I. Phần chung: (7,0 điểm) Câu 1: (2,0 điểm) Tìm các giới hạn sau: a) n n n n 3 3 2 2 3 1 lim 2 1 + + + + b) x x x 0 1 1 lim → + − Câu 2: (1,0 điểm) Tìm m để hàm số sau liên tục tại điểm x = 1: x x khi x f x x m khi x 2 1 ( ) 1 1 − ≠ = − = Câu 3: (1,0 điểm) Tính đạo hàm của các hàm số sau: a) y x x 2 .cos= b) y x x 2 ( 2 ) 1= − + Câu 4: (3,0 điểm) Cho tam giác đều ABC cạnh bằng a. Trên đường thẳng vuông góc với mặt phẳng (ABC) tại B, ta lấy một điểm M sao cho MB = 2a. Gọi I là trung điểm của BC. a) (1,0 điểm) Chứng minh rằng AI ⊥ (MBC). b) (1,0 điểm) Tính góc hợp bởi đường thẳng IM với mặt phẳng (ABC). c) (1,0 điểm) Tính khoảng cách từ điểm B đến mặt phẳng (MAI). II. Phần riêng: (3,0 điểm) Thí sinh chỉ được chọn một trong hai phần sau: 1. Theo chương trình Chuẩn Câu 5a: (1,0 điểm) Chứng minh rằng phương trình sau có ít nhất 1 nghiệm: x x x 5 4 3 5 3 4 5 0− + − = Câu 6a: (2 điểm) Cho hàm số y f x x x x 3 2 ( ) 3 9 5= = − − + . a) Giải bất phương trình: y 0 ′ ≥ . b) Viết phương trình tiếp tuyến với đồ thị hàm số tại điểm có hoành độ bằng 1. 2. Theo chương trình Nâng cao Câu 5b: (1,0 điểm) Chứng minh rằng phương trình sau có đúng 3 nghiệm: x x 3 19 30 0− − = Câu 6b: (2,0 điểm) Cho hàm số y f x x x x 3 2 ( ) 5= = + + − . a) Giải bất phương trình: y 6 ′ ≤ . b) Viết phương trình tiếp tuyến với đồ thị hàm số, biết tiếp tuyến có hệ số góc bằng 6. ––––––––––––––––––––Hết––––––––––––––––––– . hàm của các hàm số sau: a) y x x 2 .cos= b) y x x 2 ( 2 ) 1= − + Câu 4: (3,0 điểm) Cho tam giác đều ABC cạnh bằng a. Trên đường thẳng vuông góc với mặt phẳng (ABC) tại B, ta lấy một điểm M sao. (ABC). c) (1,0 điểm) Tính khoảng cách từ điểm B đến mặt phẳng (MAI). II. Phần riêng: (3,0 điểm) Thí sinh chỉ được chọn một trong hai phần sau: 1. Theo chương trình Chuẩn Câu 5a: (1,0 điểm) Chứng minh