1. Trang chủ
  2. » Đề thi

Đề thi thử Đại học môn Toán kèm hướng dẫn giải số 30

21 100 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 21
Dung lượng 1,33 MB

Nội dung

kỳ thi thử đại học năm 2011 Trờng thpt tây thụy anh . Mụn Toỏn : Thời gian làm bài 180 phút. A /phần chung cho tất cả thí sinh. ( 8 im ) Cõu I : ( 2 im ). Cho hm s y = x 3 + ( 1 2m)x 2 + (2 m )x + m + 2 . (C m ) 1.Kho sỏt s bin thiờn v v th hm s khi m = 2. 2. Tỡm m th hm s (C m ) cú cc tr ng thi honh cc tiu nh hn 1. Cõu II : ( 2 im ). 1. Gii phng trỡnh: sin 2 2 2(sinx+cosx)=5x . 2. Tỡm m phng trỡnh sau cú nghim duy nht : 2 2 3 .x mx x + = Cõu III : ( 2 im ). 1. Tớnh tớch phõn sau : 2 2 3 1 1 . x I dx x x = + 2. Cho h phng trỡnh : 3 3 ( ) 1 x y m x y x y = + = Tỡm m h cú 3 nghim phõn bit (x 1 ;y 1 );(x 2 ;y 2 );(x 3 ;y 3 ) sao cho x 1 ;x 2 ;x 3 lp thnh cp s cng ( ) 0d .ng thi cú hai s x i tha món i x > 1 Cõu IV : ( 2 im ). Trong khụng gian oxyz cho hai ng thng d 1 : 1 1 2 x y z = = ; d 2 1 2 1 x t y t z t = = = + v im M(1;2;3). 1.Vit phng trỡnh mt phng cha M v d 1 ; Tỡm M i xng vi M qua d 2 . 2.Tỡm 1 2 ;A d B d sao cho AB ngn nht . B. PHN T CHN: ( 2 im ). ( Thớ sinh ch c lm 1 trong 2 cõu V a hoc V b sau õy.) Cõu V a . 1. Trong mt phng oxy cho ABC cú A(2;1) . ng cao qua nh B cú phng trỡnh x- 3y - 7 = 0 .ng trung tuyn qua nh C cú phng trỡnh x + y +1 = 0 . Xỏc nh ta B v C . Tớnh din tớch ABC . 2.Tỡm h s x 6 trong khai trin 3 1 n x x + ữ bit tng cỏc h s khai trin bng 1024. Cõu V b . 1. Gii bt phng trỡnh : 2 2 1 1 5 5 x x+ > 24. 2.Cho lng tr ABC.A B C ỏy ABC l tam giỏc u cnh a. .A cỏch u cỏc im A,B,C. Cnh bờn AA to vi ỏy gúc 60 0 . Tớnh th tớch khi lng tr. ______________ Ht ____________ www.laisac.page.tl 1 kú thi thö ®¹i häc n¨m 2011 Trêng thpt t©y thôy anh . Môn Toán : Thêi gian lµm bµi 180 phót. ĐÁP ÁN Câ u Ý Nội dung Điểm I . 200 1 .Khảo sát sự biến thiên và vẽ đồ thị hàm số khi m = 2. 1,00 Với m = 2 ta được y = x 3 – 3x 2 + 4 a ;Tập xác định : D = R. 0,25 b ; Sự biến thiên. Tính đơn điệu …… Nhánh vô cực…… j o 4 + ∞ - ∞ + + - 0 0 2 0 + ∞ - ∞ y y' x 0,25 c ; Đồ thị : + Lấy thêm điểm . + Vẽ đúng hướng lõm và vẽ bằng mực cùng màu mực với phần trình bầy 0,25 2 8 6 4 2 -2 -4 -6 -8 -15 -10 -5 5 10 15 0,25 2 . Tìm m để đồ thị hàm số (C m ) có cực trị đồng thời hoành độ cực tiểu nhỏ hơn 1. 