FMRI study of effects of sleep deprivation on attentional capacity

103 295 0
FMRI study of effects of sleep deprivation on attentional capacity

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

FMRI  STUDY  OF  EFFECTS  OF  SLEEP  DEPRIVATION   ON  ATTENTIONAL  CAPACITY       KONG  DANYANG   B.Sc.  (Hons.),  NUS     A  THESIS  SUBMITTED   FOR  THE  DEGREE  OF  DOCTOR  OF  PHILOSOPHY     NUS  GRADUATE  SCHOOL  FOR  INTEGRATIVE   SCIENCES  AND  ENGINEERING     NATIONAL  UNIVERSITY  OF  SINGAPORE   2013           Declaration     I  hereby  declare  that  the  thesis  is  my  original  work     and  it  has  been  written  by  me  in  its  entirety.     I  have  duly  acknowledged  all  the  sources  of  information     which  have  been  used  in  the  thesis.   This  thesis  has  also  not  been  submitted   for  any  degree  in  any  university  previously.                         ____________________________________   Kong  Danyang   February  01,  2013   ii         Acknowledgements     Working  on  a  Ph.D.  has  been  an  interesting,  wonderful  and  also  overwhelming   experience   for   me.   Throughout   the   years,   there   are   many   people   who   have   provided   guidance,  encouragement,  assistants  and  all  kinds  of  support,  and  made  my  four  years   unforgettable.  I  would  like  to  take  this  opportunity  to  convey  my  heartiest  gratitude  to   all  of  them.     First  and  foremost,  I  would  like  to  express  my  special  appreciation  and  thanks  to   my  supervisor  Professor  Michael  Chee,  for  his  excellent  mentorship  and  guidance.  It  has   been   really   an   honor   to   be   his   first   ever   Ph.D.   student.   I   am   deeply   grateful   to   his   constant   support,   encouragement   and   interesting   perspectives,   which   have   been   instrumental   towards   the   progress   of   my   Ph.D.   research.   He   also   guided   me   to   think   more  strategically  rather  than  being  too  obsessive  with  individual  problems.  Besides  the   general  strategic  thinking,  he  also  helped  me  every  now  and  then  with  detailed  learning,   such  as  going  through  the  brain  anatomy  and  how  to  make  good  searches.   I   have   greatly   enjoyed   the   opportunities   to   work   closely   with   Dr.   Soon   Chun   Siong.   A   very   meticulous   and   sharp   person,   Dr.   Soon   has   provided   me   with   many   invaluable   comments   and   perspectives   on   both   scientific   thinking   and   presentation     iii     skills.    I  have  benefited  a  lot  from  his  advices.     Working  closely  with  Dr.  Christopher  Asplund  for  some  projects  was  definitely  a   very   fruitful   and   enriching   experience.   Critical   yet   encouraging,   he   constantly   encouraged   and   motivated   me   to   find   ways   to   solve   the   problems   whenever   I   became   disheartened.  Being  a  very  knowledgeable  and  approachable  person,  he  provided  lots  of   valuable  suggestions  both  at  work  and  outside.     I   would   like   to   thank   my   committee   members,   Dr.   Annett   Schirmer   and   Dr.   Nicholas  Hon,  for  providing  very  useful  comments  and  suggestions  following  my  Ph.D.   qualifying  exams.   My  thesis  examiners,  Dr.  Annett  Schirmer,  Dr.  Hans  Van  Dongen  and  Dr.  Joshua   Gooley,   have   provided   me   with   many   invaluable   comments   and   suggestions   for   improving  my  thesis  in  general  and  in  details.  They  have  taken  extraordinary  efforts  and   patients  in  reading  and  commenting  on  my  thesis.  I  really  appreciated  that  and  I  would   like  to  express  my  heartiest  thanks  to  them  for  agreeing  to  be  my  thesis  examiners  and   taking  time  to  read  my  thesis  and  accessing  my  oral  defense.     All  the  people  in  the  lab  have  helped  me  in  one  way  or  another.  I  would  like  to   thank  Ivan,  Yvonne  Chia,  Tiffany  Chia,  Deepti  Mulick,  Vinod,  Siti,  Kep  Kee  and  Natali   Wee   for   their   constant   supports   and   help.   Special   thanks   are   given   to   Zheng   Hui   and   Parimal,  whom  I  have  bugged  countless  times  for  technique  supports.  I  am  also  grateful   iv       to  Poh  Jia  Hou,  my  ‘successor’  as  the  second  Ph.D.  student  of  Prof.  Chee.  Thanks  him  for   helping  me  proofread  my  manuscript  and  for  those  random  yet  very  interesting  talks.     Besides,   there   are   a   few   people   that   deserve   special   mentions,   Vanessa   Chen,   Praneeth   Nambri,   Jack   De   Havas,   Chee   Wei   Yan   and   Ling   Aiqing.   Some   of   them   have   moved   on   to   pursuit   their   interests   or   further   studies   in   the   US   or   the   UK.   Some   of   us   joined   the   lab   at   the   same   periods   and   grew   together   for   a   period   time.   I   did   greatly   enjoy  their  support,  companionship  and  friendship.  Dancing,  singing  and  dress  hunting   with  Vanessa  and  Wei  Yan;  listening  to  Jack  reading  his  poems  (while  I  fell  asleep  right   in   front   of   him   after   a   few   lines),   chatting   and   traveling   together   with   Praneeth,   photographing   with   Aiqing,   these   are   just   a   few   of   the   memorable   things   we   have   shared.    Thank  you  all  for  everything  and  hope  to  see  you  around  the  world.   Last,   and   definitely   not   the   least,   I   am   grateful   to   my   parents,   who   have   supported,  loved,  encouraged  and  guided  me  all  these  years.   The  thesis  marks  an  end,  but  also  a  beginning.         v     vi       Contents Abstract   .  x   List  of  Tables    xii   List  of  Figures   .  xiv   1.  INTRODUCTION    17   1.1  Capacity  Limits  of  Information  Processing   .  20   1.1.1  Limitation  in  Perceptual  Attentional  Capacity    21   1.1.2  Limits  of  Temporal  Attention:  The  Speed  of  Sight  23   1.1.3  Attention,  a  capacity-­‐‑limited  resource  allocator    25   1.2  Neurocognitive  Effects  of  Sleep  Deprivation    27   1.2.1  Sustained  Attention/Vigilance   .  28   1.2.2  Selective  Attention   .  29   1.3  Specific  Aims    30   2.  STUDY  PROCEDURES   .  33   2.1  Participants  Selection  Criteria   .  33   2.2  Standard  Experimental  Procedures  for  Participants    35   3.  REDUCED  VISUAL  PROCESSING  CAPACITY  IN  SLEEP  DEPRIVED  PERSONS   .  38   3.1  Introduction   .  38   3.2  Materials  and  Methods   .  