BỘ GIÁO DỤC VÀ ĐÀO TẠO GIÁO VIÊN: LẠI VĂN LONG Web: http://violet.vn/vanlonghanam ĐỀ 7 ĐỀ THI THỬ ĐẠI HỌC NĂM 2014 Môn thi: TOÁN – KHỐI A, A1, B Thời gian làm bài: 180 phút ,không kể thời gian phát đề I.Phần chung cho tất cả các thí sinh (7,0 điểm) Câu I (2,0 điểm). Cho hàm số: 2 1 1 − + = − x y x 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2. Tìm những điểm trên (C) sao cho tiếp tuyến với (C) tại điểm đó tạo với hai trục tọa độ một tam giác có trọng tâm cách trục hoành một khoảng bằng 5 3 . Câu II (2,0 điểm) 1. Giải phương trình : sin 4 sinx 1 cos3 2 os(2 ) 4 π + = + − + x x c x . 2. Giải hệ phương trình : 1 1 1 1 1 1 4 2 2 − − + + = + − + − + + = y x x y x y x y . (với ; ∈ x y R ) Câu III (1,0 điểm). Tính tích phân: ( ) 2 l 1 ln 2 1 ln + + + + = + ∫ e x x x x I dx x x Câu IV(1,0 điểm). Cho hình lăng trụ tam giác 1 1 1 .ABC A B C có đáy ABC là tam giác vuông tại C với AC = a, cạnh bên 1 AA 2= a và tạo với đáy một góc bằng 30 ° , biết mặt phẳng 1 ( ) ( )⊥ABB ABC và tam giác 1 AA B cân tại 1 A . Tính thể tích của khối chóp 1 1 1 .A BCC B theo a. Câu V (1,0 điểm). Cho 2 số thực a, b ∈ (0; 1) và thỏa mãn : 3 3 ( )( ) (1 )(1 ) + + = − − a b a b ab a b Tìm GTLN của F = 2 2 2 2 1 1 3 1 1 + + − − + + ab a b a b . II.Phần riêng (3,0 điểm) : Thí sinh chỉ được làm một trong hai phần ( phần A hoặc phần B) A. Theo chương trình chuẩn Câu VI.a (2,0 điểm) 1.Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C): 2 2 2 1 0x y x+ − − = , điểm A(1;1) và đường thẳng : 2 1 0∆ − + =x y . Viết phương trình đường thẳng d cắt (C) và ∆ theo thứ tự tại M, N sao cho A là trung điểm của MN. 2.Trong không gian với hệ tọa độ Oxyz, cho mp(P): 2x - 3y + z - 1 = 0, đường thẳng 1 1 2 : 1 1 2 − + − = = − − x y z d và điểm A(1;1;0).Viết phương trình mặt phẳng (Q) qua A vuông góc với (P) cắt d tại B sao cho AB = 2 Câu VII.a (1,0 điểm) Cho z là số phức thỏa mãn: (3 - 2i).z = (2 + i)(1 + i) + 1.Tìm phần thực và phần ảo của số phức 2013 2 4z i+ − . B. Theo chương trình nâng cao Câu VI.b (2,0 điểm) 1.Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C): 2 2 2 2 8 0x y x y+ − − − = có tâm I, đường thẳng d: x - y + 2 = 0 và điểm A(2; 2).Viết phương trình đường thẳng ∆ cắt (C) và d lần lượt tại M,N sao cho tứ giác IANM là hình bình hành. 2. Trong không gian với hệ tọa độ Oxyz ,cho đường thẳng 1 3 : 1 1 1 − − ∆ = = − x y z , mp(P): 3x + y - z - 7 = 0 và điểm A(-1; 1; 2). Viết phương trình đường thẳng d đi qua điểm A và cắt ∆ tại B sao cho độ dài AB bằng khoảng cách từ A đến (P) . Câu VII.b ( 1,0 điểm). Giải hệ phương trình: 3 3 1 log ( 2 8) 4 3.2 2 2 2 + − − + = + = + x x y y y x 1 Câu Nội Dung Điểm I (2,0đ) 1. (1,0đ) TXĐ: D = R\ { } 1 Chiều biến thiên: , 2 1 0 ( 1) = > − y x , với x D ∀ ∈ ⇒ hàm số đồng biến trên mỗi khoảng : ( ) ;1−∞ và ( ) 1;+∞ Cực trị: hàm số không có cực trị Giới hạn, tiệm cận : 2 →+∞ = − x Limy , 2 →−∞ = − x Lim y ; (1) + → = −∞ x Lim y , (1) − → = +∞ x Lim y ⇒ 2= −y là tiệm cận ngang; 1=x là tiệm cận đứng. Bảng biến thiên: Đồ thị: đi qua các điểm (0; 1− ) ; ( 1 2 ; 0) Nhận giao điểm của hai tiệm cận I(1;-2) làm tâm đối xứng 2. (1,0đ) 2.Gọi M( 0 0 0 2 1 ; 1 − + − x x x ) ( )C∈ là điểm cần tìm và ∆ tiếp tuyến với (C) tại M ta có phương trình ∆ : ' 0 0 0 0 2 1 ( )( ) 1 − + = − + − x y f x x x x ( ) 0 0 2 0 0 2 1 1 ( ) 1 1 − + ⇒ = − + − − x y x x x x 0,25 0,25 0,25 0,25 0,25 2 −∞ +∞ 2− +∞ 2− −∞ 1 x y 2− -1 I O y x C B 1 A 1 C 1 A B I 3 . http://violet.vn/vanlonghanam ĐỀ 7 ĐỀ THI THỬ ĐẠI HỌC NĂM 2014 Môn thi: TOÁN – KHỐI A, A1 , B Thời gian làm bài: 180 phút ,không kể thời gian phát đề I.Phần chung cho tất cả các thí sinh (7, 0 điểm) Câu. lăng trụ tam giác 1 1 1 .ABC A B C có đáy ABC là tam giác vuông tại C với AC = a, cạnh bên 1 AA 2= a và tạo với đáy một góc bằng 30 ° , biết mặt phẳng 1 ( ) ( )⊥ABB ABC và tam giác 1 AA B cân. tại 1 A . Tính thể tích c a khối chóp 1 1 1 .A BCC B theo a. Câu V (1,0 điểm). Cho 2 số thực a, b ∈ (0; 1) và th a mãn : 3 3 ( )( ) (1 )(1 ) + + = − − a b a b ab a b Tìm GTLN c a F = 2