1,00 Hàm số có cực trị theo yêu cầu đầu bài khi và chỉ khi thỏa mãn 2 ĐK sau : + y ’ =0 có 2 nghiệm pbiệt x 1 < x 2 ⇔ ' 2 4 5 0m m∆ = − − f ⇔ m < - 1 hoặc m > 5 4 0,25 0,25 + x 1 < x 2 < 1 ( Vì hệ số của x 2 của y ’ mang dấu dương ) ⇔ …. ⇔ ' 4 2m∆ −p ⇔ … ⇔ 21 15 m p 0,25 Kết hợp 2 ĐK trên ta được… Đáp số ( ) ; 1m∈ −∞ − 5 7 ; 4 5   ∪  ÷   0,25 II 2,00 1 1.Giải phương trình: sin 2 2 2(sinx+cosx)=5x − . ( I ) 1,00 Đặt sinx + cosx = t ( 2t ≤ ). ⇒ sin2x = t 2 - 1 ⇒ ( I ) 0,25 ⇔ 2 2 2 6 0t t− − = ⇔ 2t = − ) 0,25 +Giải được phương trình sinx + cosx = 2− … ⇔ os( ) 1 4 c x π − = − + Lấy nghiệm 0,25 Kết luận : 5 2 4 x k π π = + ( k ∈Z ) hoặc dưới dạng đúng khác . 0,25 2 Tìm m để phương trình sau có nghiệm duy nhất : 2 2 3 .x mx x + = − 1,00 3 ⇔ hệ 2 2 2x x 9 6x 3 m x x  + = + −  ≤  có nghiệm duy nhất 0,25 ⇒ x 2 + 6x – 9 = -mx (1) +; Ta thấy x = 0 không phải là nghiệm. 0,25 + ; Với x ≠ 0 (1) ⇔ 2 6x 9x m x + − = − . Xét hàm số : f(x) = 2 6x 9x x + − trên ( ] { } ;3 \ 0−∞ có f ’ (x) = 2 2 9x x + > 0 0x ∀ ≠ 0,25 + , x = 3 ⇒ f(3) = 6 , có nghiệm duy nhất khi – m > 6 ⇔ m < - 6 0,25 III 2,00 1 1. Tính tích phân sau : 2 2 3 1 1 . x I dx x x − = + ∫ 2 2 3 1 1 . x I dx x x − = + ∫ = 2 2 1 1 1 x 1 x d x x − + ∫ = 2 1 1 ( ) 1 d x x x x + − + ∫ = - 1 2 1 ln( )x x + = …. = 4 ln 5 ( Hoặc 2 2 3 1 1 . x I dx x x − = + ∫ = 2 2 1 1 2x x 1 d x x   −  ÷ +   ∫ =……) 1,00 0,25 0,50 0,25 2 2.Cho hệ phương trình : 3 3 ( ) 1 x y m x y x y  − = −  + = −  Tìm m để hệ có 3 nghiệm phân biệt (x 1 ;y 1 );(x 2 ;y 2 );(x 3 ;y 3 ) sao cho x 1 ;x 2 ;x 3 lập thành cấp số cộng ( ) 0d ≠ .Đồng thời có hai số x i thỏa mãn i x > 1 3 3 ( ) 1 x y m x y x y  − = −  + = −  ⇔ 2 2 ( )( ) 0 1 x y x y xy m x y  − + + − =  + = −  ⇔ 2 1 2 1 ( ) 1 0 x y y x x x x m ϕ  = = −   = − −     = + + − =   Trước hết ( )x ϕ phải có 2 nghiệm pbiệt x 1 ; x 2 ⇔ 3 4 3 0 4 m m∆ = − ⇔f f 1,00 0,25 0,25 4 Có thể xảy ra ba trường hợp sau đây theo thứ tự lập thành cấp số cộng. +Trường hợp 1 : 1 2 − ; x 1 ; x 2 +Trường hợp 2 : x 1 ; x 2 ; 1 2 − +Trường hợp 3 : x 1 ; 1 2 − ; x 2 0,25 Xét thấy Trường hợp 1 ;2 không thỏa mãn. Trường hợp 3 ta có 1 2 1 2 1 1 x x x x m + == −   = −  đúng với mọi m > 3 4 Đồng thời có hai số x i thỏa mãn i x > 1 ta cần có thêm điều kiện sau 2 1 4 3 1 4 3 3 3 2 m x m m − + − = ⇔ − ⇔f f f Đáp số : m > 3 0,25 IV Trong không gian oxyz cho hai đường thẳng d 1 : 1 1 2 x y z = = ; d 2 1 2 1 x t y t z t = − −   =   = +  và điểm M(1;2;3). 1.Viết phương trình mặt phẳng chứa M và d 1 ; Tìm M ’ đối xứng với M qua d 2 . . + Phương trình mặt phẳng chứa M và d 1 …. Là (P) x + y – z = 0 + Mp(Q) qua M và vuông góc với d 2 có pt 2x – y - z + 3 = 0 2,00 0,25 0,25 + Tìm được giao của d 2 với mp(Q) là H(-1 ;0 ;1) … ⇒ Điểm đối xứng M ’ của M qua d 2 là M ’ (-3 ;-2 ;-1) 0,25 0,25 2.Tìm 1 2 ;A d B d ∈ ∈ sao cho AB ngắn nhất . Gọi A(t;t;2t) và B(-1-2t 1 ;-t 1 ;1+t 1 ) AB ngắn nhất khi nó là đoạn vuông góc chung của hai đường thẳng d 1 và d 2 . 0,50 ⇒ 1 2 . 0 . 0 AB v AB v  =   =   uuur ur uuur uur ……. ⇒ tọa độ của 3 3 6 ; ; 35 35 35 A    ÷   và 1 17 18 ; ; 35 35 35 B − −    ÷   0,50 Va 2,00 1 1. Trong mặt phẳng oxy cho ABC ∆ có A(2;1) . Đường cao qua đỉnh B có phương trình x- 3y - 7 = 0 .Đường trung tuyến qua đỉnh C có phương trình x + y +1 = 0 . Xác định tọa độ B và C . 5 - 2 M C B H A +AC qua A và vuông góc với BH do đó có VTPT là (3;1)n = r AC có phương trình 3x + y - 7 = 0 + Tọa độ C là nghiệm của hệ AC CM    …… ⇒ C(4;- 5) + 2 1 ; 2 2 B B M M x y x y + + = = ; M thuộc CM ta được 2 1 1 0 2 2 B B x y+ + + + = + Giải hệ 2 1 1 0 2 2 3 7 0 B B B B x y x y + +  + + =    − − =  ta được B(-2 ;-3) 0,25 0,25 Tính diện tích ABC ∆ . + Tọa độ H là nghiệm của hệ 14 3 7 0 5 3x 7 0 7 5 x x y y y  =  − − =   ⇔   + − =   = −   …. Tính được BH = 8 10 5 ; AC = 2 10 Diện tích S = 1 1 8 10 . .2 10. 16 2 2 5 AC BH = = ( đvdt) 0,25 0,25 2.Tìm hệ số x 6 trong khai triển 3 1 n x x   +  ÷   biết tổng các hệ số khai triển bằng 1024. + ; 0 1 1024 n n n n C C C+ + + = ⇔ ( ) 1 1 1024 n + = ⇔ 2 n = 1024 ⇔ n = 10 0,25 0,25 + ; ( ) 10 10 10 3 3 10 1 1 . k k k k o x C x x x − =     + =  ÷  ÷     ∑ ; ……. Hạng tử chứa x 6 ứng với k = 4 và hệ số cần tìm bằng 210 . 0,25 0,25 V b 2,00 1 1. Giải bất phương trình : 2 2 1 1 5 5 x x+ − − > 24. (2) 1,00 6 (2) ⇔ ( ) ( ) 2 2 2 5 5 24 5 5 0 x x − − f ⇔ 2 5 5 x f ⇔ x 2 > 1 ⇔ 1 1 x x   −  f p 0,5 0,5 7 2 2.Cho lăng trụ ABC.A ’ B ’ C ’ đáy ABC là tam giác đều cạnh a. .A ’ cách đều các điểm A,B,C. Cạnh bên AA ’ tạo với đáy góc 60 0 . Tính thể tích khối lăng trụ. G N M C B A B' C' A' Từ giả thiết ta được chop A ’ .ABC là chop tam giác đều . · ' A AG là góc giữa cạnh bên và đáy . ⇒ · ' A AG = 60 0 , … AG = 3 3 a ; Đường cao A ’ G của chop A ’ .ABC cũng là đường cao của lăng trụ . Vậy A ’ G = 3 3 a .tan60 0 = 3 3 a . 3 = a. …… Vậy Thể tích khối lăng trụ đã cho là V = 3 1 3 3 . . . 