40   3.2.1  Participants   .  40   3.2.2  Experimental  Design  and  Stimuli    41     vii     3.2.3  Imaging  Procedure   .  43   3.2.4  Imaging  Analysis   .  44   3.3  Results   .  45   3.3.1  Behavioral  Results    45   3.3.2  Imaging  Findings   .  46   3.4  Discussion   .  51   3.4.1  Sleep  Deprivation  Reduces  Capacity  to  Process  Task-­‐‑Irrelevant  Distractors   .  52   3.4.2  Functional  Utility  of  ‘Superfluous’  Task-­‐‑Related  Activity   .  53   3.5  Conclusion    55   4.  SLEEP  DEPRIVATION  EXACERBATES  TEMPORAL  LIMITATIONS  IN  OBJECT   PROCESSING   .  56   4.1  Introduction   .  56   4.2  Materials  and  Methods   .  59   4.2.1  Participants    59   4.2.2  Experimental  Design   .  60   4.2.3  Functional  Localizer   .  61   4.2.4  Imaging  Procedure   .  62   4.2.5  Data  Analysis    63   4.3  Results   .  64   4.3.1  Behavioral  Results    64   4.3.2  Imaging  Findings   .  65   4.3  Discussion   .  67   viii       4.3.1  Sleep  Deprivation  Slows  Temporal  Processing  Along  the  Visual  Cortices   .  67   4.3.2  Worsened  temporal  processing  limits  and  a  reduced  neural  circuits  following   sleep  deprivation   .  69   5.  FUNCTIONAL  IMAGING  CORRELATES  OF  IMPAIRED  DISTRACTOR   SUPPRESSION  FOLLOWING  SLEEP  DEPRIVATION   .  71   5.1  Introduction   .  71   5.2  Materials  and  Methods   .  74   5.2.1  Participants   .  74   5.2.2  Experimental  Design   .  75   5.2.3  Imaging  Parameters   .  77   5.2.4  Imaging  Analysis   .  78   5.3  Results   .  80   5.3.1  Behavioral  Results    80   5.3.2  Imaging  Findings   .  82   5.4  Discussion    86   5.4.1  Sleep  Deprivation  Impairs  Distractor  Suppression    87   5.4.2  Loss  of  Distractor  Suppression  and  Increased  Co-­‐‑encoding  of  Targets  and   Distractors    88   6.  General  Discussion    90   References   .  95       ix     Abstract   While  our  brain  is  extremely  sophisticated  at  processing  incoming  information,  it   is  generally  safe  to  posit  that  all  processing  stages,  from  sensory  processing  to  high  level   cognitive  control  functions  and  decision  making,  are  capacity  limited.  These  limitations   show  state  related  alterations  an  example  of  which  is  sleep  deprivation  (SD).     Previous  studies  investigating  deficits  in  various  cognitive  domains  have  found   sleep   deprivation   to   attenuate   task-­‐‑related   parietal   and   extrastriate   visual   activation,   suggesting   a   reduction   of   processing   capacity   in   this   state.   However,   how   different   aspects   of   attentional   capacity   limitation   are   worsened   following   sleep   deprivation   has   not   well   characterized.   Using   functional   brain   imaging   coupled   with   a   variety   of   behavioral   tasks,   my   work   shows   the   exacerbation   of   visual   processing   limitations   at   multiple  sites  (visual  areas  as  well  as  attentional  control  regions)  in  the  processing  stages   following  sleep  deprivation.     I  first  evaluated  directly  the  SD-­‐‑induced  change  in  visual  processing  capacity  by   employing   Lavie’s   perceptual   load   theory   of   attention   as   a   framework.   Repetition   suppression   in   parahippocampal   place   areas   (PPA)   was   used   to   indicate   processing   of   unattended  scenes  while  participants  attended  to  faces  embedded  in  face-­‐‑scene  pictures.   Attenuated   repetition   suppression   effect   following   sleep   deprivation   indicated   a   reduction  in  total  visual  processing  capacity  following  sleep  deprivation.     x       persons   may   be   impaired,   resulting   in   increased   head   turns   towards   peripheral   distracting   events   (Anderson   and   Horne,   2006).   Increased   distraction   can   impair   working   memory   in   older   adults,   and   correlates   with   poorer   performance   accuracy   (Clapp  and  Gazzaley,  2012).     5.4.2 Loss of Distractor Suppression and Increased Co-encoding of Targets and Distractors Following  SD,  when  attention  was  not  well  constrained  to  task  relevant  stimuli,   distractor   houses   showed   comparable,   familiarity   based   recognition   compared   to   attended   houses,   despite   the   overall   level   of   house   recognition   being   lower   than   for   attended  houses  in  the  well-­‐‑rested  state.   Comparable   observations   have   been   reported   with   healthy   elderly   participants   who  evidence  deficits  in  distractor  suppression  (Gazzaley  et  al.,  2005b,  Rowe  et  al.,  2006,   Kim   et   al.,   2007,   Schmitz   and   Cheng,   2010).   For   example,   Clapp   and   Gazzaley   (2010)   showed   that   while   elderly   showed   poorer   working   memory   for   target   items,   they   remembered  the  interfering  stimuli  significantly  better  than  their  younger  counterparts.   Thus,   inefficient   suppression   of   distractors   in   both   sleep-­‐‑deprived   and   elderly   participants   appears   to   result   in   greater   processing   and   co-­‐‑encoding   of   distractors   into   memory   together   with   target   items   (Schmitz   and   Cheng,   2010,   Clapp   and   Gazzaley,   2012).   88       The   upshot   of   these   findings   is   that   while   normally   not   preferred,   a   deficit   in   distractor   suppression   could   have   adaptive   value   under   conditions   of   impoverished   overall   processing   capacity.   For   example   someone   who   is   overly   engrossed   in   (selectively  attending)  a  cell  phone  conversation  while  crossing  a  road  after  being  sleep   deprived,  might  be  sufficiently  distracted  so  as  to  detect  an  oncoming  vehicle  that  might   have  otherwise  gone  unnoticed  in  the  well-­‐‑rested  state.     89     6. General Discussion In  our  24-­‐‑7  society  sleep  deprivation  becomes  more  and  more  pervasive.  We  are   constantly  bombarded  with  large  amount  of  information  that  requires  us  to  quickly  and   accurately   act   upon   even   when   sleep   deprived.   The   study   of   the   neural   mechanisms   underlying  information  processing  limits  following  SD  becomes  increasingly  important.   This   body   of   research   investigated   the   SD-­‐‑related   exacerbation   of   visual   attentional   processing   capacity.   Each   experiment   examined   a   different   aspect   of   the   worsened  processing  limits.     