Van Stryland, E. W.; Hagan, D. J.; Belfield, K. D. J. Org. Chem. 2010, 75, 3965. 171 Andrade, C. D.; Yanez, C. O.; Rodriguez, L.; Belfield, K. D. J. Org. Chem. 2010, 75, 3975. 172 Wang, C.-K.; Zhao, K.; Su, Y.; Ren, Y.; Zhao, X.; Luo, Y. J. Chem. Phys. 2003, 119, 1208. 173 Tian, Y. S.; Lee, H. Y.; Lim, C. S.; Park, J.; Kim, H. M.; Shin, Y. N.; Kim, E. S.; Jeon, H. J.; Park, S. B.; Cho, B. R. Angew. Chem. Int. Ed. 2009, 48, 8027. 174 Khan, S.; Bijker, M. S.; Weterings, J. J.; Tanke, H. J.; Adema, G. J.; van Hall, T.; Drijfhout, J. W.; Melief, C. J. M.; Overkleeft, H. S.; van der Marel, G. A.; Filippov, D. V.; van der Burg, S. H.; Ossend, F. J. Biol. Chem. 2007, 282, 21145. 175 Wang, G.; Pu, K.-Y.; Zhang, X.; Li, K.; Wang, L.; Cai, L.; Ding, D.; Lai, Y.-H.; Liu, B. Chem. Mater. 2011, 23, 4428. 176 Kim, J.-H.; Kim, Y.-S.; Park, K.; Kang, E.; Lee, S.; Nam, H. Y.; Kim, K.; Park, J. H.; Chi, D. Y.; Park, R.-W.; Kim, I.-S.; Choi, K.; Kwon,I. C. Biomaterials 2008, 29, 1920. 177 Huang, M.; Ma, Z.; Khor, E.; Lim, L.-Y. Pharm. Res. 2002, 19, 1488. 178 Han, H. D.; Mangala, L. S.; Lee, J. W.; Shahzad, M. M.; Kim, H. S.; Shen, D.; Nam, E. J.; Mora, E. M.; Stone, R. L.; Lu, C.; Lee, S. J.; Roh, J. W.; Nick, A. M.; Lopez-Berestein, G.; Sood, A. K. Clin Cancer Res. 2010, 16, 3910. 179 Wang, H.-Y.; Chen, G.; Xu, X.-P.; Ji, S.-J. Synthetic Met. 2010, 160, 1065. 180 Lai, G.; Bu, X. R.; Santos, J.; Mintz,E. A. Synlett. 1997, 1275. 181 Mallegol, T.; Gmouh, S.; Aït Amer Meziane, M.; Blanchard-Desce, M.; Mongin, O. Synthesis 2005, 1771. 182 Knapp, S.; Gonzalez, S.; Myers, D. S.; Eckman, L. L.; Bewley, C. A. Org. Lett. 2002, 4, 4337. 146 183 Metaferia, B. B.; Fetterolf, B. J.; Shazad-ul-Hussan, S.; Moravec,M.; J. Smith, A.; Ray, S.; Gutierrez-Lugo, M.-T.; Bewley, C. A. J. Med. Chem. 2007, 50, 6326. 184 Sarkar, S.; Sucheck, S. J. Carbohyd. Res. 2011, 346, 393. 185 Dufourcq, J.; Faucon, J. F.; Fourche, G.; Dasseux, J. L.; Le Maire, M.; Gulik-Krzywicki, T. Biochim Biophys Acta. 1986, 859, 33. 186 Patty, P. J.; Frisken, B. J. Biophys. J. 2003, 85, 996. 187 Patty, P. J.; Frisken, B. J. Appl. Optics 2006, 45, 2209. 188 Pu, K.-Y.; Li, K.; Shi, J.; Liu, B. Chem. Mater. 2009, 21, 3816. 189 Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd ed., Springer Science R Business Media, LLC, New York, 2006. 190 Zojer, E.; Beljonne, D.; Kogej, T.; Vogel, H.; Marder, S. R.; Perry, J. W.; Brédas, J.-L. J. Chem. Phys. 2002, 116, 3646. 191 Figueira-Duarte, T. M.; Müllen, K. Chem. Rev. 2011, 111, 7260. 192 Lackowicz, J. R. Principles of Fluorescence Spectroscopy, 2nd ed.; Kluwer Academic/Plenum Publishers: New York, 1999; 595. 193 Birks, J. B. Photophysics of Aromatic Molecules; Wiley-Interscience: London, 1970. 194 Sagara, Y.; Mutai, T.; Yoshikawa, I.; Araki, K. J. Am. Chem. Soc. 2007, 129, 1520. 195 Roncali, J. Chem. Rev. 1997, 97, 173. 196 Wudl, F.; Kobayashi, M.; Heeger, A. J. J. Org. Chem. 1984, 49, 3382. 