2 2 4 a a a a = 1,00 0,25 0,25 0,25 0,25 Ghi chú : + Mọi phương pháp giải đúng khác đều được công nhận và cho điểm như nhau . + Điểm của bài thi là tổng các điểm thành phần và làm tròn ( lên ) đến 0,5 điểm. 8 ĐỀ THI THỬ ĐẠI HỌC LẦN 2 - NĂM HỌC 2011 Môn: TOÁN Thời gian làm bài: 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH Câu I (2 điểm) Cho hàm số 2x 3 y x 2 − = − có đồ thị (C). 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (C) 2. Tìm trên (C) những điểm M sao cho tiếp tuyến tại M của (C) cắt hai tiệm cận của (C) tại A, B sao cho AB ngắn nhất . Câu II (2 điểm) 1. Giải phương trình: 2( tanx – sinx ) + 3( cotx – cosx ) + 5 = 0 2. Giải phương trình: x 2 – 4x - 3 = x 5+ Câu III (1 điểm) Tính tích phân: 1 2 1 dx 1 x 1 x − + + + ∫ Câu IV (1 điểm) Khối chóp tam giác SABC có đáy ABC là tam giác vuông cân đỉnh C và SA vuông góc với mặt phẳng (ABC), SC = a . Hãy tìm góc giữa hai mặt phẳng (SCB) và (ABC) để thể tích khối chóp lớn nhất . Câu V ( 1 điểm ) Cho x, y, z là các số dương thỏa mãn 1 1 1 4 x y z + + = . CMR: 1 1 1 1 2 2 2x y z x y z x y z + + ≤ + + + + + + PHẦN TỰ CHỌN: Thí sinh chọn một trong hai phần A hoặc B A. Theo chương trình Chuẩn Câu VI.a.( 2 điểm ) 1. Tam giác cân ABC có đáy BC nằm trên đường thẳng : 2x – 5y + 1 = 0, cạnh bên AB nằm trên đường thẳng : 12x – y – 23 = 0 . Viết phương trình đường thẳng AC biết rằng nó đi qua điểm (3;1) 2. Trong không gian với hệ tọa độ Đêcác vuông góc Oxyz cho mp(P) : x – 2y + z – 2 = 0 và hai đường thẳng : (d) x 1 3 y z 2 1 1 2 + − + = = − và (d’) x 1 2t y 2 t z 1 t = +   = +   = +  Viết phương trình tham số của đường thẳng ( ∆ ) nằm trong mặt phẳng (P) và cắt cả hai đường thẳng (d) và (d’) . CMR (d) và (d’) chéo nhau và tính khoảng cách giữa chúng . Câu VIIa . ( 1 điểm ) Tính tổng : 0 5 1 4 2 3 3 2 4 1 5 0 5 7 5 7 5 7 5 7 5 7 5 7 S C C C C C C C C C C C C= + + + + + B. Theo chương trình Nâng cao Câu VI.b.( 2 điểm ) 1. Viết phương trình tiếp tuyến chung của hai đường tròn : (C 1 ) : (x - 5) 2 + (y + 12) 2 = 225 và (C 2 ) : (x – 1) 2 + ( y – 2) 2 = 25 2. Trong không gian với hệ tọa độ Đêcác vuông góc Oxyz cho hai đường thẳng : 9 (d) x t y 1 2t z 4 5t = = + = + v (d) x t y 1 2t z 3t = = = a. CMR hai ng thng (d) v (d) ct nhau . b. Vit phng trỡnh chớnh tc ca cp ng thng phõn giỏc ca gúc to bi (d) v (d) . Cõu VIIb.( 1 im ) Gii phng trỡnh : ( ) 5 log x 3 2 x + = Ht Cỏn b coi thi khụng gii thớch gỡ thờm. đáp án đề thi thử đại học lần 2 năm học 2009 - 2010 Môn thi: toán Thời gian làm bài: 180 phút, không kể thời gian giao đề 10 [...]... 3 con K ) - Ht Cỏn b coi thi khụng gii thớch gỡ thờm trờng thpt hậu lộc 2 đáp án đề thi thử đại học lần 1 năm học 2009-2010 Môn thi: toán Thời gian làm bài: 180 phút, không kể thời gian giao đề 19 Câu Nội dung Khảo sát và vẽ ĐTHS - TXĐ: D = R \ {2} - Sự biến thi n: + ) Giới hạn : Lim y = Lim y = 3 x x + của đồ thị hàm số +) Lim y = ; Lim y = + + x 2 x 2 Điểm nên đờng thẳng... 2x 3 có : x2 - TXĐ: D = R \ {2} - Sự biến thi n: + ) Giới hạn : Lim y = 2 Do đó ĐTHS nhận đờng thẳng y = 2 làm TCN Hàm số y = 0,25 x y y , lim2 = ; lim2+ = + Do đó ĐTHS nhận đờng thẳng x = 2 làm TCĐ x x +) Bảng biến thi n: 1 Ta có : y = 2 < 0 x D ( x 2) x y I 2.0đ 1 1.25 đ y 0,25 + 2 - - + 2 0,25 2 Hàm số nghịch biến trên mỗi khoảng ( ;2 ) và hàm số không có cực trị - Đồ thị 3 + Giao điểm... cận đứng của đồ thị hàm số +) Bảng biến thi n: 2 Ta có : y = 2 < 0 , x D ( x 2) x y + 2 - - 3 y 0,25 + 3 Hàm số nghịch biến trên mỗi khoảng ( ;2 ) và - Đồ thị + Giao điểm với trục tung : (0 ;2) + Giao điểm với trục hoành : ( 4/3 ; 0) + ĐTHS nhận giao điểm I(2 ;3) của hai đờng tiệm cận làm tâm đối xứng I 2.0đ 0,25 y 1 1,25đ 0,25 6 0.5 4 2 -5 O 5 x Gọi M(x;y) (C) và cách đều 2 tiệm cận x = 2 và... 0,25 0,25 0,25 = 7 + 5i hoc z = 2 + i => z = 5 4i = 7 5i Bi lm vn c im nu thớ sinh lm ỳng theo cỏch khỏc! 17 trờng thpt hậu lộc 2 THI TH I HC LN 2 - NM HC 2010 Mụn: TON (Thi gian : 180 phỳt) PHN CHUNG CHO TT C CC TH SINH Cõu I (2 im): 1).Kho sỏt s bin thi n v v th (C) ca hm s : y = u 2 ng tim cn 3x 4 Tỡm im thuc (C) cỏch x2 2).Tỡm cỏc giỏ tr ca m phng trỡnh sau cú 2 nghim trờn on sin6x... 2(tanx + 1 sinx) + 3(cotx + 1 cosx) = 0 A sin x cosx 2 + 1 sin x ữ+ + 1 cosx ữ = 0 cosx sin x B C 0,25 11 THI TH I HC NM 2010 Mụn : Toỏn, khi D (Thi gian 180 khụng k phỏt ) PHN CHUNG CHO TT C TH SINH (7,0 im) Cõu I (2 im) Cho hm s y = x3 3x2+2 (1) 1 Kho sỏt s bin thi n v v th ca hm s (1) 2 Tỡm im M thuc ng thng y=3x-2 sao tng khong cỏch t M ti hai im cc tr nh nht Cõu II (2 im) 1 Gii... y +1 = 3 2 Vit phng trỡnh ng thng ct d1 v d2 ng thi i qua im M(3;10;1) Cõu VII.b (1 im) Gii phng trỡnh sau trờn tp phc: z2+3(1+i)z-6-13i=0 -Ht P N THI TH I HC LN II, năm 2010 PHN CHUNG CHO TT C TH SINH (7,0 im) Cõu Ni dung Tp xỏc nh: D=R lim ( x 3 3 x 2 + 2 ) = x lim ( x 3 3 x 2 + 2 ) = + x + x = 0 x = 2 y=3x2-6x=0 I 1 Bng bin thi n: x - y + 0,25 0 0 2 - 2 0 y - im + + + 0,25... 2 = 2 ln 3 ữ 3 0,25 3 Gi chõn ng vuụng gúc h t S xung BC l H Xột SHA(vuụng ti H) 0,25 S a 3 AH = SA cos 30 = 2 0 M ABC u cnh a, m cnh a 3 2 AH = IV K => H l trung im ca cnh BC => AH BC, m SH BC => BC(SAH) T H h ng vuụng gúc xung SA ti K => HK l khong cỏch gia BC v SA => HK = AH sin 300 = A 0,25 H B 0,25 AH a 3 = 2 4 Vy khong cỏch gia hai ng thng BC v SA bng V C a 3 4 0,25 Ta cú: a3 2 b2... (1 im) Cho hỡnh chúp S.ABC cú mt ỏy (ABC) l tam giỏc u cnh a Chõn ng vuụng gúc h t S xung mt phng (ABC) l mt im thuc BC Tớnh khong cỏch gia hai ng thng BC v SA bit SA=a v SA to vi mt phng ỏy mt gúc bng 300 Cõu V (1 im) Cho a,b, c dng v a2+b2+c2=3 Tỡm giỏ tr nh nht ca biu thc P= a3 b2 + 3 + b3 c2 + 3 + c3 a2 + 3 PHN RIấNG (3 im) A Theo chng trỡnh chun Cõu VI.a (2 im) 1 Trong mt phng vi h to Oxy, cho... 1 ( d1 ) : y = 4 + 2t z = 3 + t v x = 3u ( d 2 ) : y = 3 + 2u z = 2 a Chng minh rng (d1) v (d2) chộo nhau b Vit phng trỡnh mt cu (S) cú ng kớnh l on vuụng gúc chung ca (d1) v (d2) 3) Mt hp cha 30 bi trng, 7 bi v 15 bi xanh Mt hp khỏc cha 10 bi trng, 6 bi v 9 bi xanh Ly ngu nhiờn t mi hp bi mt viờn bi Tỡm xỏc sut 2 bi ly ra cựng mu Cõu V.b.( 2 im ) Theo chng trỡnh Nõng cao 1).Trong mt... 2.0đ 0,25 y 1 1,25đ 0,25 6 0.5 4 2 -5 O 5 x Gọi M(x;y) (C) và cách đều 2 tiệm cận x = 2 và y = 3 3x 4 x 2 x2 = | x 2 | = | y 3 | x2 = x2 x2 x = 1 x = ( x 2) x2 x = 4 Vậy có 2 điểm thoả mãn đề bài là : M1( 1; 1) và M2(4; 6) Xét phơng trình : sin6x + cos6x = m ( sin4x + cos4x ) (2) 3 1 1 sin 2 2x = m 1 sin 2 2x ữ(1) 4 2 2 Đặt t = sin22x Với x 0; thì t [ 0;1] Khi đó (1) trở thành . pháp giải đúng khác đều được công nhận và cho điểm như nhau . + Điểm của bài thi là tổng các điểm thành phần và làm tròn ( lên ) đến 0,5 điểm. 8 ĐỀ THI THỬ ĐẠI HỌC LẦN 2 - NĂM HỌC 2011 Môn: TOÁN Thời. x + = Ht Cỏn b coi thi khụng gii thớch gỡ thờm. đáp án đề thi thử đại học lần 2 năm học 2009 - 2010 Môn thi: toán Thời gian làm bài: 180 phút, không kể thời gian giao đề 10 Câu Nội dung. Cỏn b coi thi khụng gii thớch gỡ thờm. trờng thpt hậu lộc 2 đáp án đề thi thử đại học lần 1 năm học 2009-2010 Môn thi: toán Thời gian làm bài: 180 phút, không kể thời gian giao đề 19 Câu Nội

Ngày đăng: 30/07/2015, 17:12

w