Đề 27 Câu 1: (2,0 điểm) Tìm các giới hạn sau: a) x x x x 3 2 1 2 3 1 lim 1 →− + − + b) ( ) x x x x 2 lim 1 →+∞ + + − Câu 2: (1,0 điểm) Xét tính liên tục của hàm số sau tại điểm x 0 2 = : x khi x f x x x khi x 2( 2) 2 ( ) ² 3 2 2 2 − ≠ = − + = Câu 3: (1,0 điểm) Tính đạo hàm của các hàm số sau: a) x y x 2 2 1 2 − = − b) y x 2 cos 1 2 = − Câu 4: (3,0 điểm) Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a, đường cao SO = a 3 . Gọi I là trung điểm của SO. a) Tính khoảng cách từ I đến mặt phẳng (SCD). b) Tính góc giữa các mặt phẳng (SBC) và (SCD). c) Tính khoảng cách giữa hai đường thẳng AC và SD. Câu 5a: (1,0 điểm) Chứng minh rằng phương trình : x x 5 3 1 − = có ít nhất một nghiệm thuộc (1; 2). Câu 6a: (2,0 điểm) a) Cho hàm số y xcot 2 = . Chứng minh rằng: y y 2 2 2 0 ′ + + = . b) Cho hàm số x y x 3 1 1 + = − có đồ thị (C). Viết phương trình tiếp tuyến của (C) tại điểm A(2; –7). Câu 5b: (1,0 điểm) Chứng minh rằng phương trình: x x 17 11 1 = + có nghiệm. Câu 6b: (2,0 điểm) a) Cho hàm số x y x 3 4 − = + . Chứng minh rằng: y y y 2 2 ( 1) ′ ′′ = − . b) Cho hàm số x y x 3 1 1 + = − có đồ thị (C). Viết phương trình tiếp tuyến của (C), biết tiếp tuyến vuông góc với đường thẳng d: x y2 2 5 0 + − = . . Đề 27 Câu 1: (2,0 điểm) Tìm các giới hạn sau: a) x x x x 3 2 1 2 3 1 lim 1 →− + − + b) ( ) x x. số sau: a) x y x 2 2 1 2 − = − b) y x 2 cos 1 2 = − Câu 4: (3,0 điểm) Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a, đường cao SO = a 3 . Gọi I là trung điểm của SO. a) Tính khoảng. tiếp tuyến của (C) tại điểm A(2; –7). Câu 5b: (1,0 điểm) Chứng minh rằng phương trình: x x 17 11 1 = + có nghiệm. Câu 6b: (2,0 điểm) a) Cho hàm số x y x 3 4 − = + . Chứng minh rằng: y y y 2 2