Chapter   III   examined   the   effect   of   SD   on   total   visual   perceptual   processing   resources,   i.e.   the   number   or   amount   of   information   one   can   process.   I   found   that   SD   compromised   the   processing   of   peripheral   task-­‐‑irrelevant   stimuli   when   the   perceptual   load  of  the  central  task  increased,  implying  a  reduction  in  visual  processing  capacity.     Chapter   IV   uncovered   the   bottleneck   of   rapid   visual   processing   following   SD   along   the   visual   processing   pathway.   The   SD-­‐‑induced   exacerbation   of   temporal   processing  is  likely  to  arise  from  the  worsened  limits  in  PPA.   Chapter  V  turned  to  focus  on  the  impairment  of  attention  as  a  resource  allocator   under   sustained   wakefulness.   In   the   presence   of   strongly   competing   stimuli,   distractor   inhibition  is  actively  engaged  under  normal  conditions,  complementing  attention  related   enhancement   of   target   stimuli   to   optimize   performance.   However,   the   results   showed   90       that   distractor   suppression   was   impaired   to   a   greater   extent   after   a   night   of   SD,   in   comparison  to  the  target  enhancement  process.     Degradation   of   attention   is   an   important   contributor   to   cognitive   decline   following  SD.  Each  individual  study  here  was  designed  to  strongly  engage  a  particular   process   or   processes   of   interest.   The   studies   suggest   that   the   wide-­‐‑ranging   deficits   in   behavior  and  cognitive  functions  originate  from  impairments  in  multiple  processes.  The   first   two   studies   (Chapter   III)   speak   to   the   more   passive   and   automatic   aspect   of   attention   while   the   last   study   (Chapter   V)   addresses   the   active   dimension   of   selective   attention.       Both   Chapter   III   and   Chapter   V   examined   distractor   processing.   On   surface,   it   seems   that   sleep   deprivation   exerts   contradictory   effects   on   distractor   processing   in   these  two  studies.  On  the  one  hand,  SD  reduced  the  processing  of  task-­‐‑irrelevant  stimuli   when   the   central   task   was   more   demanding   (Chapter   III);   but   on   the   other   hand,   following   SD   distractors   were   not   suppressed   to   the   same   extent   as   compared   to   following   RW   and   even   encoded   equally   as   the   attended   stimuli   (Chapter   V).   The   seemingly   opposing   effects   of   SD   arise   from   impairment   of   different   aspects   of   processing  capacity.  By  manipulating  the  load  type  and  experimental  design,  either  the   automatic  or  the  effortful  aspect  of  visual  processing  was  more  dominantly  engaged  in   the  two  studies.  When  the  targets  and  distractors  overlapped  and  distractor  suppression     91     became   obligatory,   decreased   capacity   to   engage   cognitive   control   led   to   increased   distraction  processing.       Previous   studies   suggest   that   the   effects   of   cognitive   work-­‐‑load   on   distractor   processing   depend   on   the   type   of   mental   processes   that   are   loaded   (Lavie   et   al.,   2004,   Lavie,   2005).   Apart   from   the   perceptual   selective   attention   mechanism   that   processes   information  until  perceptual  capacity  is  exhausted,  another  cognitive  control  mechanism   appears   to   maintain   task   goals   and   reduce   distraction.   In   contrast   to   increasing   perceptual   load,   increasing   demands   on   cognitive   control   by   incrementing   working   memory   can   result   in   greater   processing   of   distractors   (De   Fockert   et   al.,   2001,   Yi   and   Chun,   2005).   This   may   result   from   a   diminution   of   cognitive   resources   supporting   the   maintenance  of  task  goals  -­‐‑  a  form  of  failure  of  executive  function.     The  age-­‐‑related  changes  in  perceptual  processing  capacity  and  cognitive  control   lead   to   a   similar   phenomenon.   Older   adults   suffer   from   greater   distractor   interference,   however,   interestingly,   it   is   easier   to   ameliorate   the   distractor   intereference.   When   the   perceptual   load   of   the   task-­‐‑relevant   stimuli   is   increased,   their   more   limited   capacity   is   exhausted,  leaving  no  extra  resources  to  process  the  distractors.       The   behavioral   deficits   following   sleep   deprivation     not   originate   from   impairment   of   one   particular   neural   locus   or   bottleneck,   but   rather   from   the   worsened   processing  constraints  of  different  attentional  processes  and  their  interactions.     92         Common  finding  across  this  series  of  experiments  and  most  previous  studies  on   SD  is  that  SD  significantly  attenuated  BOLD  responses  in  the  task  related  regions  such   as   the   extrastriate   cortices   and   the   parietal   regions.   The   BOLD   response   is   a   proxy   for   neuronal   activity.   An   attenuated   collective   neuronal   response   following   sleep   deprivation  can  be  a  sequel  from  a  number  of  possible  altered  neural  response  patterns.     Chee   et   al.   (2011)   suggested   that   a   reduced   functional   neural   circuit   might   give   rise   to   the   reduced   activation   levels.   This   hypothesis   finds   strong   support   in   animal   neurophysiological   studies,   where   episodes   of   neurons   going   completely   ‘offline’   or   local   unresponsiveness   were   observed   following   sustained   wakefulness,   locally   resembling   properties   of   sleep.   These   periods   of   local   sleep   were   found   in   both   the   extrastriate  cortices  (Pigarev  et  al.,  1997)  and  frontal  and  parietal  regions  (Vyazovskiy  et   al.,  2011),  even  when  the  animals  continued  to  perform  at  behaviorally  reasonable  levels.     Following   sleep   deprivation,   even   for   correctly   responded   trials   (also   in   Chee   and  Chuah,  2007;  Chee  et  al,  2008),  an  attenuation  of  activation  was  observed.  A  reduced   number   of   neurons   being   active   may   reflect   a   minimal   number   of   circuits   required   to   fulfill   the   task   goals   in   SD,   so   as   to   improve   efficiency   and   conserve   energy   under   unfavorable   conditions.   However,   a   lack   of   redundancy   at   the   same   time   increases   system   instability   and   may   render   the   system   more   susceptible   to   random   fluctuations   and   perturbations,   manifesting   as   impairment   in   overall   behavioral   performance.     93     Chapter   III   indicated   that   higher   mean   task-­‐‑related   activation   levels   during   RW   had   functional  values.     Yet   another   plausible   scenario   for   the   reduced   collective   task-­‐‑related   neuronal   activity   is   that   SD   induces   a   greater   moment-­‐‑to-­‐‑moment   fluctuation   between   normal   neuronal   activities   and   temporary   failures   to   activate   the   system   to   a   similar   level   as   observed   in   RW.   Even   though   only   correctly   responded   trials   were   taken   into   consideration,   there   are   still   more   correctly   guessed   trials   within   this   pool   of   analyzed   trials  following  SD  than  in  RW.  SD  increases  the  number  of  contaminants  and  the  eyes-­‐‑ open,  correctly  guessed  trials  cannot  be  teased  apart.  Consequently,  this  increased  trial-­‐‑ to-­‐‑trial   variability   could   lead   to   an   overall   average   attenuated   activity   at   group   level.   Further  studies  may  need  to  address  this  possibility  specifically.           94       References   Åkerstedt   T,   Gillberg   M   (1990)   Subjective   and   objective   sleepiness   in   the   active   individual.  International  Journal  of  Neuroscience  52:29-­‐‑37.   Alvarez   GA,   Franconeri   SL   (2007)   How   many   objects   can   you   track?   Evidence   for   a   resource-­‐‑limited  attentive  tracking  mechanism.  J  Vis  7:14  11-­‐‑10.   Anderson  C,  Horne  J  (2006)  Sleepiness  enhances  distraction  during  a  monotonous  task.   Sleep  29:573-­‐‑576.   Arnedt  JT,  Wilde  GJS,  Munt  PW,  MacLean  AW  (2001)  How  do  prolonged  wakefulness   and   alcohol   compare   in   the   decrements   they   produce   on   a   simulated   driving   task?  Accident  Analysis  and  Prevention  33:337-­‐‑344.   Bays   PM,   Husain   M   (2008)   Dynamic   shifts   of   limited   working   memory   resources   in   human  vision.  Science  321:851-­‐‑854.   Boynton   GM,   Demb   JB,   Glover   GH,   Heeger   DJ   (1999)   Neuronal   basis   of   contrast   discrimination.  Vision  Research  39:257-­‐‑269.   Cartwright-­‐‑Finch   U,   Lavie   N   (2007)   The   role   of   perceptual   load   in   inattentional   blindness.  Cognition  102:321-­‐‑340.   Chee   MW,   Chuah   YM   (2007)   Functional   neuroimaging   and   behavioral   correlates   of   capacity   decline   in   visual   short-­‐‑term   memory   after   sleep   deprivation.   Proc   Natl   Acad  Sci  U  S  A  104:9487-­‐‑9492.   Chee  MWL,  Choo  WC  (2004)  Functional  imaging  of  working  memory  after  24  hr  of  total   sleep  deprivation.  The  Journal  of  Neuroscience.   Chee   MWL,   Chuah   LYM,   Venkatraman   V,   Chan   WY,   Philip   P,   Dinges   DF   (2006)   Functional  imaging  of  working  memory  following  normal  sleep  and  after  24  and   35   h   of   sleep   deprivation:   Correlations   of   fronto-­‐‑parietal   activation   with   performance.  NeuroImage  31:419-­‐‑428.   Chee   MWL,   Chuah   YM   (2008)   Functional   neuroimaging   insights   into   how   sleep   and   sleep   deprivation   affect   memory   and   cognition.   Current   opinion   in   neurology   21:417.   Chee  MWL,  Goh  CSF,  Namburi  P,  Parimal  S,  Seidl  KN,  Kastner  S  (2011)  Effects  of  sleep   deprivation   on   cortical   activation   during   directed   attention   in   the   absence   and   presence  of  visual  stimuli.  NeuroImage.   Chee   MWL,   Tan   JC   (2007)   Inter-­‐‑relationships   between   attention,   activation,   fMR   adaptation  and  long-­‐‑term  memory.  NeuroImage  37:1487-­‐‑1495.   Chee   MWL,   Tan   JC   (2010)   Lapsing   when   sleep   deprived:   neural   activation   characteristics  of  resistant  and  vulnerable  individuals.  NeuroImage  51:835-­‐‑843.   Chee  MWL,  Tan  JC,  Parimal  S,  Zagorodnov  V  (2010)  Sleep  deprivation  and  its  effects  on   object-­‐‑selective  attention.  NeuroImage  49:1903-­‐‑1910.     95     Chee   MWL,   Tan   JC,   Zheng   H,   Parimal   S,   Weissman   DH,   Zagorodnov   V,   Dinges   DF   (2008)  Lapsing  during  sleep  deprivation  is  associated  with  distributed  changes  in   brain  activation.  The  Journal  of  Neuroscience  28:5519-­‐‑5528.   Chuah   Y,   Venkatraman   V,   Dinges   DF   (2006)   The   neural   basis   of   interindividual   variability   in   inhibitory   efficiency   after   sleep   deprivation.   The   Journal   of   Neuroscience.   Chuah   YM,   Chee   MWL   (2008)   Cholinergic   augmentation   modulates   visual   task   performance   in   sleep-­‐‑deprived   young   adults.   The   Journal   of   Neuroscience   28:11369-­‐‑11377.   Chuah  YM,  Chong  DL,  Chen  AK,  Rekshan  III  WR,  Tan  JC,  Zheng  H,  Chee  MWL  (2009)   Donepezil   improves   episodic   memory   in   young   individuals   vulnerable   to   the   effects  of  sleep  deprivation.  Sleep  32:999.   Chun   MM,   Wolfe   JM   (2001)   Visual   attention.   Blackwell   Handbook   of   Sensation   and   Perception.   Clapp   WC,   Gazzaley   A   (2012)   Distinct   mechanisms   for   the   impact   of   distraction   and   interruption  on  working  memory  in  aging.  Neurobiology  of  aging  33:134  -­‐‑  148.   Clapp  WC,  Rubens  MT,  Gazzaley  A  (2010)  Mechanisms  of  working  memory  disruption   by  external  interference.  Cerebral  Cortex  20:859-­‐‑872.   Colten  HR,  Altevogt  BM  (2006)  Functional  and  economic  impact  of  sleep  loss  and  sleep-­‐‑ related   disorders.   In:   Sleep   Disorders   and   Sleep   Deprivation:   An   Unmet   Public   Health   Problem(Colten,   H.   R.   and   Altevogt,   B.   M.,   eds)   Washington   (DC):   National  Academies  Press.   Corbetta  M,  Shulman  GL  (2002)  Control  of  goal-­‐‑directed  and  stimulus-­‐‑driven  attention   in  the  brain.  Nature  Reviews  Neuroscience.   Culham  JC,  Brandt  SA,  Cavanagh  P,  Kanwisher  NG,  Dale  AM,  Tootell  RB  (1998)  Cortical   fMRI   activation   produced   by   attentive   tracking   of   moving   targets.   Journal   of   Neurophysiology  80:2657-­‐‑2670.   Curran   S,   Wattis   J   (2000)   Critical   flicker   fusion   threshold:   a   potentially   useful   measure   for   the   early   detection   of   Alzheimer's   disease.   Human   Psychopharmacology:  Clinical  and  Experimental  15:103-­‐‑112.   Czisch   M,   Wehrle   R,   Harsay   HA,   Wetter   TC,   Holsboer   F,   Samann   PG,   Drummond   SP   (2012)   On   the   Need   of   Objective   Vigilance   Monitoring:   Effects   of   Sleep   Loss   on   Target  Detection  and  Task-­‐‑Negative  Activity  Using  Combined  EEG/fMRI.  Front   Neurol  3:67.   De  Fockert  JW,  Rees  G,  Frith  CD,  Lavie  N  (2001)  The  role  of  working  memory  in  visual   selective  attention.  Science.   Desimone  R,  Duncan  J  (1995)  Neural  mechanisms  of  selective  visual  attention.  Annu  Rev   Neurosci  18:193-­‐‑222.   Dinges   DF,   Pack   F,   Williams   K,   Gillen   KA,   Powell   JW,   Ott   GE,   Aptowicz   C,   Pack   AI   (1997)   Cumulative   sleepiness,   mood   disturbance,   and   psychomotor   vigilance   96       performance  decrements  during  a  week  of  sleep  restricted  to  4-­‐‑5  hours  per  night.   Sleep  20:267-­‐‑277.   Doran   SM,   Van   Dongen   H,   Dinges   DF   (2001)   Sustained   attention   performance   during   sleep   deprivation:   evidence   of   state   instability.   Archives   italiennes   de   biologie   139:253-­‐‑267.   Drummond   SPA,   Bischoff-­‐‑Grethe   A,   Dinges   DF,   Ayalon   L,   Mednick   SC,   Meloy   MJ   (2005a)  The  neural  basis  of  the  psychomotor  vigilance  task.  Sleep  28:1059-­‐‑1068.   Drummond   SPA,   Gillin   JC,   Brown   GG   (2001)   Increased   cerebral   response   during   a   divided   attention   task   following   sleep   deprivation.   Journal   of   Sleep   Research   10:85-­‐‑92.   Drummond   SPA,   Meloy   MJ,   Yanagi   MA,   Orff   HJ   (2005b)   Compensatory   recruitment   after   sleep   deprivation   and   the   relationship   with   performance.   Psychiatry   Research  140:211-­‐‑223.   Drummond   SPA,   Paulus   MP,   Tapert   SF   (2006)   Effects   of   two   nights   sleep   deprivation   and   two   nights   recovery   sleep   on   response   inhibition.   Journal   of   sleep   research   15:261-­‐‑265.   Dux   PE,   Marois   R   (2008)   Distractor   inhibition   predicts   individual   differences   in   the   attentional  blink.  Plos  One  3:e3330.   Eagleman   DM   (2009)   Using   Time   Perception   to   Measure   Fitness   for   Duty.   Military   Psychology  21:123-­‐‑129.   Epstein  RA,  Graham  KS,  Downing  PE  (2003)  Viewpoint-­‐‑specific  scene  representations  in   human  parahippocampal  cortex.  Neuron  37:865-­‐‑876.   Epstein   RA,   Higgins   JS,   Thompson-­‐‑Schill   SL   (2005)   Learning   places   from   views:   variation  in  scene  processing  as  a  function  of  experience  and  navigational  ability.   Journal  of  Cognitive  Neuroscience  17:73-­‐‑83.   Epstein   RA,   Kanwisher   N   (1998)   A   cortical   representation   of   the   local   visual   environment.  Nature  392:598-­‐‑601.   Fischl  B,  Sereno  MI,  Tootell  RB,  Dale  AM  (1999)  High-­‐‑resolution  intersubject  averaging   and  a  coordinate  system  for  the  cortical  surface.  Hum  Brain  Mapp  8:272-­‐‑284.   Forster   S,   Lavie   N   (2007)   High   Perceptual   Load   Makes   Everybody   Equal   Eliminating   Individual  Differences  in  Distractibility  With  Load.  Psychological  Science  18:377-­‐‑ 381.   Forster   S,   Lavie   N   (2008)   Failures   to   ignore   entirely   irrelevant   distractors:   The   role   of   load.  Journal  of  Experimental  Psychology:  Applied  14:73.   Forster  S,  Lavie  N  (2009)  Harnessing  the  wandering  mind:  The  role  of  perceptual  load.   Cognition  111:345-­‐‑355.   Gazzaley  A,  Clapp  W,  Kelley  J,  McEvoy  K,  Knight  RT,  D’Esposito  M  (2008)  Age-­‐‑related   top-­‐‑down   suppression   deficit   in   the   early   stages   of   cortical   visual   memory   processing.  Proceedings  of  the  National  Academy  of  Sciences  105:13122-­‐‑13126.     97     Gazzaley   A,   Cooney   JW,   McEvoy   K,   Knight   RT,   D’Esposito   M   (2005a)   Top-­‐‑down   enhancement   and   suppression   of   the   magnitude   and   speed   of   neural   activity.   Journal  of  Cognitive  Neuroscience  17:507-­‐‑517.   Gazzaley   A,   Cooney   JW,   Rissman   J   (2005b)   Top-­‐‑down   suppression   deficit   underlies   working  memory  impairment  in  normal  aging.  Nature  Neuroscience.   Gläscher   J,   Rose   M,   Büchel   C   (2007)   Independent   effects   of   emotion   and   working   memory  load  on  visual  activation  in  the  lateral  occipital  complex.  The  Journal  of   Neuroscience.   Grill-­‐‑Spector  K  (2003)  The  neural  basis  of  object  perception.  Curr  Opin  Neurobiol  13:159-­‐‑ 166.   Grill-­‐‑Spector   K,   Kanwisher   N   (2005)   Visual   Recognition   As   Soon   as   You   Know   It   Is   There,  You  Know  What  It  Is.  Psychological  Science  16:152-­‐‑160.   Grill-­‐‑Spector  K,  Kushnir  T,  Hendler  T,  Malach  R  (2000)  The  dynamics  of  object-­‐‑selective   activation   correlate   with   recognition   performance   in   humans.   Nature   Neuroscience  3:837-­‐‑843.   Grill-­‐‑Spector   K,   Malach   R   (2004)   The   human   visual   cortex.   Annual   review   of   neuroscience  27:649-­‐‑677.   Harrison  Y,  Horne  JA,  Rothwell  A  (2000)  Prefrontal  neuropsychological  effects  of  sleep   deprivation  in  young  adults-­‐‑-­‐‑a  model  for  healthy  aging?  Sleep.   Hasher   L   (1988)   Working   memory,   comprehension,   and   aging:   A   review   and   a   new   view.  The  psychology  of  learning  and  motivation.   Hopfinger  JB,  Buonocore  MH,  Mangun  GR  (2000)  The  neural  mechanisms  of  top-­‐‑down   attentional  control.  Nature  Neuroscience.   Horne  JA,  Ostberg  O  (1976)  A  self-­‐‑assessment  questionnaire  to  determine  morningness-­‐‑ eveningness  in  human  circadian  rhythms.  International  journal  of  chronobiology.   Horne  JA,  Reyner  LA  (1995)  Sleep  related  vehicle  accidents.  Bmj  310:565-­‐‑567.   Horowitz   TS,   Cade   BE,   Wolfe   JM,   Czeisler   CA   (2003)   Searching   Night   and   Day   A   Dissociation   of   Effects   of   Circadian   Phase   and   Time   Awake   on   Visual   Selective   Attention  and  Vigilance.  Psychological  Science  14:549-­‐‑557.   Jha   AK,   Duncan   BW,   Bates   DW   (2001)   Fatigue,   sleepiness,   and   medical   errors.   In:   In   Making  health  care  safer  A  critical  analysis  of  patient  safety  practices.   Kanwisher   N,   McDermott   J,   Chun   MM   (1997)   The   fusiform   face   area:   a   module   in   human   extrastriate   cortex   specialized   for   face   perception.   Journal   of   Neuroscience  17:4302–4311.   Kastner  S,  Pinsk  MA,  De  Weerd  P,  Desimone  R,  Ungerleider  LG  (1999)  Increased  activity   in   human   visual   cortex   during   directed   attention   in   the   absence   of   visual   stimulation.  Neuron  22:751-­‐‑761.   Kastner   S,   Ungerleider   LG   (2000)   Mechanisms   of   visual   attention   in   the   human   cortex.   Annu  Rev  Neurosci  23:315-­‐‑341.   98       Kelly   DH   (1961)   Visual   responses   to   time-­‐‑dependent   stimuli.   I.   Amplitude   sensitivity   measurements.  JOSA.   Kelly   DH   (1979)   Motion   and   vision.   II.   Stabilized   spatio-­‐‑temporal   threshold   surface.   JOSA.   Kim   S,   Hasher   L,   Zacks   RT   (2007)   Aging   and   a   benefit   of   distractibility.   Psychonomic   Bulletin  Review  14:301-­‐‑305.   Konen   CS,   Kastner   S   (2008)   Two   hierarchically   organized   neural   systems   for   object   information  in  human  visual  cortex.  Nature  Neuroscience  11:224-­‐‑231.   Kong  D,  Soon  CS,  Chee  MW  (2012)  Functional  imaging  correlates  of  impaired  distractor   suppression  following  sleep  deprivation.  NeuroImage  61:50-­‐‑55.   Kong   D,   Soon   CS,   Chee   MWL   (2011)   Reduced   visual   processing   capacity   in   sleep   deprived  persons.  NeuroImage  55:629-­‐‑634.   Lavie  N  (1995)  Perceptual  load  as  a  necessary  condition  for  selective  attention.  Journal  of   Experimental  Psychology:  Human  Perception  and  Performance  21:451.   Lavie   N   (2001)   Capacity   limits   in   selective   attention:   Behavioral   evidence   and   implications  for  neural  activity.  Visual  attention  and  cortical  circuits  49-­‐‑68.   Lavie   N   (2005)   Distracted   and   confused?:   selective   attention   under   load.   Trends   in   Cognitive  Sciences  9:75-­‐‑82.   Lavie  N,  Hirst  A,  De  Fockert  JW,  Viding  E  (2004)  Load  theory  of  selective  attention  and   cognitive   control.   Journal   of   Experimental   Psychology:   General;   Journal   of   Experimental  Psychology:  General  133:339-­‐‑354.   Lavie  N,  Ro  T,  Russell  C  (2003)  The  role  of  perceptual  load  in  processing  distractor  faces.   Psychological  Science  14:510-­‐‑515.   Lee   HJ,   Yang   JW,   Lee   BH,   Ham   BJ   (2002)   Effects   of   Total   Sleep   Deprivation   on   Visual   Discrimination.  Sleep  Medicine  Psychophysiology  9:122-­‐‑126.   Leonard   C,   Fanning   N,   Attwood   J,   Buckley   M   (1998)   The   effect   of   fatigue,   sleep   deprivation  and  onerous  working  hours  on  the  physical  and  mental  wellbeing  of   pre-­‐‑registration  house  officers.  Ir  J  Med  Sci  167:22-­‐‑25.   Lim   J,   Choo   WC,   Chee   M   (2007)   Reproducibility   of   changes   in   be-­‐‑haviour   and   fMRI   activation  associated  with  sleep  deprivation  in  a  working  memory  task.  Sleep.   Lim   J,   Dinges   DF   (2008)   Sleep   deprivation   and   vigilant   attention.   Annals   of   the   New   York  Academy  of  Sciences  1129:305-­‐‑322.   Lim   J,   Dinges   DF   (2010)   A   meta-­‐‑analysis   of   the   impact   of   short-­‐‑term   sleep   deprivation   on  cognitive  variables.  Psychological  bulletin.   Lim  J,  Tan  JC,  Parimal  S,  Dinges  DF,  Chee  MWL  (2010)  Sleep  deprivation  impairs  object-­‐‑ selective  attention:  a  view  from  the  ventral  visual  cortex.  Plos  One  5:e9087.   Liu   T,   Slotnick   SD,   Serences   JT,   Yantis   S   (2003)   Cortical   mechanisms   of   feature-­‐‑based   attentional  control.  Cerebral  Cortex  13:1334-­‐‑1343.   Luck  SJ,  Vogel  EK,  Shapiro  KL  (1996)  Word  meanings  can  be  accessed  but  not  reported   during  the  attentional  blink.  Nature.     99     Lustig  C,  Hasher  L,  Zacks  RT  (2007)  Inhibitory  deficit  theory:  Recent  developments  in  a   “new  view.”.  Inhibition  in  cognition.   Marois  R,  Chun  MM,  Gore  JC  (2000)  Neural  correlates  of  the  attentional  blink.  Neuron   28:299-­‐‑308.   Marois   R,   Chun   MM,   Gore   JC   (2004)   A   common   parieto-­‐‑frontal   network   is   recruited   under  both  low  visibility  and  high  perceptual  interference  conditions.  Journal  of   Neurophysiology  92:2985-­‐‑2992.   Marois  R,  Ivanoff  J  (2005)  Capacity  limits  of  information  processing  in  the  brain.  Trends   in  Cognitive  Sciences  9:296-­‐‑305.   Maylor   EA,   Lavie   N   (1998)   The   influence   of   perceptual   load   on   age   differences   in   selective  attention.  Psychology  and  Aging  13:563.   McKeeff  TJ,  Remus  DA,  Tong  F  (2007)  Temporal  Limitations  in  Object  Processing  Across   the  Human  Ventral  Visual  Pathway.  Journal  of  Neurophysiology  98:382-­‐‑393.   Mu  Q,  Mishory  A,  Johnson  KA,  Nahas  Z,  Kozel  FA,  Yamanaka  K,  Bohning  DE,  George   MS   (2005)   Decreased   brain   activation   during   a   working   memory   task   at   rested   baseline  is  associated  with  vulnerability  to  sleep  deprivation.  Sleep  28:433-­‐‑446.   Mukai  I,  Kim  D,  Fukunaga  M,  Japee  S  (2007)  Activations  in  visual  and  attention-­‐‑related   areas  predict  and  correlate  with  the  degree  of  perceptual  learning.  The  Journal  of   Neuroscience  27:11401-­‐‑11411.   Neumann  E,  DeSchepper  BG  (1991)  Costs  and  benefits  of  target  activation  and  distractor   inhibition  in  selective  attention.  J  Exp  Psychol  Learn  Mem  Cogn  17:1136-­‐‑1145.   O'ʹCraven  KM,  Downing  PE,  Kanwisher  N  (1999)  fMRI  evidence  for  objects  as  the  units   of  attentional  selection.  Nature  401:584-­‐‑587.   Park  DC,  Polk  TA,  Park  R,  Minear  M,  Savage  A,  Smith  MR  (2004)  Aging  reduces  neural   specialization   in   ventral   visual   cortex.   Proceedings   of   the   National   Academy   of   Sciences  101:13091.   Patrick  G,  Gilbert  JA  (1896)  Studies  from  the  psychological  laboratory  of  the  University   of  Iowa:  On  the  effects  of  loss  of  sleep.  Psychological  Review.   Pessoa  L,  Padmala  S,  Morland  T  (2005)  Fate  of  unattended  fearful  faces  in  the  amygdala   is   determined   by   both   attentional   resources   and   cognitive   modulation.   NeuroImage.   Pigarev  IN,  Nothdurft  HC,  Kastner  S  (1997)  Evidence  for  asynchronous  development  of   sleep  in  cortical  areas.  Neuroreport  8:2557-­‐‑2560.   Posner  MI,  Boies  SJ  (1971)  Components  of  attention.  Psychological  Review.   Potter   MC,   Faulconer   BA   (1975)   Time   to   understand   pictures   and   words.   Nature   253:437-­‐‑  438.   Potter  MC,  Levy  EI  (1969)  Recognition  memory  for  a  rapid  sequence  of  pictures.  Journal   of  Experimental  Psychology  81:10  -­‐‑  15.   100       Raymond  JE,  Shapiro  KL,  Arnell  KM  (1992)  Temporary  suppression  of  visual  processing   in   an   RSVP   task:   An   attentional   blink?   J   Exp   Psychol   Hum   Percept   Perform   18:849-­‐‑860.   Rees   G,   Frith   CD,   Lavie   N   (1997)   Modulating   irrelevant   motion   perception   by   varying   attentional  load  in  an  unrelated  task.  Science.   Ress  D,  Heeger  DJ  (2003)  Neuronal  correlates  of  perception  in  early  visual  cortex.  Nature   Neuroscience  6:414-­‐‑420.   Reynolds  JH,  Chelazzi  L  (2004)  Attentional  modulation  of  visual  processing.  Annu  Rev   Neurosci  27:611-­‐‑647.   Reynolds  JH,  Desimone  R  (2003)  Interacting  roles  of  attention  and  visual  salience  in  V4.   Neuron  37:853-­‐‑863.   Rorden  C,  Guerrini  C,  Swainson  R,  Lazzeri  M,  Baylis  GC  (2008)  Event  related  potentials   reveal   that   increasing   perceptual   load   leads   to   increased   responses   for   target   stimuli  and  decreased  responses  for  irrelevant  stimuli.  Front  Hum  Neurosci  2:4.   Rose   M,   Schmid   C,   Winzen   A,   Sommer   T   (2005)   The   functional   and   temporal   characteristics   of   top-­‐‑down   modulation   in   visual   selection.   Cerebral   Cortex   15:1290-­‐‑1298.   Rowe  G,  Valderrama  S,  Hasher  L  (2006)  Attentional  disregulation:  A  benefit  for  implicit   memory.  Psychology  and  Aging.   Rutman   AM,   Clapp   WC,   Chadick   JZ,   Gazzaley   A   (2010)   Early   top–down   control   of   visual   processing   predicts   working   memory   performance.   Journal   of   Cognitive   Neuroscience  22:1224-­‐‑1234.   Rypma   B,   Prabhakaran   V   (2009)   When   less   is   more   and   when   more   is   more:   The   mediating  roles  of  capacity  and  speed  in  brain-­‐‑behavior  efficiency.  Intelligence.   Salthouse  TA  (2000)  Aging  and  measures  of  processing  speed.  Biological  psychology.   Schmitz   T,   Cheng   F   (2010)   Failing   to   Ignore:   Paradoxical   Neural   Effects   of   Perceptual   Load   on   Early   Attentional   Selection   in   Normal   Aging.   The   Journal   of   Neuroscience  30:14750-­‐‑14758.   Schwartz  S,  Vuilleumier  P,  Hutton  C,  Maravita  A,  Dolan  RJ,  Driver  J  (2005)  Attentional   Load  and  Sensory  Competition  in  Human  Vision:  Modulation  of  fMRI  Responses   by   Load   at   Fixation   during   Task-­‐‑irrelevant   Stimulation   in   the   Peripheral   Visual   Field.  Cerebral  Cortex  15:770-­‐‑786.   Serences   JT,   Schwarzbach   J,   Courtney   SM,   Golay   X,   Yantis   S   (2004)   Control   of   object-­‐‑ based  attention  in  human  cortex.  Cerebral  Cortex  14:1346-­‐‑1357.   Sturm   W,   Willmes   K   (2001)   On   the   functional   neuroanatomy   of   intrinsic   and   phasic   alertness.  NeuroImage  14:S76-­‐‑S84.   Tanaka  K  (1996)  Inferotemporal  cortex  and  object  vision.  Annual  review  of  neuroscience   19:109-­‐‑139.   Teofilo   L   (2005)   Sleep:   A   Comprehensive   Handbook.   Hoboken,   NJ,   USA:   John   Wiley   &  Sons,  Inc.     101     Thomas   M   (2003)   Neural   basis   of   alertness   and   cognitive   performance   impairments   during  sleepiness  II.  Effects  of  48  and  72  h  of  sleep  deprivation  on  waking  human   regional  brain  activity.  Thalamus  &  Related  Systems  2:199-­‐‑229.   Thomas   M,   Sing   H,   Belenky   G,   Holcomb   H,   Mayberg   H,   Dannals   R,   Wagner   JR   H,   Thorne   D,   Popp   K,   Rowland   L   (2000)   Neural   basis   of   alertness   and   cognitive   performance   impairments   during   sleepiness.   I.   Effects   of   24   h   of   sleep   deprivation  on  waking  human  regional  brain  activity.  Journal  of  Sleep  Research   9:335-­‐‑352.   Thorpe   S,   Fize   D,   Marlot   C   (1996)   Speed   of   processing   in   the   human   visual   system.   Nature  381:520-­‐‑522.   Tomasi  D,  Wang  RL,  Telang  F,  Boronikolas  V,  Jayne  MC,  Wang  GJ,  Fowler  JS,  Volkow   ND  (2009)  Impairment  of  attentional  networks  after  1  night  of  sleep  deprivation.   Cerebral  Cortex  19:233-­‐‑240.   Tong  F,  Nakayama  K,  VAUGHAN  J,  Kanwisher  N  (1998)  Binocular  Rivalry  and  Visual   Awareness  in  Human  Extrastriate  Cortex.  Neuron  21:753-­‐‑759.   Tucker  AM,  Rakitin  BC,  Basner  RC,  Gazes  Y,  Steffener  J,  Stern  Y  (2011a)  fMRI  activation   during  failures  to  respond  key  to  understanding  performance  changes  with  sleep   deprivation.  Behavioural  Brain  Research  218:73-­‐‑79.   Tucker   AM,   Stern   Y,   Basner   RC,   Rakitin   BC   (2011b)   The   prefrontal   model   revisited:   double   dissociations   between   young   sleep   deprived   and   elderly   subjects   on   cognitive  components  of  performance.  Sleep  34:1039.   Tucker  AM,  Whitney  P,  Belenky  G,  Hinson  JM,  Van  Dongen  HPA  (2010)  Effects  of  sleep   deprivation  on  dissociated  components  of  executive  functioning.  Sleep  33:47.   Turk-­‐‑Browne   NB,   Yi   DJ,   Chun   MM   (2006)   Linking   implicit   and   explicit   memory:   common  encoding  factors  and  shared  representations.  Neuron  49:917-­‐‑927.   Turk-­‐‑Browne   NB,   Yi   DJ,   Leber   AB,   Chun   MM   (2007)   Visual   quality   determines   the   direction  of  neural  repetition  effects.  Cerebral  Cortex  17:425-­‐‑433.   Turner  TH,  Drummond  S,  Salamat  JS  (2007)  Effects  of  42  hr  of  total  sleep  deprivation  on   component  processes  of  verbal  working  memory.  Neuropsychology  21:787  -­‐‑  795.   Vyazovskiy   VV,   Olcese   U,   Hanlon   EC,   Nir   Y,   Cirelli   C,   Tononi   G   (2011)   Local   sleep   in   awake  rats.  Nature  472:443-­‐‑447.   Wegener   D,   Ehn   F,   Aurich   MK,   Galashan   F,   Kreiter   AK   (2008)   Feature-­‐‑based   attention   and   the   suppression   of   non-­‐‑relevant   object   features.   Vision   Research   48:2696-­‐‑ 2707.   Williamson  AM,  Feyer  AM  (2000)  Moderate  sleep  deprivation  produces  impairments  in   cognitive   and   motor   performance   equivalent   to   legally   prescribed   levels   of   alcohol  intoxication.  Occup  Environ  Med  57:649-­‐‑655.   Wojciulik   E,   Kanwisher   N   (1999)   The   generality   of   parietal   involvement   in   visual   attention.  Neuron  23:747-­‐‑764.   102       Wu  JC,  Gillin  JC,  Buchsbaum  MS,  Hershey  T,  Hazlett  E,  Sicotte  N,  Bunney  WE,  Jr.  (1991)   The   effect   of   sleep   deprivation   on   cerebral   glucose   metabolic   rate   in   normal   humans  assessed  with  positron  emission  tomography.  Sleep  14:155-­‐‑162.   Xu  Y  (2007)  The  role  of  the  superior  intraparietal  sulcus  in  supporting  visual  short-­‐‑term   memory  for  multifeature  objects.  J  Neurosci  27:11676-­‐‑11686.   Xu   Y   (2009)   Distinctive   neural   mechanisms   supporting   visual   object   individuation   and   identification.  Journal  of  Cognitive  Neuroscience  21:511-­‐‑518.   Xu   Y,   Chun   MM   (2006)   Dissociable   neural   mechanisms   supporting   visual   short-­‐‑term   memory  for  objects.  Nature  440:91-­‐‑95.   Xu   Y,   Chun   MM   (2009)   Selecting   and   perceiving   multiple   visual   objects.   Trends   in   Cognitive  Sciences  13:167-­‐‑174.   Yi   DJ,   Chun   MM   (2005)   Attentional   modulation   of   learning-­‐‑related   repetition   attenuation   effects   in   human   parahippocampal   cortex.   Journal   of   Neuroscience   25:3593-­‐‑3600.   Yi   DJ,   Woodman   GF,   Widders   D,   Marois   R,   Chun   MM   (2004)   Neural   fate   of   ignored   stimuli:   dissociable   effects   of   perceptual   and   working   memory   load.   Nature   Neuroscience  7:992-­‐‑996.   Zanto   TP,   Gazzaley   A   (2009)   Neural   Suppression   of   Irrelevant   Information   Underlies   Optimal  Working  Memory  Performance.  Journal  of  Neuroscience  29:3059-­‐‑3066.           103   [...]... one   of   the   most   famous,   or   infamous,   cases   of   sleep   deprivation    The   adverse   effects   of   long-­‐‑term   sleep   deprivation   on   physical   and   mental   health  are  unquestionable;  therefore,  the  Guinness  World  Records  no  longer  recognized   this  category  Being  deprived of sleep  for  consecutive  days  is  rare;  however,  less  extreme   forms of sleep. ..  temporal  processing capacity  is  affected  by sleep deprivation  and  to   characterize  the  temporal  response  profiles  in  both  states   Chapter  4  further  extends  the  investigation on effects of sleep deprivation on  the   front   end   of   the   information   processing   system   The   experiment   adopted   the   RSVP   paradigm    Instead of  looking  at  responses  to  events...  past  studies on  the  different capacity  limitation of   information   processing   in   well   rested   person,   followed   by   how   different   facets   of   attention  are  compromised  following sleep deprivation  and  end  with  the  specific  aims of   the  series of  experiments       1.1 Capacity Limits of Information Processing ‘Everyone   knows   what   attention   is   It   is...   on   temporally   close   events   and   how   fast   the   different   brain   regions  can  process  the  inputs     Aim   3:   To   examine   how   attentional   control   functions   is   further   constrained   following   sleep deprivation   In  Chapter  5,  the  focus  moved  from  the  front  end of  the  information  processing   system   to   the   attentional   control   functions   Attentional. ..  individuals  Only  until  recent  years,  more  neuroimaging  experiments   begun  to  reveal  how  attention  is  influenced  by sleep deprivation  Attention  itself  is  not  a     19     unitary   construct   as   it   has   multiple   components   The   present   dissertation   focuses   on   exploring  the capacity  limitation  aspects of  attention  and  how sleep deprivation  further  ...  is  a  public  one  There   are   considerable   associations   between   sleep   deprivation/ fatigue   and   human-­‐‑error   related   accidents   or   occupational   errors   and   injuries   Insufficient   sleep,   which   leads   to   sleepiness   and   fatigue,   is   one   of   the   major   causes   of   motor   vehicle   accidents   The   National   Sleep   Foundation’s   Sleep   in   America... Test   (PVT)   is   one   of   the   simplest   tasks   of   sustained   attention   It   is   highly   reliable   in   tracking   performance   declines   across   time   In   an   fMRI   study of  PVT  after  a  good  night of sleep  and  36  hours of  total sleep deprivation,  it  was   shown   that   faster   reaction   times   were   related   to   increased   fMRI   responses   within   the... Altevogt,   2006)   Sleep   deprivation   induced   accidents  were  estimated  to  have  an  annual  economic  impact of  $43  to  $56  billion  in  the   United  States   Human  factor  and  epidemiological  studies  have  a  long  history of  characterizing   the   effects   of   sleep   deprivation   on   various   aspects   of   performance   and   describing   the   phenomenon   However,   the... deprivation  or sleep  reduction  are  prevalent     Sleep deprivation  can  be  either  acute  or  chronic  In  our  modern  technology-­‐‑rich   24-­‐‑7  society,  with  long  working  hours,  shift  works,  family  demands,  the  advent of  new   forms   of   communication,   expanded   leisure   and   entertainment   opportunities,   sleep   deprivation   is   becoming   increasingly   common... focus   on   reviewing  the  effect of sleep deprivation on attentional  processes     The   study   of   attention   can   be   organized   around   varieties   of   themes   Sturm   and   Willmes   (2001)   proposed   a   model   to   classify   attention   into   ‘intensity’   and   ‘selection’   aspects  (Posner  and  Boies,  1971,  Sturm  and  Willmes,  2001)  The  intensity  or  tonic  aspect . EDFL% BHJA;E;HJF`%DEE=JA%PDB=%]1!^S%DEE=JA%PDB=%;IJH>=%<H OF= %]1 !$5^S%DEE=JA%< HOF=%]15^S%DJA% % % UN;% DEE=JA% <HOF=% ;IJH>=% PDB=% ]15$!^M% /DFF;N=% N;=K% BHJA;E;HJ% ]-'# HP% DEE=JE;HJ%D>=%BHGQ>HG;F=A%PHCCHK;JI%FC==Q%A=Q>;NDE;HJ%DJA%=JA%K;E<%E<=% FQ =B;P;B%D ;G F% HP% E<=%F=>;=F%HP%=UQ = >;G =J EFM%% % 1.1 Capacity Limits of Information Processing Z,N=>@H J = % LJHKF%K<DE%DEE=JE;HJ% ;FM%$E%;F% E<=% EDL;JI%. %C=N=C% BHIJ;E;N=%BHJE>HC%POJBE;HJF%DJA%A=B;F;HJ%GDL;JIS%D>=%BDQDB;E@%C;G;E=AM%'<=F=%C;G;EDE;HJF% F<HK%FEDE=%>=CDE=A%DCE=>DE;HJF%DJ%=UDGQ C=%HP%K<;B<%;F%FC==Q%A=Q >;NDE;HJ%]&) ^M%% />=N;HOF%FEOA;=F%;JN=FE;IDE;JI%A=P;B;EF%;J%ND>;HOF%BHIJ;E;N=%AHGD;JF%<DN=%PHOJA% FC==Q% A=Q>;NDE;HJ% EH% DEE=JODE=%

Ngày đăng: 09/09/2015, 10:07

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan