1. Trang chủ
  2. » Luận Văn - Báo Cáo

Improving the properties of pharmaceutical powders using supercritical anti solvent processing

151 1.4K 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Cấu trúc

  • ACKNOWLEDGEMENT

  • TABLE OF CONTENTS

  • SUMMARY

  • NOMENCLATURE

  • ABBREVIATION

  • LIST OF FIGURES

  • LIST OF TABLES

    • 1. Introduction

      • 1.1 Research Background

      • 1.2 Research Objectives

      • 1.3 Organization of Thesis

    • 2. Literature Review

      • 2.1 Drug Development and Delivery

      • 2.2 Drug Solubility and Dissolution Rate

      • 2.3 Formulation Strategies to Enhance Dissolution Rate

        • 2.3.1 Micronization

        • 2.3.2 Amorphous Form/Solid Dispersion Material

      • 2.4 Co-milling

      • 2.5 Supercritical Fluids Technologies

        • 2.5.1 Physicochemical Properties of Supercritical Fluids

        • 2.5.2 SCF as Solvent Process

          • 2.5.2.1 RESS Process

        • 2.5.3 SCF as Solute Process

          • 2.5.3.1 PGSS Process

        • 2.5.4 SCF as Anti-solvent Processes (GAS, SAS and SEDS)

          • 2.5.4.1 GAS Process

          • 2.5.4.2 SAS Process

          • 2.5.4.3 SEDS Process

      • 2.6 Characterizations of Solid Dispersion

        • 2.6.1 X-ray Powder Diffraction (XRD)

        • 2.6.2 Scanning and Transmission Electron Microscopy

        • 2.6.3 Differential Scanning Calorimetry (DSC)

        • 2.6.4 Physical Stability Evaluation

        • 2.6.5 Gravimetric Vapour Sorption (GVS)

        • 2.6.6 Fourier Transformed Infrared and Raman Spectroscopy

        • 2.6.7 Inverse Gas Chromatography (IGC)

    • 3. Material and Methods

      • 3.1 Model Compound

      • 3.2 Preparation of Physical Blends

      • 3.3 Milling

        • 3.3.1 Co-milling of IDMC with PVP

        • 3.3.2 Cryo-milling to Generate Amorphous Form of IDMC

      • 3.4 SAS Experimental Set-up and Procedures

      • 3.5 Powder Characterizations

        • 3.5.1 X-ray Powder Diffraction (XRD)

        • 3.5.2 Scanning Electron Microscopy (SEM)

        • 3.5.3 Differential Scanning Calorimetry (DSC)

        • 3.5.4 USP Dissolution Tester

        • 3.5.5 Accelerated Physical Stability Evaluation

        • 3.5.6 Gravimetric Vapour Sorption (GVS)

        • 3.5.7 Fourier Transformed Infrared Spectroscopy (FTIR)

        • 3.5.8 Inverse Gas Chromatography (IGC)

          • 3.5.8.1 Experimental Apparatus

          • 3.5.8.2 Evaluation of Surface Energies of Powders

          • 3.5.8.3 Evaluation of Surface Structural Relaxation

        • 3.5.9 Raman Microscopy Mapping (RM)

        • 3.5.10 Thermogravimetric (TGA)

        • 3.5.11 Gas Chromatography (GC)

    • 4. Results and Discussion

      • 4.1 Solid-State (XRD)

      • 4.2 Morphology (SEM)

      • 4.3 Glass Transition Temperature of Co-precipitates (DSC)

      • 4.4 Dissolution Rate Evaluation

      • 4.5 Accelerated Physical Stability Evaluation

      • 4.6 Moisture Sorption Isotherm (GVS)

      • 4.7 Drug-Polymer Interactions (FTIR)

      • 4.8 Surface Energy Properties (IGC)

        • 4.8.1 Dispersive Energy

        • 4.8.2 Specific Polar Energy

      • 4.9 Surface Structural Relaxation (IGC)

      • 4.10 Raman Mapping (RM)

      • 4.11 Drug Content in COM and SAS Co-precipitates (TGA)

      • 4.12 Residual Solvents in SAS Processed Samples (GC)

    • 5. Conclusions

    • 6. Future Recommendation Work

  • REFERENCES

  • APPENDICES

    • A1. List of Publications

    • A2. Conferences

Nội dung

IMPROVING THE PROPERTIES OF PHARMACEUTICAL POWDERS USING SUPERCRITICAL ANTI-SOLVENT PROCESSING LIM TAU YEE, RON NATIONAL UNIVERSITY OF SINGAPORE 2012 IMPROVING THE PROPERTIES OF PHARMACEUTICAL POWDERS USING SUPERCRITICAL ANTI-SOLVENT PROCESSING LIM TAU YEE, RON (B. Eng. (Hons.), UNIVERSITY OF BATH, U.K.) (M. Eng., NUS) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMICAL AND BIOMOLECULAR ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2012 DECLARATION I hereby declare that this thesis is my original work and it has been written by me in its entirety. I have duly acknowledged all the sources of information which have been used in the thesis. This thesis has also not been submitted for any degree in any university previously. Lim Tau Yee, Ron 29th January 2013 ACKNOWLEDGEMENT Firstly, I would like to express my sincere gratitude to my supervisor, Prof. Reginald Tan and my co-supervisor, Dr. Ng Wai Kiong for their advice and patient guidance to me throughout the candidature. I am very grateful to Agency for Science, Technology and Research (A*STAR) for providing me the scholarship during my study in NUS. I am also very grateful to Dr. Keith Carpenter, Executive Director of Institute of Chemical and Engineering Sciences (ICES) for supporting me throughout the candidature. I also like to thank Prof. Satoru Watano, Prof. John Dodds, Dr. Jerry Heng, Dr. Gerry Steele and Dr. Simon Black for giving me very useful advice in my research work. I wish to thank Dr. Elisabeth Rodier and Ms. Sylvie for their advice and study in DSC. The colleagues and fellow students at the ICES have been most supportive to me. I would like to thank Dr. Martin Wijaya Hermanto, Mr. Ng Jun Wei, Ms. Tan Li Teng and Ms. Agnes Nicole Phua for their invaluable support in analytical studies. I wish to thank Dr. Effendi Widjaja for his support in Raman characterization and analysis. I also like to thank Mr. Jerry Wisser, Thar USA Engineering Support Manager for his constant help and support on the operation of Super Particle SAS50 system. My wife, Shu Yen, and my family have been most understanding to my long research hours. I would like to thank the Science and Engineering Research Council of A*STAR Singapore for awarding me the Scientific Staff Development Award (SSDA) and providing financial support to this research project. i TABLE OF CONTENTS ACKNOWLEDGEMENT . i TABLE OF CONTENTS ii SUMMARY . vi NOMENCLATURE ix ABBREVIATION xi LIST OF FIGURES . xiv LIST OF TABLES xvii 1. 2. Introduction . 1.1 Research Background . 1.2 Research Objectives . 1.3 Organization of Thesis Literature Review 10 2.1 Drug Development and Delivery 10 2.2 Drug Solubility and Dissolution Rate . 12 2.3 Formulation Strategies to Enhance Dissolution Rate . 13 2.3.1 Micronization 13 2.3.2 Amorphous Form/Solid Dispersion Material 18 2.4 Co-milling . 24 2.5 Supercritical Fluids Technologies 25 2.5.1 Physicochemical Properties of Supercritical Fluids 27 2.5.2 SCF as Solvent Process . 30 2.5.2.1 RESS Process . 30 ii 2.5.3 SCF as Solute Process . 32 2.5.3.1 PGSS Process . 32 2.5.4 SCF as Anti-solvent Processes (GAS, SAS and SEDS) . 33 2.5.4.1 GAS Process . 33 2.5.4.2 SAS Process . 35 2.5.4.3 SEDS Process . 38 2.6 3. Characterizations of Solid Dispersion 40 2.6.1 X-ray Powder Diffraction (XRD) . 41 2.6.2 Scanning and Transmission Electron Microscopy 41 2.6.3 Differential Scanning Calorimetry (DSC) . 42 2.6.4 Physical Stability Evaluation 42 2.6.5 Gravimetric Vapour Sorption (GVS) 43 2.6.6 Fourier Transformed Infrared and Raman Spectroscopy 44 2.6.7 Inverse Gas Chromatography (IGC) . 44 Material and Methods . 47 3.1 Model Compound . 47 3.2 Preparation of Physical Blends . 48 3.3 Milling 49 3.3.1 Co-milling of IDMC with PVP . 49 3.3.2 Cryo-milling to Generate Amorphous Form of IDMC . 49 3.4 SAS Experimental Set-up and Procedures . 49 3.5 Powder Characterizations . 52 3.5.1 X-ray Powder Diffraction (XRD) . 52 iii 3.5.2 Scanning Electron Microscopy (SEM) . 52 3.5.3 Differential Scanning Calorimetry (DSC) . 52 3.5.4 USP Dissolution Tester . 53 3.5.5 Accelerated Physical Stability Evaluation 53 3.5.6 Gravimetric Vapour Sorption (GVS) 53 3.5.7 Fourier Transformed Infrared Spectroscopy (FTIR) . 54 3.5.8 Inverse Gas Chromatography (IGC) . 54 3.5.8.1 Experimental Apparatus . 54 3.5.8.2 Evaluation of Surface Energies of Powders . 56 3.5.8.3 Evaluation of Surface Structural Relaxation 59 3.5.9 4. Raman Microscopy Mapping (RM) 59 3.5.10 Thermogravimetric (TGA) 60 3.5.11 Gas Chromatography (GC) 60 Results and Discussion . 62 4.1 Solid-State (XRD) 62 4.2 Morphology (SEM) 66 4.3 Glass Transition Temperature of Co-precipitates (DSC) . 68 4.4 Dissolution Rate Evaluation . 71 4.5 Accelerated Physical Stability Evaluation 74 4.6 Moisture Sorption Isotherm (GVS) 78 4.7 Drug-Polymer Interactions (FTIR) . 85 4.8 Surface Energy Properties (IGC) 89 4.8.1 Dispersive Energy . 89 iv 4.8.2 4.9 Specific Polar Energy 92 Surface Structural Relaxation (IGC) 94 4.10 Raman Mapping (RM) 97 4.11 Drug Content in COM and SAS Co-precipitates (TGA) 100 4.12 Residual Solvents in SAS Processed Samples (GC) 102 5. Conclusions . 104 6. Future Recommendation Work . 107 REFERENCES . 109 APPENDICES 129 A1. List of Publications 129 A2. Conferences 130 v SUMMARY Recently, the increase in the number of newly discovered poorly water-soluble drug candidates has heightened the interest in developing novel methods to improve solubility of active pharmaceutical ingredients (APIs). Amorphization is an emerging technique to enhance the dissolution of poorly water-soluble drug. In amorphous form the ordered crystalline lattice is not presence, thus providing the maximal solubility advantages as compared to the crystalline and hydrated forms of a drug. There are several strategies to generate amorphous drug substances such as solvent evaporation, co-milling (COM), melt-extrusion, spray-drying, melt-quenching and supercritical fluids technology. In this thesis, the effectiveness of a low-cost and easily scalable process COM was compared with the high-cost and precise-controlled supercritical anti-solvent (SAS) process to amorphize indomethacin (IDMC) with a water-soluble polymer excipient poly(vinylpyrrolidone) (PVP) to improve the aqueous-solubility as well as physical stability of IDMC amorphous form. Both COM and SAS co-precipitation were conducted at IDMC to PVP ratios of 60:40, 50:50 and 20:80. The untreated, COM and SAS powders were characterized using scanning electron microscopy (SEM, morphology), X-ray powder diffractometry (XRD, crystallinity), thermogravimetric analysis (TGA, composition), differential scanning calorimetry (DSC, glass transition temperature (Tg)), USP dissolution tester, gravimetric vapour sorption (GVS, moisture isotherms), Fourier-transform infrared spectroscopy (FTIR, drug-polymer interactions), inverse gas chromatography (IGC, surface energetic and structural relaxations) and Raman mapping (RM, spatial distribution). The residual solvent content in SAS processed samples were evaluated vi using gas chromatography (GC). Accelerated stability stress tests were also conducted on COM and SAS co-precipitates in open pans at 75%RH/40oC. Amorphous forms of IDMC produced by COM and SAS have significantly improved the dissolution rate of IDMC as compared to the crystalline form and its physical blends, respectively. SAS IDMC-PVP co-precipitates with PVP contents at more than 40wt.% were X-ray amorphous form and remained stable after more than months of storage at 75%RH/40oC. COM IDMC-PVP samples with PVP contents less than 50wt.% re-crystallized after days of storage at 75%RH/40oC. FTIR also revealed there were interactions between IDMC and PVP in both COM and SAS co-precipitates and PVP may influence the re-crystallization kinetics by preventing the self association of indomethacin molecules. IGC studies also revealed that the two different preparation methods have an effect on its physical stability in terms of surface structural relaxation as well as having different surface energetics. Overall the surface structural relaxation of SAS co-precipitate was slower than COM samples indicating that SAS co-precipitate was physically more stable than COM sample. Raman mapping results showed the presence of crystalline γ-IDMC phase in COM sample, which may has acted as the precursor for the re-crystallization of COM sample. The Raman spatial distribution mapping suggested that co-linearity in composition between PVP and amorphous IDMC in SAS sample, which resulted in the reconstruction of single component spectrum that are resemblance to Raman peaks of PVP and amorphous IDMC pure component references. It was demonstrated that the drug to polymer ratio influenced the amorphous content of the SAS co-precipitates. By using different polymer ratios, the morphologies of a drug- vii References [88] Lee, B.-M.; Jeong, J.-S.; Lee, Y.-H.; Lee, B.-C.; Kim, H.-S.; Kim, H.; Lee, Y.W., Supercritical antisolvent micronization of cyclotrimethylenetrinitramin: Influence of the organic solvent Ind. Eng. Chem. Res. 2009, 48, 1162-1167. [89] Jiang, Y.; Sun, W.; Wang, W., Recrystallization and micronization of 10hydroxycamptothecin by supercritical antisolvent process. Ind. Eng. Chem. Res. 2012, 51, 2596-2602. [90] Tien, Y.-C.; Su, C.-S.; Lien, L.-H.; Chen, Y.-P., Recrystallization of erlotinib hydrochloride and fulvestrant using supercritical antisolvent process J. Supercrit. Fluids 2010, 55, 292-299. [91] Varughese, P.; Li, J.; Wang, W.; Winstead, D., Supercritical antisolvent processing of γ-Indomethacin: Effects of solvent, concentration, pressure and temperature on SAS processed Indomethacin Powder Technol. 2010, 201, 64-69. [92] Li, P.; Zhao, L., Developing early formulations: Practice and perspective. Int. J. Pharm. 2007, 341, 1-19. [93] Dhirendra, K.; Lewis, S.; Udupa, N.; Atin, K., Solid Dispersion: a review. Pak. J. Pharm. Sci. 2009, 22, 234-246. [94] Serajuddin, A. T., Solid dispersion of poorly water-soluble drugs: Early promises, subsequent problems, and recent breakthroughs. J. Pharm. Sci. 1999, 88, 1058-1066. [95] Yamashita, K.; Nakate, T.; Okimoto, K.; Ohike, A.; Tokunaga, Y.; Ibuki, R.; Higaki, K.; Kimura, T., Establishment of new preparation method for solid dispersion formulation of tacrolimus. Int. J. Pharm. 2003, 267, 79-91. [96] Gilis, P. M. V.; De Conde, V. F. V.; Vandecruys, R. P. G. Beads having a core coated with antifungal and a polymer. WO9405263A1, 1993. [97] Mei, L.; Zhang, Z.; Zhao, L.; Huang, L.; Yang, X.-L.; Tang, J.; Feng, S.-S., Pharmaceutical nanotechnology for oral delivery of anticancer drugs Adv. Drug Deliv. Rev. 2013, (Article in Press). [98] Gao, J.; Feng, S.-S.; Guo, Y., Nanomedicine against multidrug resistance in cancer treatment Nanomed. 2012, 7, 465-468. [99] Craig, D. Q., The mechanisms of drug release from solid dispersions in watersoluble polymers. Int. J. Pharm. 2002, 231, 131-144. [100] Pouton, C. W., Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur. J. Pharm. Sci. 2006, 29, 278-287. 116 References [101] Muhrer, G.; Meier, U.; Fusaro, F.; Albano, S.; Mazzotti, M., Use of compressed gas precipitation to enhance the dissolution behavior of a poorly water-soluble drug: generation of drug microparticles and drug-polymer solid dispersions. Int. J. Pharm. 2006, 308, 69-83. [102] Karavas, E.; Ktistis, G.; Xenakis, A.; Georgarakis, E., Effect of hydrogen bonding interactions on the release mechanism of felodipine from nanodispersions with polyvinylpyrrolidone. Eur. J. Pharm. Biopharm. 2006, 63, 103-114. [103] Leuner, C.; Dressman, J., Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Sci. 2000, 50, 47-60. [104] Bounaceur, A.; Rodier, E.; Fages, J., Maturation of a ketoprofen/β-cyclodextrin mixture with supercritical carbon dioxide. J. Supercrit. Fluids 2007, 41, 429-439. [105] Hu, J.; Johnston, K. P.; Williams, R. O., Rapid dissolving high potency danazol powders produced by spray freezing into liquid(SFL) process with organic solvent. Int. J. Pharm. 2004, 271, 145-154. [106] Matsumoto, T.; Zografi, G., Physical properties of solid molecular dispersions of indomethacin with poly(vinylpyrrolidone) and poly(vinylpyrrolidone-covinylacetate) in relation to indomethacin crystallization. Pharm. Res. 1999, 16, 17221728. [107] Taylor, L. S.; Zografi, G., Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm. Res. 1997, 14, 1691-1698. [108] Yoshioka, M.; Hancock, B. C.; Zografi, G., Inhibition of indomethacin crystallization in poly(vinylpyrrolidone) coprecipitates. J. Pharm. Sci. 1995, 84, 983986. [109] Coleman, M. M.; Graf, J. F.; Painter, P. C., Specific interactions and the miscibility of polymer blends. Technomic Publishing, Lancaster, Basel 1991. [110] Chiou, W. L.; Riegelman, S., Pharmaceutical applications of solid dispersion systems. J. Pharm. Sci. 1971, 60, 1281-1302. [111] Bahl, D.; Bogner, R. H., Amorphization of indomethacin by co-grinding with neusilin US2: Amorphization kinetics, physical stability and mechanism. Pharm. Res. 2006, 23, 2317-2325. [112] Lozowski, D., Supercritical CO2: A green solvent. Chem. Eng. (New York) 2010, 117, 15-18. [113] Shoyele, S. A.; Cawthorne, S., Particle engineering techniques for inhaled biopharmaceuticals. Adv. Drug Deliv. Rev. 2006, 58, 1009-1029. 117 References [114] Yasuji, T.; Takeuchi, H.; Kawashima, Y., Particle design of poorly watersoluble drug substances using supercritical fluid technologies. Adv. Drug Deliv. Rev. 2008, 60, 388-398. [115] Kaushal, A. M.; Gupta, P.; Bansal, A. K., Amorphous drug delievry systems: Molecular aspects, design and performance. Crit. Rev. Ther. Drug Carrier Syst. 2004, 21, 133-193. [116] Hancock, B. C., Disordered drug delivery: destiny, dynamics and the deborah number. J. Pharm. Pharmacol. 2002, 54 737-746. [117] R. A. Beyerinck; R. J. Ray; D. E. Dobry; D. M. Settell Method form making homogeneous spray-dried solid amorphous drug dispersions using pressure nozzles. WO03/063821A2, 2003. [118] O. L. Sprockel; M. Sen; P. Shivanand; W. Prapaitrakul, A melt-extrusion process for manufacturing matrix drug delivery systems. Int. J. Pharm. 1997, 155, 191-199. [119] M. C. Lai; E. M. Topp, Solid-state chemical stability of proteins and peptides. J. Pharm. Sci. 1999, 88, 489-500. [120] W. Wang, Lyophilization and development of solid protein pharmaceuticals. Int. J. Pharm. 2000, 203, 1-60. [121] S. F. Swallen; K. L. Kearns; M. K. Mapes; Y. S. Kim; R. J. McMahon; M. D. Ediger; T. Wu; L. Yu; S. Satija, Organic glasses with exceptional thermodynamic and kinetic stability. Science 2007, 315, 353-356. [122] A. M. Abdul-Fattah; D. Lechuga-Ballesteros; D. S. Kalonia; Pikal, M. J., The impact of drying method and formulation on the physical properties and stability of methionyl human growth hormone in the amorphous solid state. J. Pharm. Sci. 2008, 97, 163-184. [123] G. Ruecroft; D. Hipkiss; T. Ly; N. Maxted; P. W. Cains, Sonocrystallization: The use of ultrasound for improved industrial crystallization. Org. Process Res. Dev. 2005, 9, 923-932. [124] Y. Li; J. Han; G. G. Z. Zhang; D. J. W. Grant; Suryanarayanan, R., In situ dehydration of carbamazepine dihydrate: A novel technique to prepare amorphous anhydrous carbamazepine. Pharm. Dev. Technol. 2000, 5, 257-266. [125] T. J. Smith; G. Gauzer High pressure compaction for pharmaceutical formulations. WO2004058222A1, 2003. [126] Shakhtshneider, T. P.; Danède, F.; Capet, F.; Willart, J. F.; Descamps, M.; Paccou, L.; Surov, E. V.; Boldyreva, E. V.; Boldyrev, V. V., Grinding of drugs with 118 References pharmaceutical excipients at cryogenic temperatures : Part II. Cryogenic grinding of indomethacin-polyvinylpyrrolidone mixtures. J. Therm. Anal. Calorim. 2007, 89, 709715. [127] Watanabe, T.; Wakiyama, N.; Usui, F.; Ikeda, M.; Isobe, T.; M., S., Stability of amorphous indomethacin compounded with silica. . Int. J. Pharm. 2001, 226, 81-91. [128] Gupta, M. K.; Vanwert, A.; Bogner, R. H., Formation of physically stable amorphous drugs by milling with neusilin. J. Pharm. Sci. 2003, 93, 536-551. [129] Mura, P.; Cirri, M.; Faucci, M. T.; Gines-Dorado, J. M.; Bettinetti, G. P., Investigation of the effects of grinding and co-grinding on physicochemical properties of glisentide. J. Pharm. Biomed. Anal. 2002, 30, 227-237. [130] Chieng, N.; Aaltonen, J.; Saville, D.; Rades, T., Physical characterization and stability of amorphous indomethacin and ranitidine hydrochloride binary systems prepared by mechanical activation. Eur. J. Pharm. Biopharm. 2009, 71, 47-54. [131] Lobmann, K.; Strachan, C.; Grohganz, H.; Rades, T.; Korhonen, O.; Laitinen, R., Co-amorphous simvastatin and glipizide combinations show improved physical stability without evidence of intermolecular interactions Eur. J. Pharm. Biopharm. 2012, 81, 159-169. [132] Wang, Q.; Li, S.; Che, X.; Fan, X.; Li, C., Dissolution improvement and stabilization of ibuprofen by co-grinding in a β-cyclodextrin ground complex Asian J. Pharm. Sci. 2010, 5, 185-190. [133] Kompella, U. B.; Koushik, K., Preparation of drug delivery systems using supercritical fluid technology. Crit. Rev. Ther. Drug Carrier Syst. 2001, 188, 173-199. [134] Palakodaty, S.; York, P., Phase behavioral effects on particle formation processes using supercritical fluids. Pharm. Res., 16(7): 976-985. Pharm. Res. 1999, 16, 976-985. [135] Moneghini, M.; Kikic, I.; Voinovich, D.; Perissutti, B., Processing of carbamazepine-PEG 4000 solid dispersions with supercritical carbon dioxide: preparation, characterization, and in vitro dissolution. Int. J. Pharm. 2001, 222, (129138). [136] Vincent, M. F.; Kazarian, S. G.; Eckert, C. A., Tunable diffusion of D2O in CO2-swollen poly(methyl methacrylate) films. . AlChE J. 1997, 43, 1838-1848. [137] http://wikis.lawrence.edu/display/CHEM/Changes+in+Physical+State+phase+transitions+-+Laura+Qiu [138] Huang, F. H.; Li, M. H.; Lee, L. L.; Starling, K. E.; Chung, F. T. H., An accurate equation of state for carbon dioxide. J. Chem. Eng. Jpn. 1985, 18, 490-496. 119 References [139] O’Hern, H. A.; Martin, J. J., Diffusion in carbon dioxide at elevated pressure. Ind. Eng. Chem. Res. 1955, 47, 2081. [140] Fenghour, A.; Wakeham, W. A.; Vesovic, V., The viscosity of carbon dioxide. . J. Phys. Chem. Ref. Data 1998, 27, 31-44. [141] Beckman, E. J., Supercritical and near-critical CO2 in green chemical synthesis and processing. J. Supercrit. Fluids 2004, 28, (121-191). [142] Fages, J.; Lochard, H.; Rodier, E.; Letourneau, J.-J.; Sauceau, M., Generation of divided solids by supercritical fluids Can. J. Chem. Eng. 2003, 81, 161-175. [143] M. Turk; P. Hils; B. Helfgen; K. Schaber; H.J. Martin; M.A. Wahl, Micronization of pharmaceutical substances by the Rapid Expansion of Supercritical Solutions (RESS): a promising method to improve bioavailability of poorly soluble pharmaceutical agents. J. Supercrit. Fluids 2002, 22, 75-84. [144] Reverchon, E., Supercritical antisolvent precipitation of micro- and nanoparticles. J. Supercrit. Fluids 1999, 15, 1-21. [145] Mishima, K.; Yamaguchi, S.; Umemot H Patent JP 8104830, 1996. [146] Mishima, K.; Matsuyama, K.; Tanabe, D.; Yamauchi, S.; Young, T. J.; Johnston, K. P., Microencapsulation of proteins by rapid expansion of supercritical solution with a nonsolvent. AlChE J. 2000, 46, 857-865. [147] Debenedetti, P. G.; Tom, J. W.; Yeo, S. D.; Lim, G. B., Application of supercritical fluids for the production of sustained delivery device. J. Controlled Release 1993, 24, 27-44. [148] Debenedetti, P. G.; Tom, J. W.; Jerome, R., Precipitation of poly(L-lactic acid) and composite poly(L-lactic acid)-pyrene particles by rapid expansion of supercritical solutions. J. Supercrit. Fluids 1994, 7, 9-29. [149] Perrut, M.; Jung, J.; Leboeuf, F., Enhancement of dissolution rate of poorly soluble active ingredients by supercritical fluid processes: Part II: Preparation of composite particles Int. J. Pharm. 2005, 288, 11-16. [150] Vemavarapu, C.; Mollan, M. J.; Needham, T. E., Coprecipitation of pharmaceutical actives and their structurally related additives by the RESS process Powder Technol. 2009, 189, 444-453. [151] J. Kim; Paxton, T. E.; Tomasko, D. L., Microencapsulation of naproxen using rapid expansion of supercritical solutions. Biotechnol. Progr. 1996, 12, 650-661. 120 References [152] Turk, M.; Hils, P.; Lietzow, R.; Schaber, K., Stabilization of pharmaceutical substances by rapid expansion of supercritical solutions (RESS). In Proceedings of the Sixth International Symposium on Supercritical Fluids, ed.; Versailles, France, 2003; Vol. 3, pp 1747-1752. [153] Sonoda, R.; Hara, Y.; Iwasaki, T.; Watano, S., Improvement of dissolution property of poorly water-soluble drug by supercritical freeze granulation Chem. Pharm. Bull. 2009, 57, 1040-1044. [154] Matsuyama, K.; Mishima, K.; Hayashi, K.; Ishikawa, H.; Matsuyama, H.; T.Harada., Formation of microcapsules of medicines by the rapid expansion of a supercritical solution with a nonsolvent. J. Appl. Polym. Sci. 2003, 89, 742-752. [155] P. Sencar-Bozic; S. Srcic; Z. Knez; J. Kerc, Improvement of nifedipine dissolution characteristics using supercritical CO2. Int. J. Pharm. 1997, 148, 123-130. [156] Calderone, M.; Rodier, E. Coating of powdery solid active substances, for use in e.g., a pharmaceutical formulation, comprises contacting a mixture (having coating) and individualized particles of active substance. WO2006030112, 2006. [157] J. Kerc; S. Srcic; Z. Knez; P. Sencar-Bozic, Micronization of drugs using supercritical carbon dioxide. Int. J. Pharm. 1999, 182, 33-39. [158] Gallagher, P. M.; M. P. Coffey; V. J. Krukonis; N. Klasutis, Gas Antisolvent Recrystallization - New Process to Recrystallize Compounds Insoluble in Supercritical Fluids. ed.; Acs Symposium Series: 1989; Vol. 406. [159] Subra-Paternault, P.; Vrel, D.; Roy, C., Coprecipitation on slurry to prepare drug-silica-polymer formulations by compressed antisolvent J. Supercrit. Fluids 2012, 63, 69-80. [160] Won, D.-H.; Kim, M.-S.; Lee, S.; Park, J.-S.; Hwang, S.-J., Improved physicochemical characteristics of felodipine solid dispersion particles by supercritical anti-solvent precipitation process. Int. J. Pharm. 2005, 301, 199-208. [161] Rodier, E.; Lochard, H.; Sauceau, M.; Letourneau, J.-J.; Freiss, B.; Fages, J., A three step supercritical process to improve the dissolution rate of Eflucimibe. Eur. J. Pharm. Sci. 2005, 26, 184-193. [162] Chang, Y.-P.; Tang, M.; Chen, Y.-P., Micronization of sulfamethoxazole using the supercritical anti-solvent process. J. Mater. Sci 2008, 43, 2328-2335. [163] Uzun, I. N.; Sipahigil, O.; Dincer, S., Co-precipitation of cefuroxime axetil-PVP composite microparticles by batch supercritical antisolvent process. J. Supercrit. Fluids 2011, 55, 1059-1069. 121 References [164] De Zordi, N.; Moneghini, M.; Kikic, I.; Grassi, M.; Del Rio Castillo, A. E.; Solinas, D.; Bolger, M. B., Applications of supercritical fluids to enhance the dissolution behaviors of Furosemide by generation of microparticles and solid dispersions. Eur. J. Pharm. Biopharm. 2012, 81, 131-141. [165] Martin, A.; Mattea, F.; L.Gutierrez; Miguel, F.; Cocero, M. J., Co-precipitation of carotenoids and bio-polymers with the supercritical anti-solvent process. J. Supercrit. Fluids 2007, 41, 138-147. [166] Bleich, J.; Muller, B. W., Production of drug loaded microparticles by the use of supercritical gases with the aerosol solvent extraction system (ASES) process. J. Microencapsulation 1996, 13, 131-139. [167] Young, T. J.; Johnston, K. P.; Mishima, K.; Tanaka, H., Encapsulation of lysozyme in a biodegradable polymer by precipitation with a vapor-over-liquid antisolvent. J. Pharm. Sci. 1999, 88, 640-650. [168] Taki, S.; Badens, E.; Charbit, G., Controlled release system formed by supercritical anti-solvent coprecipitation of a herbicide and a biodegradable polymer. J. Supercrit. Fluids 2001, 21, 61-70. [169] Boutin, O.; Badens, E.; Carretier, E.; Charbit, G., Coprecipitation of a herbicide and biodegradable materials by the supercritical anti-solvent technique. J. Supercrit. Fluids 2004, 31, 89-99. [170] Elvassore, N.; Bertucco, A.; Caliceti, P., Production of protein-loaded polymeric microcapsules by compressed CO2 in a mixed solvent. Ind. Eng. Chem. Res. 2001, 40, 795-800. [171] Corrigan, O. I.; Crean, A. M., Comparative physicochemical properties of hydrocortisone-PVP composites prepared using supercritical carbon dioxide by the GAS anti-solvent re-crystallization process, by co-precipitation and by spray drying. Int. J. Pharm. 2002, 245, 75-82. [172] Juppo, A. M.; Boissier, C.; Khoo, C., Evaluation of solid dispersion particles prepared with SEDS. Int. J. Pharm. 2003, 250, 385-401. [173] Jun, S. W.; Kim, M.-S.; Jo, G. H.; Lee, S.; Woo, J. S.; Park, J.-S.; Hwang, S.-J., Cefuroxime axetil solid dispersions prepared using solution enhanced dispersion by supercritical fluids. J. Pharm. Pharmacol. 2005, 57, 1529-1537. [174] Toropainen, T.; Velaga, S.; Heikkila, T.; Matilainen, L.; Jarho, P.; Carlfors, J.; Lehto, V.-P.; Jarvinen, T.; Jarvinen, K., Preparation of budesonide/γ-cyclodextrin complexes in supercritical fluids with a novel SEDS method. J. Pharm. Sci. 2006, 95, 2235-2245. 122 References [175] Li, Y.; Yang, D.-J.; Chen, S.-L.; Chen, S.-B.; Chan, A. S.-C., Process parameters and morphology in puerarin, phospholipids and their complex microparticles generation by supercritical antisolvent precipitation. Pharm. Res. 2008, 25, 563-577. [176] R. Falk; T.W. Randolph; J.D.Meyer; R.M.Kelly; M.C. Manning, Controlled release of ionic compounds from poly(l-lactide) microspheres produced by precipitation with a compressed anti-solvent. J. Controlled Release 1997, 44, 77-85. [177] R. Ghaderi; P. Artursson; J. Carlfors, A new method for preparing biodegradable microparticles and entrapment of hydrocortisone in dl-PLG microparticles using supercritical fluids. Eur. J. Pharm. Sci. 2000, 10, 1-9. [178] M. Tservistas; M.S. Levy; M.Y.A. Lo-Yim; R.D. O’Kennedy; P. York, The formation of plasmid DNA loaded pharmaceutical powder using supercritical fluid technology. Biotechnol. Bioeng. 2001, 72, 12-18. [179] T.M. Martin; N. Bandi; N. Shulz; C.B. Roberts; U.B.Kompella, Preparation of budesonide and budesonide–PLA microparticles using supercritical fluid precipitation technology. AAPS PharmSciTech 2002, 3, 1-11. [180] Stevenson, C. L.; Bennett, D. B.; Lechuga-Ballesteros, D., Pharmaceutical liquid crystals: The relevance of partially ordered systems. J. Pharm. Sci. 2005, 94, 1861-1880. [181] Breitenbach, J.; Schrof, W.; Neumann, J., Confocal raman spectroscopy: Analytical approach to solid dispersion and mapping of drug. Pharm. Res. 1999, 16, 1109-1113. [182] Li, J.; Guo, Y.; Zografi, G., The solid-state stability of amorphous quinapril in the presence of beta-cyclodextrins. J. Pharm. Sci. 2002, 91, 229-243. [183] Karavas, E.; Georgarakis, M.; Docoslis, A.; Bikiaris, D., Combining SEM, TEM and micro-Raman techniques to differentiate between the amorphous molecular level dispersions and nanodispersions of a poorly water-soluble drug within a polymer matrix. Int. J. Pharm. 2007, 340, 76-83. [184] Bikiaris, D.; Papageorgiou, G. Z.; Stergiou, A.; Pavlidou, E.; Karavas, E.; Kanaze, F.; al., e., Physicochemical studies on solid dispersions of poorly watersoluble drugs- evaluation of capabilities and limitations of thermal analysis techniques. Thermochim. Acta 2005, 439, 58-67. [185] Sebhatu, T.; Angberg, M.; Ahlneck, C., Assessment of the degree of disorder in crystalline solids by isothermal microcalorimetry. Int. J. Pharm. 1994, 104, 135-114. 123 References [186] Vasanthavada, M.; Tong, W. Q.; Joshi, Y.; Kislalioglu, M. S., Phase behavior of amorphous molecular dispersions I: Determination of the degree and mechanism of solid solubility. Pharm. Res. 2004, 21, 1598-1606. [187] K. Kawakami, Isothermal crystallization of Imwitor 742 from supercooled liquid state. Pharm. Res. 2007, 24, 738-747. [188] V. Caron; C. Bhugra; M.J. Pikal, Prediction of onset of crystallization in amorphous pharmaceutical systems: phenobarbital, nifedipine/PVP, and phenobarbital/PVP. J. Pharm. Sci. 2010, 99, 3887-3900. [189] Buckton, G.; Darcy, P., The use of gravimetric studies to assess the degree of crystallinity of predominantly crystalline powders. Int. J. Pharm. 1995, 123, 265-271. [190] Young, P. M.; Chiou, H.; Tee, T.; Traini, D.; Chan, H.-K.; Thielmann, F.; Burnett, D., The use of organic vapor sorption to determine low levels of amorphous content in processed pharmaceutical powders. Drug Dev. Ind. Pharm. 2007, 33, 91-97. [191] Sheng, Q.; Weuts, I.; De Cort, S.; Stokbroekx, S.; Leemans, R.; Reading, M.; Belton, P.; Craig, D. Q. M., An investigation into the crystallisation behaviour of an amorphous cryomilled pharmaceutical material above and below the glass transition temperature. J. Pharm. Sci. 2010, 99, 196-208. [192] Forster, A.; Hempenstall, J.; Tucker, I.; Rades, T., Selection of excipients for melt extrusion with two poorly water-soluble drugs by solubility parameter calculation and thermal analysis. Int. J. Pharm. 2001, 226, 147-161. [193] Bugay, D. E., Characterization of the solid-state: Spectroscopic techniques. Adv. Drug Deliv. Rev. 2001, 48, 43-65. [194] Broman, E.; Khoo, C.; Taylor, L. S., A comparison of alternative polymer excipients and processing methods for making solid dispersions of a poorly water soluble drug. Int. J. Pharm. 2001, 222, 139-151. [195] Widjaja, E.; Kanaujia, P.; Lau, G.; Ng, W. K.; Garland, M.; Saal, C.; Hanefeld, A.; Fischbach, M.; Maio, M.; Tan, R. B. H., Detection of trace crystallinity in an amorphous system using Raman microscopy and chemometric analysis Eur. J. Pharm. Sci. 2011, 42, 45-54. [196] Newell, H. E.; Buckton, G.; Butler, D. A.; Thielmann, F.; Williams, D. R., The Use of Inverse Phase Gas Chromatography to Measure the Surface Energy of Crystalline, Amorphous, and Recently Milled Lactose. Pharm. Res. 2001, 18, 662-666. [197] Buckton, G.; Ambarkhane, A.; Pincott, K., The use of inverse phase gas chromatography to study the glass transition temperature of a powder surface. Pharm. Res. 2004, 21, 1554-1557. 124 References [198] Ohta, M.; Buckton, G., The use of inverse gas chromatography to access the acid-base contributions to surface energies of cefditoren pivoxil and methacrylate copolymers and possible links to instability. Int. J. Pharm. 2003, 272, 121-128. [199] Andronis, V.; Zografi, G., Crystal nucleation and growth of indomethacin polymorphs from the amorphous state. J. Non-Cryst. Solids 2000, 271, 236-248. [200] Okumura, T.; Ishida, M.; Takayama, K.; Otsuka, M., Polymorphic transformation of indomethacin under high pressures. J. Pharm. Sci. 2006, 95, 689700. [201] Walking, W. D., Povidone. American Pharmaceutical Association/The Pharmaceutical Press: Washington, DC/London, 1994. [202] Modi, A.; Tayade, P., Enhancement of Dissolution Profile by Solid Dispersion (Kneading) Technique. AAPS PharmSciTech 2006, 7, 68. [203] Parrott, G. L., Milling of pharmaceutical solids. J. Pharm. Sci. 1974, 63, 813829. [204] Butler, D. A.; Levoguer, C.; Williams, D. R. Apparatus and a method for investigating the properties of a solid material by inverse chromatography. 1999. [205] Santos, J. M. R. C. A.; Fagelman, K.; Guthrie, J. T., Characterization of the surface Lewis acid-base properties of poly(butyl terephthalate) by inverse gas chromatography. J. Chromatogr. A 2002, 969, 111-118. [206] Fowkes, F. M., Attractive forces at interfaces. Ind. Eng. Chem. Res. 1964, 56, 40-52. [207] Schultz, J.; Lavielle, L.; C, M., The role of the interface in carbon fibre-spoxy composites. J. Adhes. 1987, 23, 45-60. [208] Widjaja, E.; Li, C. Z.; Chew, W.; Garland, M., Band target entropy minimization. A general and robust algorithm for pure component spectral recovery. Anal. Chem. 2003, 75, 4499–4507. [209] Varughese, P.; Li, J.; Wang, W.; Winstead, D., Supercritical antisolvent processing of ã-Indomethacin: Effects of solvent, concentration, pressure and temperature on SAS processed Indomethacin. Powder Technol. 2010, 201, 64-69. [210] Gordon, M.; Taylor, J. S., Ideal copolymers and the second -order transition of synthetic rubbers 1. Non-crytalline co-polymers. J. Appl. Chem 1952, 2, 493-500. 125 References [211] Paes, S. S.; Sun, S.; MacNaugtan, W.; Ibbett, R.; Ganster, J.; Foster, T. J.; Mitchell, J. R., The glass transition and crystallization of ball milled cellulose. Cellulose 2010, 17, 693-709. [212] Aceves-Hernandez, J. M.; Nicolas-Vazquez, I.; Aceves, F. J.; Hinojosa-Torres; J.; Paz, M.; Castano, V. M., Indomethacin Polymorphs: Experimental and Conformational Analysis. J. Pharm. Sci. 2009, 98, 2448-2463. [213] Lee, K. R.; Kim, E. J.; Seo, S. W.; Choi, H. K., Effect of poloxamer on the dissolution of felodipine and preparation of controlled release matrix tablets containing felodipine. Arch. Pharmacal Res. 2008, 31, 1023-1028. [214] Park, J. H.; Yan, Y. D.; Chi, S. C.; Hwang, D. H.; Shanmugam, S.; Lyoo, W. S.; Woo, J. S.; Yong, C. S.; Choi, H. G., Preparation and evaluation of cremophor-free paclitaxel solid dispersion by a supercritical antisolvent process. J. Pharm. Pharmacol. 2011, 63, 491-499. [215] Patterson, J. E.; James, M. B.; Forster, A. H.; Lancaster, R. W.; Butler, J. M.; Rades, T., The influence of thermal and mechanical preparative techniques on amorphous state of four poorly soluble compound. J. Pharm. Sci. 2005, 94, 19982012. [216] Fukuoka, E.; Markita, M.; Yamamura, S., Some physicochemical properties of glassy indomethacin. Chem. Pharm. Bull. 1986, 34, 4314-4321. [217] Gerhardt, A. S.; Ahlneck, C.; Zografi, G., Assessment of disorder in crystalline solids. Int. J. Pharm. 1994, 101, 237-247. [218] Chen, X.; Bates, S.; Morris, K. R., Quantifying amorphous content of lactose using parallel beam X-ray powder diffraction and whole pattern fitting. J. Pharm. Biomed. Anal. 2001, 26, 63-72. [219] Burnett, D.; Malde, N.; Williams, D. R., Characterizing amorphous materials with gravimetric vapour sorption techniques. Pharm. Technol. Eur. 2009, 21, 41-45. [220] Handcock, B. C.; Dalton, C. R., The effect of temperature on the water vapor sorption by some amorphous pharmaceutical sugars. Pharm. Dev. Technol. 1999, 4, 125–31. [221] Roe, K. D.; Labuza, T. P., Glass transition and crystallization of amorphous trehalosesucrosemixtures. Int. J. Food Prop. 2005., 8, 559-574. [222] Crowley, K. J.; Zografi, G., Water vapor absorption into amorphous hydrophobic drug/poly(vinylpyrrolidone) dispersions. J. Pharm. Sci. 2002, 91, 2150– 2165. 126 References [223] Van Drooge, D. J.; Hinrichs, W. L. J.; Visser, M. R.; Frijlink, H. W., Characterization of the molecular distribution of drugs in glassy solid dispersions at the nano-meter scale, using differential scanning calorimetry and gravimetric water vapour sorption techniques. Int. J. Pharm. 2006, 310, 220-229. [224] Shaun, F.; James, F. M.; Catherine, R. P.; Steven, W. B., Effect of moisture on polyvinylpyrrolidone in accelerated stability testing. Int. J. Pharm. 2002, 246, 143151. [225] Silverstein, R. M.; Bassler, G. C.; Morril, T. C., Spectrometric identification of organic compounds. ed.; Wiley: New York, 1991. [226] Kistenmacher, T. J.; March, R. E., Crystal and moelecular structure of an antiinflammatory agent-Indomethacin. AlChE J. 1972, 94, 1340-1345. [227] Allison, S. D.; Chang, B.; Randolph, T. W.; Carpenter, J. F., Hydrogen bonding between sugar and protein is responsible for inhibition of dehydration-induced protein unfolding. Arch. Biochem. Biophys. 1999, 365, 289-298. [228] Almarsson, O.; Zaworotko, M. J., Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals represent a new path to improved medicines? Chem. Commun. 2004, 1889-1896. [229] Almarsson, O.; Gardner, C. R., Novel approaches to issues of developability. Curr. Drug Dis. 2003, 3, 21-26. [230] D. L. Price, Intermediate-range order in glasses. Curr. Opin. Solid State Mater. Sci. 1996, 1, 572-577. [231] Kim, S.-J.; Karis, T. E., Glass formation from low molecular weight organic melts. J. Mater. Res. 1995, 10, 2128-2136. [232] Heng, J. Y. Y.; Thielmann, F.; Williams, D. R., The Effects of Milling on the Surface Properties of Form I Paracetamol Crystals. Pharm. Res. 2006, 23, 1918-1927. [233] York, P.; Ticehurst, M. D.; Osborn, J. C.; Roberts, R. J.; Rowe, R. C., Characterization of the surface energetic of milled dl-propranolol hydrochloride using inverse gas chromatography and molecular modelling. Int. J. Pharm. 1998, 174, 176186. [234] Hadjar, H.; Balard, H.; Papirer, E., An inverse gas chromatography study of crystalline and amorphous silicas. Colloids Surf. A Physicochem. Eng. Asp. 1995, 99, 45-51. [235] Hadjar, H.; Balard, H.; Papirer, E., Comparison of crystalline (H-magadiite) and amorphous silicas using inverse gas chromatography at finite concentration conditions Colloids Surf. A Physicochem. Eng. Asp. 1995, 103, 111-117. 127 References [236] Grimsey, I. M.; Edwards, A. D.; Shekunov, B. Y.; Forbes, R. T.; York, P., The effect of processing on the surface energetics of poly(l-lactide) microparticles as determined by inverse gas chromatography (igc). Pharm. Sci. Supp. 1999, 1, 4. [237] Chamarthy, S. P.; Pinal, R., The nature of crystal disorder in milled pharmaceutical materials. Colloids Surf. A Physicochem. Eng. Asp. 2008, 331, 68-75. [238] Kawakami, K.; Pikal, M., Calorimetric investigation of the structural relaxation of amorphous materials: Evaluating validity of the methodologies. J. Pharm. Sci. 2005, 94, 948-965. [239] Liu, J.; Rigsbee, D. R.; Stotz, C.; Pikal, M., Dynamic of pharmaceutical amorphous solids: The study of enthalpy relaxation by isothermal microcalorimetry. J. Pharm. Sci. 2002, 91, 1853-1862. 128 Appendices APPENDICES A1. List of Publications [1] Lim, R. T. Y.; Ng, W. K.; Tan, R. B. H., Amorphization of pharmaceutical compound by co-precipitation using supercritical anti-solvent (SAS) process (Part I). J. Supercrit. Fluids 2010, 53, 179-184. [2] Lim, R. T. Y.; Ng, W. K.; Tan, R. B. H., Dissolution enhancement of indomethacin via amorphization using co-milling and supercritical co-precipitation processing. Powder Technol. (DOI: 10.1016/j.powtec.2012.07.004) 2012. [3] Lim, R. T. Y.; Ng, W. K.; Widjaja, E.; Tan, R. B. H., Comparison of the physical stability and physicochemical properties of amorphous indomethacin prepared by comilling and supercritical anti-solvent co-precipitation. J. Supercrit. Fluids (Submitted). [4] Ng, W. K.; Shen, S.-C.; Lim, R. T. Y.; Tan, R. B. H., Recent developments in process analysis for gas-solid fluidization. In Advances in Chemistry Research; Taylor, J. C., Ed. Nova Publisher: 2011; 10, 143-176. 129 Appendices A2. Conferences [1] Lim, R. T. Y.; Ng, W. K.; Tan, R. B. H., Effect of co-precipitation on crystallinity of pharmaceutical compounds using supercritical anti-solvent process. AIChE The 2008 Annual Meeting, Philadelphia, PA, 15-21 November 2008. [2] Lim, R. T. Y.; Ng, W. K.; Tan, R. B. H., Amorphization of pharmaceutical compounds by co-precipitation using supercritical anti-solvent process. 9th International Symposium on Supercritical Fluids (ISSF9), Bordeaux, France, 18-20 May 2009. [3] Lim, R. T. Y.; Ng, W. K.; Tan, R. B. H., Influence of supercritical anti-solvent coprecipitation on the solid-state properties of pharmaceutical compound. 9th Conference on Supercritical Fluids and Their Applications, Sorrento, Italy, 5-8 September 2010. [4] Lim, R. T. Y.; Ng, W. K.; Tan, R. B. H., Dissolution enhancement of indomethacin via amorphization using supercritical, co-precipitation and co-milling. Engineering Conferences International (ECI): Particulate Processes in the Pharmaceutical Industry III, Gold Coast, Australia, 24-29 July 2011. [5] Lim, R. T. Y.; Ng, W. K.; Tan, R. B. H., Physical stabilities of indomethacin via amorphization using co-milling and supercritical co-precipitation processing. 10th International Symposium on Supercritical Fluids (ISSF10), San Francisco, California, USA, 13-16 May 2012. 130 Appendices [6] Lim, R. T. Y.; Ng, W. K.; Widjaja, E; Tan, R. B. H., Amorphization of pharmaceutical compounds using co-milling and supercritical co-precipitation processing. 5th Asian Particle Technology Symposium (APT 2012), Singapore, 2-4 July 2012. [7] Hoong, Y. J. A.; Lim, R. T. Y.; Ng, W. K.; Widjaja, E.; Tan, R. B. H., Investigating milling-induced amorphization effects on properties of an active pharmaceutical ingredients (API). AAPS Annual Meeting and Exposition, Chicago, Illinois, USA, 14-18 October 2012. 131 [...]... forms can be obtained using these technologies by modifying the molecular structure of the crystals The amorphous state of the drug can be stabilized by dissolving the drug into the polymer matrix at molecular level and restricting the mobility of the drug molecules, thus hindering the re-crystallization process There are a number of different methods to generate the amorphous form of APIs and/or amorphous... that leaves the surface of drug and dissolved into the solution per unit time Based on the modified Noyes-Whitney equation, the dissolution rate (dm/dt) is proportional to the surface area available for dissolution (A), the diffusion coefficient of the solute in solvent (D), the concentration across diffusion layer (concentration of the solute at saturation (C ) - concentration of the drug in the bulk... substances The effect of a polymer on the re-crystallization rate of amorphous substances is generally expressed in terms of properties of the meta-stable amorphous form such as the molecular mobility, the glass transition temperature (Tg) and the interactions 2 Chapter 1 arising between the drug and the polymer Substances with higher entropy and enthalpy than the steady crystalline form, such as the amorphous... improve the dissolution of APIs These methods apply new concepts based on the use of supercritical fluids or liquefied gases as solvent, antisolvent or cryogenic medium [24, 27] Supercritical fluid (SCF) technology presents a new and interesting route for particle formation, which avoids most of the drawbacks of the conventional methods (Table 2.2 and Figure 2.1 [74]) A substance is termed as a supercritical. .. heightened the interest of pharmaceutical researchers in developing new patents and novel techniques to improve oral bioavailability of APIs either in the areas of enhancing solubility and dissolution rate of poorly water-soluble APIs or enhancing permeability of poorly permeable drug Hence, in our studies the work is focused on enhancing the dissolution rate of a poorly water-soluble drug (BCS Class II) using. .. measure the solubility of substance at a meta-stable equilibrium The solubility measured under these conditions is known as apparent solubility and is higher than the intrinsic solubility Normally, the retention time for an API passes in digestive system is quite limited and thus, the absorption is governed by kinetic factors instead of thermodynamic properties The dissolution rate is the amount of active... and understand the nature of amorphous IDMC in PVP generated by COM and SAS co-precipitation process using Raman microscopy and FTIR, IV To study the surface energetic properties of amorphous solid generated by COM and SAS processes using IGC and V To investigate the surface structural relaxation of amorphous COM and SAS co-precipitated powder using IGC 1.3 Organization of Thesis This thesis is organized... precipitate the drug to microparticle There several methods to induce supersaturation in a solution such as thermal treatment (heating and cooling), evaporation and addition of a third component (anti- solvent, precipitant or reactant) Some of these techniques are spray-drying, solvent- evaporation and liquid anti- solvent Rasenack and Muller [69] conducted in-situ micronization of poorly water-soluble drug using. .. calcium generated using both anti- solvent and spraying processes was improved as compared to the raw material However, these techniques may present several disadvantages, such as contamination of the particles with organic solvents or other toxic substances, high energy requirement, generation of large volumes of solvent waste and may require multiple crystallization steps [73] Beneath the conventional... and commercialization of new pharmaceutical products The main objective of formulation chemistry is to improve bioavailability, stability and convenience of the APIs to the patient (preferably in solid dosage form) Bioavailability means the rate and extent to which the active substance or therapeutic moiety is absorbed from a pharmaceutical form and becomes available at the site of action [25] Moreover, . IMPROVING THE PROPERTIES OF PHARMACEUTICAL POWDERS USING SUPERCRITICAL ANTI- SOLVENT PROCESSING LIM TAU YEE, RON NATIONAL UNIVERSITY OF SINGAPORE 2012 IMPROVING. SINGAPORE 2012 IMPROVING THE PROPERTIES OF PHARMACEUTICAL POWDERS USING SUPERCRITICAL ANTI- SOLVENT PROCESSING LIM TAU YEE, RON (B. Eng. (Hons.), UNIVERSITY OF BATH, U.K.) (M. Eng.,. fluids technology. In this thesis, the effectiveness of a low-cost and easily scalable process COM was compared with the high-cost and precise-controlled supercritical anti- solvent (SAS) process

Ngày đăng: 09/09/2015, 10:08

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN