1. Trang chủ
  2. » Đề thi

Đề thi thử đại học môn Toán số 30

1 107 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 188,5 KB

Nội dung

TRƯỜNG THPT CHUYÊN LÊ QUÝ ĐÔN ĐỀ THI THỬ ĐẠI HỌC NĂM 2012 TỈNH QUẢNG TRỊ Môn: TOÁN - Khối: A,B Thời gian làm bài: 180 phút, không kể thời gian phát đề ĐỀ THI THỬ LẦN 2 Phần bắt buộc (7 điểm) Câu 1. (2điểm) Cho hàm số 2 1 1 x y x − = − , (1) và điểm (0;3)A . 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) 2. Tìm các giá trị của m để đường thẳng : y x m∆ = − + cắt đồ thị (C) tại hai điểm B, C sao cho tam giác ABC có diện tích bằng 5 2 . Câu 2. (2 điểm) 1. Giải phương trình: 1 1 2.cos 2 sin cos x x x = + 2. Giải bất phương trình: 2 1 2 1 x x x x x − ≥ − − − Câu 3. (1 điểm) Tính 4 0 cos sin 2 1 cos2 x x M dx x π + = + ∫ Câu 4. (1 điểm) Cho hình hộp . ' ' ' 'ABCD A B C D có đáy là hình thoi cạnh a , AC a= , 2 ' 3 a AA = . Hình chiếu của 'A trên đáy ABCD trùng với trọng tâm của tam giác ABC . Lấy điểm I trên đoạn 'B D và điểm J trên đoạn AC sao cho IJ // 'BC . Tính theo a thể tích của khối hộp . ' ' ' 'ABCD A B C D và khối tứ diện ' 'IBB C Câu 5. (1 điểm) Tìm các giá trị của m để phương trình: 2 2 2 2 1x m x x− + − = có nghiệm thực. Phần tự chọn. (3 điểm). Thí sinh chọn và chỉ làm một trong hai phần: A hoặc B A. Theo chương trình chuẩn: Câu 6. (2 điểm) 1. Trong mặt phẳng tọa độ Oxy cho tam giác ABC vuông tại A , biết B và C đối xứng nhau qua gốc tọa độ. Đường phân giác trong của góc · ABC có phương trình là 2 5 0x y+ − = . Tìm tọa độ các đỉnh của tam giác biết đường thẳng AC đi qua điểm (6;2)K 2. Trong không gian tọa độ Oxyz cho các điểm (1;3;4), (1;2; 3), (6; 1;1)A B C− − và mặt phẳng ( ) : 2 2 1 0x y z α + + − = . Lập phương trình mặt cầu ( )S có tâm nằm trên mặt phẳng ( ) α và đi qua ba điểm , ,A B C . Tìm diện tích hình chiếu của tam giác ABC trên mặt phẳng ( ) α . Câu 7. (1 điểm) Giải phương trình: 1 1 2 1 2 2 9.2 2 0 x x x x + − + + − − + = B. Theo chương trình nâng cao: Câu 6. (2 điểm) 1.Trong mặt phẳng tọa độ Oxy cho hai đường thẳng : 4 3 3 0x y∆ − + = và ':3 4 31 0x y∆ − − = . Lập phương trình đường tròn ( )C tiếp xúc với đường thẳng ∆ tại điểm có tung độ bằng 9 và tiếp xúc với '. ∆ Tìm tọa độ tiếp điểm của ( )C và '∆ . 2. Trong không gian tọa độ Oxyz cho mặt phẳng ( ) : 3 2 29 0x y z α − + − = và hai điểm (4;4;6)A , (2;9;3)B . Gọi ,E F là hình chiếu của A và B trên ( ) α . Tính độ dài đoạn EF . Tìm phương trình đường thẳng ∆ nằm trong mặt phẳng ( ) α đồng thời ∆ đi qua giao điểm của AB với ( ) α và ∆ vuông góc với .AB Câu 7. (1 điểm) Giải hệ phương trình: 3 3 log ( ) log 2 2 2 4 2 ( ) 3( ) 12 xy xy x y x y  = +   + − + =   _________________Hết________________ Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh:………………………… ;Số báo danh…………………… . ĐÔN ĐỀ THI THỬ ĐẠI HỌC NĂM 2012 TỈNH QUẢNG TRỊ Môn: TOÁN - Khối: A,B Thời gian làm bài: 180 phút, không kể thời gian phát đề ĐỀ THI THỬ LẦN 2 Phần bắt buộc (7 điểm) Câu 1. (2điểm) Cho hàm số. (2điểm) Cho hàm số 2 1 1 x y x − = − , (1) và điểm (0;3)A . 1. Khảo sát sự biến thi n và vẽ đồ thị (C) của hàm số (1) 2. Tìm các giá trị của m để đường thẳng : y x m∆ = − + cắt đồ thị (C). =   _________________Hết________________ Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh:………………………… ;Số báo danh……………………

Ngày đăng: 30/07/2015, 16:26

w