197 van Mullekom, H. A. M.; Vekemans, J. A. J. M.; Havinga, E. E.; Meijer, E. W. Mater. Sci. Eng. Rep. 2001, 32, 1. 198 Grant, C. D.; DeRitter, M. R.; Steege, K. E.; Fadeeva, T. A.; Castner, E. W. Jr. Langmuir 2005, 21, 1745. 199 Nivaggioli, T.; Alexandridis, P.; Hatton, T. A.; Yekta, A.; Winnik, M. A. Langmuir 1995, 11, 730. 200 Blümmel, J.; Perschmann, N.; Aydin, D.; Drinjakovic, J.; Surrey, T.; Lopez-Garcia, M.; Kessler, H.; Spatz, J. P. Biomaterials 2007, 28, 4739. 201 Park, Y.-H.; Han, J.-G.; Suh, K.-D. Macromol. Chem. Phys. 2008, 209, 938. 202 Liu, H.; Wang, Y.; Liu, C.; Li, H.; Gao, B.; Zhang, L.; Bo, F.; Bai, Q.; Ba, X. J. 147 Mater. Chem. 2012, 22, 6176. 203 Yue, Z.-G.; Wei, W.; Lv, P.-P.; Yue, H.; Wang, L.-Y.; Su, Z.-G.; Ma, G.-H. Biomacromolecules 2011, 12, 2440. 204 Fang, Z.; Zhang, X.; Lai, Y.-H.; Liu, B. Chem. Commun. 2009, 920. 205 Seymour, L. W.; Ulbrich, K.; Wedge, S. R.; Hume, I. C.; Strohalm, J.; Duncan, R. Br. J. Cancer 1991, 63, 859. 206 Steinert, P. M.; Jones, J. C.; Goldman, R. D. J. Cell Biol. 1984. 99, 22. 148 [...]... Structures of [2,2]paracyclophane based TPA molecules 1-9 Figure 1.4 Structures of triphenylamine based TPA molecules 10 and 11 Figure 1.5 Structures of triphenylamine based TPA molecules 12-25 Figure 1.6 Structures of pyrene based TPA molecules 26-29 Figure 2.1 Chemical strutures of donor- acceptor substituted [2,2]PcPs, PcP1-PcP5 Figure 2.2 Comparison of NMR spectra for 47, PcP1, 48 and PcP2 Figure 2.3 Comparison... idea of all three publications under the supervision of Prof Yee-Hing Lai and Prof Bin Liu The author, Guan Wang, participated in all the data acquirement In publication 2 (Chem Mater 2011, 23, 4428), Guan Wang synthesized and characterized all the compounds, measured the self-assembly properties, linear and two-photon absorption (TPA) properties and did the cell imaging experiments Kan-Yi Pu helped... unveiled in this PhD project provide useful guidelines in future advancement of star- shaped donor- acceptor TPA materials with water-solubility, large TPA δ, targeting ability and red emission for biological applications ix LIST OF PUBLICATIONS Journal Publication [1] Kan-Yi Pu, Jianbing Shi, Lihua Wang, Liping Cai, Guan Wang and Bin Liu “Mannose-Substituted Conjugated Polyelectrolyte and Oligomer as... MALDI-TOF mass spectrum of Pyrene4BTF xvii Figure 3.3.3 1H NMR spectrum of Pyrene4BTF-N3 in CDCl3 Figure 3.3.4.1H NMR spectrum of Pyrene4BTF-PEGCOOH in MeOD Figure 3.3.5 MALDI-TOF mass spectrum of Pyrene4BTF-PEGCOOH Figure 3.3.6 1H NMR spectrum of Pyrene4BTF-PEG-TAT in MeOD Figure 3.3.7 UV-vis absorption (dashed line) and PL (solid line) spectra of Pyrene4BTF in toluene (black), DCM (red) and DMF (blue)... viewpoint of materials application, conjugated oligomers have found various important applications based on the non-linear TPA process, such as (1) 3D optical data storage and micro-fabrication,8-10 (2) optical power limiting,11 (3) two-photon (fluorescence) microscopy (TPM),12-13 (4) photo dynamic therapy,14 and frequency upconversion lasing.15 Two features are responsible for the advantages of TPA... advantages of TPA based applications: (1) a longer wavelength coherent laser light can be used and (2) there is a quadruple dependence of the two-photon excitation probability on the input incident of the applied coherent light field As a result, development of TPA materials is of high importance for both theoretical interest and practical applications In the following sections of this chapter, we will firstly... line) and PL (solid line) spectra of Pyrene4BTF-PEG-TAT in DMSO (black) and in H2O (red) Each solution has a concentration of 2 μM The inset shows the emission colours of Pyrene4BTF-PEG-TAT in DMSO and H2O under a hand-held UV lamp upon excitation at 365 nm; (b) DLS spectrum of Pyrene4BTF-PEG-TAT in water Figure 3.3.10 TEM image for Pyrene4BTF-PEG-TAT nanoparticles Figure 3.3.11 DLS spectrum of Pyrene-4BTF-PEGCOOH... Comparison of NMR spectra for 49, 50, 51 Figure 2.4 Normalized UV-vis absorption (dash line) and PL (solid line) spectra of 47 (black) and PcP1 (red) in chloroform (excited at λmax) Figure 2.5 Normalized UV-vis absorption (dash line) and PL (solid line) spectra of 48 (black) and PcP2 (red) in chloroform (excited at λmax) Figure 2.6 Normalized UV-vis absorption (dash line) and PL (solid line) spectra of 49... self-assembly properties, linear and TPA properties and did the cell imaging experiments Xinhai Zhang helped with the TPA setup and measurement Junlong Geng did the cell culture experiment Kai Li, Liping Cai and Dan Ding helped the manuscript revision Yee-Hing Lai and Bin Liu supervised the project and revised the manuscript In publication 4 (Polym Chem 2012, 3, 2464), Guan Wang synthesized and characterized... concepts and theoretical considerations on the TPA process to shed light on this interesting and important phenomenon The strategies for molecular design will be discussed considering the important factors such as molecular structure motifs (e.g dipolar, quadrupolar and octupolar structures) and molecular components (e.g donors and acceptors) A review on some important examples of star- shaped TPA molecules . 2.1. Chemical strutures of donor- acceptor substituted [2,2]PcPs, PcP1-PcP5. Figure 2.2. Comparison of NMR spectra for 47, PcP1, 48 and PcP2. Figure 2.3. Comparison of NMR spectra for 49, 50, 51 two-photon microscopy (TPM) bioimaging. Design and synthesis of novel star- shaped donor- acceptor structures provides a platform for structure-TPA properties relationships study and yields promising. SYNTHESIS AND OPTOELECTRONIC APPLICATIONS OF STAR- SHAPED DONOR- ACCEPTOR π -CONJUGATED MATERIALS WANG GUAN NATIONAL UNIVERSITY OF SINGAPORE 2012 SYNTHESIS

Ngày đăng: 09/09/2015, 10:15

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan