1. Trang chủ
  2. » Luận Văn - Báo Cáo

MẠNG NƠRON NHÂN TẠO

44 778 2
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 44
Dung lượng 700,5 KB

Nội dung

tìm hiểu về MẠNG NƠRON NHÂN TẠO

Nghiên cứu về mạng nơron. MỤC LỤC MỤC LỤC .1 CHƯƠNG 1: TỔNG QUAN MẠNG NƠRON NHÂN TẠO 2 1. Giới thiệu chung 2 2. Ý tưởng sinh học .2 3. Mô hình nơron nhân tạo cơ bản 4 4. Sử dụng mạng nơron nhân tạo 6 5. Thu thập dữ liệu cho mạng nơron nhân tạo 7 6. Perceptron nhiều lớp .8 6.1. Huấn luyện Perceptron nhiều lớp 9 6.2. Thuật toán backpropagation .9 6.3. Học quá mức và tổng quát hóa 10 6.4. Chọn lựa dữ liệu .12 CHƯƠNG 2: MÔ HÌNH MẠNG NƠRON NHÂN TẠO 13 1. Mô hình nơron và cấu trúc mạng 13 1.1. Mô hình nơron 13 1.2. Cấu trúc mạng .15 2. Cấu trúc dữ liệu .16 3. Kiểu huấn luyện .17 4. Kết luận .17 CHƯƠNG 3: BACKPROPAGATION .18 1. Tổng quát .18 1.1. Cấu trúc 18 1.2. Huấn luyện mạng .21 2. Huấn luyện nhanh 23 2.1. Giải thuật tốc độ học thay đổi (TRAINDA,TRAINDX) .24 2.2. Giải thuật phục hồi mạng backpropagation (TRAINRP) 24 2.3. Giải thuật conjugate_ gradient .25 2.4. Các thuật toán quasi – newton .27 2.5. Giải thuật Levenberg_Marquardt giảm bộ nhớ (TRAINLM) .28 3. So sánh bộ nhớ và tốc độ 28 4. Cải thiện tính tổng quát hoá 29 4.1. Regularization 30 4.2. Early Stopping 31 5. Kết luận .32 CHƯƠNG 4: GIỚI THIỆU VỀ JOONE .34 1. Giới thiệu chung 34 2. Cấu trúc bên trong của JOONE .35 2.1. Khái niệm cơ bản .35 2.2. Quy tắc truyền tín hiệu .35 2.3. Các loại lớp nơron của JOONE .37 2.4. Các loại dây thần kinh 38 2.5. Monitor : điểm điều khiển trung tâm của mạng nơron .40 3. Tiến trình xử lý trong mạng nơron 40 4. Biểu đồ lớp của JOONE 42 PHỤ LỤC TÀI LIỆU THAM KHẢO 44 1 Nghiên cứu về mạng nơron. CHƯƠNG 1: TỔNG QUAN MẠNG NƠRON NHÂN TẠO 1. Giới thiệu chung Mạng nơron nhân tạo (Artificial Nơron Networks) trong một vài năm trở lại đây đã được nhiều người quan tâm và đã áp dụng thành công trong nhiều lĩnh vực khác nhau, như tài chính, y tế, địa chất và vật lý. Thật vậy, bất cứ ở đâu có vấn đề về dự báo, phân loại và điều khiển, mạng nơron nhân tạo đều có thể ứng dụng được. Sự thành công nhanh chóng của mạng mạng nơron nhân tạo có thể là do một số nhân tố chính sau: • Năng lực: mạng nơron nhân tạo là những kỹ thuật mô phỏng rất tinh vi, có khả năng mô phỏng các hàm cực kỳ phức tạp. Đặc biệt, mạng nơron nhân tạo hoạt động phi tuyến. Trong nhiều năm, mô hình tuyến tính là kỹ thuật được sử dụng rộng rãi trong hầu hết các lĩnh vực, vì thế mô hình tuyến tính có tính chiến lược tối ưu hóa được biết nhiều nhất. • Dễ sử dụng: mạng nơron nhân tạo có tính học theo các ví dụ. Người sử dụng mạng nơron nhân tạo thu thập các dữ liệu đặc trưng, và sau đó gọi các thuật toán huấn luyện để có thể tự học cấu trúc của dữ liệu. Mặc dù người sử dụng làm tất cả những điều cần thiết để có thể chọn và chuẩn bị dữ liệu, sử dụng loại mạng phù hợp và có thể hiểu được các kết quả, nhưng mức độ người sử dụng biết cách áp dụng thành công mạng nơron nhân tạo vẫn thấp hơn nhiều những người sử dụng các phương pháp thống kê truyền thống… Mạng nơron nhân tạo dựa trên việc mô phỏng cấp thấp hệ thống nơron sinh học. Trong tương lai với sự phát triển mô phỏng nơron sinh học, chúng ta có thể có loại máy tính thông minh thật sự. 2. Ý tưởng sinh học Mạng nơron nhân tạo phát triển từ nghiên cứu về trí tuệ nhân tạo; đặc biệt cố gắng bắt chước bộ não có cấu trúc cấp thấp về khả năng học và chấp nhận sai của hệ thống nơron sinh học. Suốt những năm 1960 – 1980 các nhà nghiên cứu về trí tuệ nhân tạo đã tìm ra Expert Systems dựa trên mô hình cấp cao về xử lý lý luận của bộ não. Mặc dù mô hình đã rất thành công trong một vài lĩnh vực, nhưng vẫn chưa bắt chước được trí tuệ con người. Điều này là do cấu trúc 2 Nghiên cứu về mạng nơron. mô hình chưa bằng bộ não. Do đó, để tái tạo trí thông minh, chúng ta cần phải xây dựng những hệ thống có cấu trúc giống bộ não con người. Bộ não con người gồm một số rất lớn nơron (khoảng 10.000.000.000 nơron) kết nối với nhau (trung bình mỗi nơron kết nối với hàng chục ngàn nơron khác). Mỗi nơron là một tế bào đặc biệt, có thể truyền các tín hiệu điện. Nơron có cấu trúc rễ ngõ vào, thân tế bào và cấu trúc rễ ngõ ra (sợi thần kinh). Các sợi thần kinh của một tế bào kết nối với các tế bào khác thông qua synapse. Khi một nơron kích hoạt, nó tạo ra xung điện hóa học dọc theo sợi thần kinh. Tín hiệu này đi qua các synapse đến các nơron khác, và tiếp tục bị kích hoạt. Nơron hoạt động chỉ khi tất cả các tín hiệu nhận được ở thân tế bào thông qua rễ ngõ vào vượt quá một mức nào đó (ngưỡng hoạt động). Cường độ tín hiệu thu được của nơron phụ thuộc vào độ nhạy của synapse. Chỉ có việc học làm thay đổi cường độ kết nối synapse. Ví dụ như theo thí nghiệm có điều kiện Pavlovian cổ điển, gõ chuông trước khi cho chó ăn tối, con chó nhanh chóng học được rằng rung chuông gắn liền với ăn. Kết nối synapse giữa phần vỏ não thính giác và tuyến nước bọt đã nhạy hơn, vì thế khi rung chuông vỏ não thính giác bị kích thích, con chó bắt đầu tiết nước bọt. 3 Nghiên cứu về mạng nơron. Do đó, từ một số rất lớn các đơn vị xử lý rất đơn giản này (mỗi đơn vị thực hiện tổng trọng số các ngõ vào sau đó kích hoạt một tín hiệu nhị phân nếu tổng ngõ vào vượt quá ngưỡng), bộ não điều khiển để hoạt động những công việc cực kì phức tạp. Dĩ nhiên, sự phức tạp trong hoạt động của bộ não không thể trình bày hết, nhưng dù sao mạng trí tuệ nhân tạo có thể đạt được một vài kết quả đáng chú ý với mô hình không phức tạp hơn bộ não. 3. Mô hình nơron nhân tạo cơ bản Nơron nhân tạo được định nghĩa như sau: • Nơron nhân tạo nhận một số các ngõ vào (từ dữ liệu gốc, hay từ ngõ ra các nơron khác trong mạng). Mỗi kết nối đến ngõ vào có một cường độ (hay trọng số), những trọng số này tương ứng với tác dụng synapse trong nơron sinh học. Mỗi nơron cũng có một giá trị ngưỡng. • Tín hiệu được truyền qua hàm kích hoạt (hay còn gọi là hàm truyền) tạo giá trị ngõ ra nơron. Nếu sử dụng hàm truyền nấc (nghĩa là ngõ ra nơron là 0 nếu ngõ vào nhỏ hơn 0, và là 1 nếu ngõ vào lớn hơn hay bằng 0) thì nơron hoạt động giống như nơron sinh học. Thực tế, hàm nấc ít khi sử dụng trong mạng trí tuệ nhân tạo. Lưu ý rằng trọng số có thể âm, nghĩa là synapse có tác dụng kiềm chế hơn là kích hoạt nơron, các nơron kiềm chế có thể tìm thấy trong bộ não. Trên đây mô tả các nơron đơn lẻ. Trong thực tế các nơron được kết nối với nhau. Khi mạng hoạt động, chúng phải có ngõ vào (mang giá trị hoặc biến của thế giới thực) và ngõ ra (dùng để dự 4 Nghiên cứu về mạng nơron. báo hoặc điều khiển). Ngõ vào và ngõ ra tương ứng với các nơron giác quan và vận động, như tín hiệu đưa vào mắt và điều khiển cánh tay. Tuy nhiên chúng còn có các nơron ẩn đóng vai trò ẩn trong mạng. Ngõ vào, nơron ẩn và ngõ ra cần được kết nối với nhau. Vấn đề chính ở đây là hồi tiếp. Một mạng đơn giản có cấu trúc tiến: tín hiệu đi vào ở ngõ vào, qua các nơron ẩn và cuối cùng đến các nơron ngõ ra. Cấu trúc như thế chạy ổn định. Tuy nhiên, nếu mạng có hồi tiếp (chứa các kết nối ngược trở về các nơron trước đó) mạng có thể chạy không ổn định và dao động rất phức tạp. Mạng hồi tiếp rất được các nhà nghiên cứu quan tâm, nhưng cấu trúc tiến đã chứng minh rất hiệu quả trong việc giải quyết các vấn đề thực tế. Mạng nơron nhân tạo tiến cho như hình dưới. Các nơron được sắp xếp theo cấu trúc liên kết lớp riêng biệt. Lớp ngõ vào không phải là nơron thực: các nơron này hoạt động đơn giản là giới thiệu các giá trị của các biến vào. Các nơron lớp ẩn và lớp ngõ ra được kết nối với tất cả các nơron lớp trước đó. Cũng như vậy chúng ta có thể định nghĩa mạng có các kết nối một phần với một vài nơron trong lớp trước đó; tuy nhiên, trong hầu hết các ứng dụng mạng có kết nối đầy đủ vẫn tốt hơn. Cấu trúc mạng nơron nhân tạo 5 Nghiên cứu về mạng nơron. Khi mạng hoạt động, các giá trị biến ngõ vào được đặt vào các nơron ngõ vào, và sau đó các nơron lớp ẩn và lớp ngõ ra lần lượt được kích hoạt. Mỗi nơron tính giá trị kích hoạt của chúng bằng cách lấy tổng các trọng số ngõ ra của các nơron lớp trước đó, và trừ cho ngưỡng. Giá trị kích hoạt truyền qua hàm kích hoạt tạo ra giá trị ngõ ra của nơron. Khi toàn bộ mạng đã hoạt động, các ngõ ra của lớp ngõ ra hoạt động như ngõ ra của toàn mạng. 4. Sử dụng mạng nơron nhân tạo Một loạt vấn đề dẫn tới việc giải quyết bằng mạng nơron được định nghĩa bằng cách nó làm việc hoặc nó được huấn luyện. Mạng nơron nhân tạo làm việc từ những ngõ vào khác nhau, đưa ra những ngõ ra khác nhau. Do đó có thể sử dụng khi biết một vài thông tin và sẽ dự đoán những thông tin chưa biết. Ví dụ: • Dự đoán thị trường chứng khoán: nếu biết giá cả chứng khoán của tuần trước và chỉ số FTSE, ta sẽ dự đoán được giá cả chứng khoán ngày mai. • Điều khiển: ta muốn biết có hay không một robot biết quẹo phải, trái hay chuyển động về một phía để đạt được mục tiêu, ta sẽ biết được những gì robot đang quan sát. Điều kiện quan trọng trong việc sử dụng mạng nơron nhân tạo là phải biết mối liên hệ giữa ngõ vào và ngõ ra biết trước. Mối quan hệ này có thể kéo theo nhiều thứ nhưng nó nhất định phải tồn tại. Tổng quát, nếu ta sử dụng một mạng mạng nơron nhân tạo ta sẽ không biết chính xác trạng thái tự nhiên của mối liên hệ giữa ngõ vào và ngõ ra, nếu ta biết mối liên hệ ta sẽ làm mô hình đó trực tiếp. Một tính năng khác của mạng nơron nhân tạo là nó có thể học mối liên hệ giữa ngõ vào và ngõ ra thông qua việc huấn luyện. Có hai loại huấn luyện sử dụng trong mạng nơron nhân tạo là huấn luyện có giám sát và không giám sát. Với những loại mạng khác nhau thì sử dụng các loại huấn luyện khác nhau. Huấn luyện có giám sát sử dụng thông dụng nhất. Trong việc học có giám sát, người sử dụng mạng phải có một tập hợp dữ liệu cần huấn luyện. Tập hợp này chứa những ngõ vào mẫu với ngõ ra tương ứng và mạng sẽ huấn luyện để đưa ra mối liên hệ giữa ngõ ra và ngõ vào. Tập hợp dữ liệu thường được lấy từ những bản ghi chép trước đó. 6 Nghiên cứu về mạng nơron. Mạng nơron nhân tạo sau đó được huấn luyện bằng một trong các thuật toán học có giám sát (ví dụ backpropagation), sử dụng các dữ liệu để điều chỉnh trọng số và ngưỡng của mạng sao cho cực tiểu hóa sai số trong việc dự báo của mạng trên tập huấn luyện. Nếu mạng được huấn luyện chính xác, nghĩa là nó đã học mô phỏng một hàm chưa biết với mối liên hệ giữa ngõ ra và ngõ vào, do đó với các tín hiệu vào đến sau, mạng sẽ dự báo tín hiệu ra tương ứng. 5. Thu thập dữ liệu cho mạng nơron nhân tạo Một khi ta quyết định giải quyết một vấn đề sử dụng mạng nơron nhân tạo ta cần phải thu thập dữ liệu cho mục tiêu huấn luyện. Tập hợp dữ liệu huấn luyện bao gồm một số các trường hợp, mỗi trường hợp chứa những giá trị của tầm ngõ vào và ngõ ra khác nhau. Những việc đầu tiên cần làm là: những biến nào sử dụng, bao nhiêu trường hợp cần thu thập. Sự lựa chọn các biến do trực giác quyết định. Công việc chuyên môn của ta trong lĩnh vực cần giải quyết sẽ cho ta những ý tưởng về các biến ngõ vào phù hợp. Trong mạng nơron nhân tạo, ta có thể chọn và loại bỏ nhiền biến và mạng nơron nhân tạo cũng có thể xác định bằng thực nghiệm những biến hữu ích. Trong bước một ta nên tính đến bất kì biến nào mà ta nghĩ có ảnh hưởng đến quá trình thiết kế. Mạng nơron nhân tạo xử lý dữ liệu số trong một tầm giới hạn rõ ràng. Điều này đưa ra một vấn đề nếu dữ liệu nằm trong một vùng đặc biệt như dữ liệu chưa biết hay không phải dữ liệu số. May mắn thay có nhiều phương pháp lý tưởng cho vấn đề này, được xây dựng trên mạng nơron nhân tạo. Dữ liệu số được chia nhỏ thành những khoảng thích hợp cho mạng và những giá trị thiếu có thể được thay thế bằng giá trị trung bình hay giá trị thống kê của biến đó thông qua những biến khác đã được huấn luyện. Xử lý dữ liệu không phải là số thì khó hơn. Loại dữ liệu không phải là số thông thường nhất là những biến có giá trị danh định như giới tính (nam, nữ). Biến có giá trị danh định có thể biểu diễn bằng số học và mạng nơron nhân tạo có chức năng hỗ trợ điều này. Tuy nhiên mạng nơron nhân tạo làm việc tốt với những trường hợp biến danh định là một tập nhiều giá trị. Số trường hợp mẫu dùng để huấn luyện mạng rất khó xác định. Đã có một vài hướng dẫn về mối liên hệ giữa số trường hợp mẫu với kích thước mạng (cách đơn giản nhất là số trường hợp mẫu gấp 10 lần số kết nối trong mạng). Thực ra số trường hợp mẫu cũng liên quan đến độ phức tạp của hàm mà mạng phải học. Khi số biến tăng lên, số trường hợp mẫu cần để huấn luyện cũng tăng 7 Nghiên cứu về mạng nơron. phi tuyến, vì thế với một số nhỏ các biến (50 hoặc nhỏ hơn) thì lại cần một số lớn các trường hợp mẫu. Trong hầu hết các vấn đề trong thực tế, số trường hợp mẫu là khoảng hàng trăm hay hàng ngàn mẫu. Đối với những vấn đề rất phức tạp thì cần nhiều hơn, nhưng trường hợp này rất ít. Nếu dữ liệu huấn luyện ít hơn, rõ ràng không đủ thông tin để huấn luyện mạng, và cách tốt nhất là dùng mạng tuyến tính. Nhiều vấn đề trong thực tế có dữ liệu không đáng tin cậy, một vài dữ liệu bị phá hỏng do nhiễu, hoặc các giá trị không phối hợp được với nhau. Mạng nơron nhân tạo có khả năng đặc biệt xử lý dữ liệu bị mất (sử dụng giá trị trung bình hay những giá trị thống kê khác). Vì thế nếu dữ liệu đưa vào ít, ta nên đưa vào những trường hợp giá trị bị mất (rõ ràng nếu không có thì không lý tưởng). mạng nơron nhân tạo cũng chịu được nhiễu, nhưng cũng phải có giới hạn. Nếu thỉnh thoảng có giá trị nằm xa ra khỏi vùng giá trị bình thường thì mạng huấn luyện phải có ngưỡng. Cách tốt nhất đối với trường hợp này là nhận ra và loại bỏ những giá trị nằm xa đó (có thể hủy trường hợp này hoặc xem giá trị nằm xa này là giá trị bị mất). Nếu giá trị xa này khó nhận ra, mạng nơron nhân tạo có chức năng huấn luyện chịu được giá trị nằm khỏi vùng này nhưng cách huấn luyện này thường kém hiệu quả hơn là huấn luyện chuẩn. Tóm lại, cách thu thập dữ liệu có thể nói gọn lại như sau: • Chọn những giá trị huấn luyện có tác dụng. • Dữ liệu số và danh định có thể xử lý trực tiếp bằng mạng nơron nhân tạo. Chuyển những loại biến khác sang một trong các dạng này. • Cần hàng trăm hoặc hàng ngàn trường hợp mẫu huấn luyện; càng nhiều biến thì càng nhiều mẫu huấn luyện. mạng nơron nhân tạo có khả năng nhận ra những biến hữu dụng để huấn luyện. 6. Perceptron nhiều lớp Ngày nay, Perceptron là cấu trúc mạng được dùng phổ biến nhất. Mỗi nơron lấy tổng trọng số và ngưỡng của ngõ vào, qua hàm truyền đến ngõ ra, các nơron được sắp xếp theo các lớp tới. Vì thế mạng có thể mô phỏng các hàm phức tạp tùy theo số lớp và số nơron mỗi lớp. Tùy theo vấn đề mà các nơron có số ngõ vào và ngõ ra khác nhau. Chúng ta không thể biết chính xác sẽ sử dụng bao nhiêu ngõ vào. Tuy nhiên, chúng ta giả sử rằng số ngõ vào có thể chọn 8 Nghiên cứu về mạng nơron. lựa dễ dàng. Và để dễ dàng, thường ta chọn có một lớp ẩn và số nơron trong đó bằng một nửa tổng số ngõ vào và ngõ ra. 6.1. Huấn luyện Perceptron nhiều lớp Khi số các lớp, số nơron mỗi lớp đã được chọn, trọng số và ngưỡng của mạng phải được cài đặt sao cho có được cực tiểu sai số trong việc dự đoán của mạng. Đây chính là công việc của các thuật toán huấn luyện. Các trường hợp mẫu chúng ta thu thập đưa qua mạng để mạng tự điều chỉnh trọng số và ngưỡng sao cho cực tiểu hóa lỗi. Lỗi trong một cấu hình cụ thể của mạng được xác định bằng cách cho chạy tất cả các trường hợp huấn luyện qua mạng, so sánh giá trị ngõ ra của mạng với giá trị mong muốn. Lỗi này được tính theo hàm sai số của mạng. Thông thường hàm sai số là tổng bình phương lỗi (SSE – Sum Squared Error). Khái niệm cần biết thêm là mặt phẳng sai số. Mỗi trọng số và ngưỡng trong tổng số N trọng số và ngưỡng được xem là một chiều trong không gian. Chiều thứ (N + 1) là sai số mạng. Đối với bất kỳ cấu hình trọng số nào, lỗi cũng có thể vẽ ở chiều thứ (N+1), tạo thành mặt phẳng lỗi. Đối tượng của việc huấn luyện mạng là tìm điểm thấp nhất trong mặt phẳng nhiều chiều này. Trong mạng tuyến tính có hàm sai số SSE, mặt phẳng sai số là parapol, nghĩa là có một giá trị nhỏ nhất. Do đó chúng dễ dàng xác định giá trị cực tiểu. Chúng ta không thể xác định được vị trí giá trị nhỏ nhất của mặt phẳng sai số, và vì thế huấn luyện mạng mạng nơron nhân tạo cần phải phân tích tỉ mĩ mặt phẳng sai số. Từ cấu hình ngẫu nhiên các trọng số và ngưỡng ban đầu (nghĩa là điểm ngẫu nhiên trên mặt phẳng sai số) các thuật toán huấn luyện tìm kiếm đến giá trị nhỏ nhất. Thông thường, việc tìm kiếm dựa trên gradient (độ dốc) trên mặt phẳng sai số tại điểm hiện tại, và sau đó sẽ di chuyển xuống giá trị nhỏ hơn. Do đó có nhiều khả năng thuật toán dừng ở điểm thấp là điểm giá trị cực tiểu cục bộ (nhưng dù sao cũng hy vọng là giá trị nhỏ nhất). 6.2. Thuật toán backpropagation. Các ví dụ phổ biến nhất về thuật toán huấn luyện mạng nơron nhân tạo là backpropagation. Các thuật toán bậc hai hiện đại như conjugate gradient descent và Levenberg – Marquardt cơ bản nhanh hơn trong nhiều vấn đề, nhưng backpropagation vẫn có một số ưu điểm trong một vài trường hợp khác, và là thuật toán dễ hiểu nhất. Trong backpropagation, vector gradient của mặt phẳng sai số được tính toán. Vector này chỉ ra đường giảm dốc nhất và vị trí hiện tại, vì thế chúng ta biết rằng nếu chúng ta di chuyển dọc 9 Nghiên cứu về mạng nơron. theo nó một “khoảng ngắn”, cuối cùng chúng ta sẽ đạt được giá trị nhỏ nhất. Khó khăn ở đây là quyết định độ lớn của từng bước di chuyển. Bước lớn có thể hội tụ nhanh hơn, nhưng có thể vượt quá điểm cần đến hay đi ra khỏi vùng có cực tiểu (nếu mặt phẳng sai số bị lệch tâm). Ngược lại, bước quá nhỏ có thể đi đến đúng hướng nhưng chúng ta cần phải thực hiện phép lặp nhiều lần. Trong thực tiễn, kích thước bước tỷ lệ với độ dốc và hằng số đặc biệt: tốc độ học. Giá trị chính xác tốc độ học phụ thuộc vào từng ứng dụng cụ thể, và thường được chọn qua thực tiễn. Thuật toán thường có thêm khái niệm momentum. Momentum sẽ thúc đẩy di chuyển đi theo theo một hướng xác định nếu sau khi qua nhiều bước đi cùng một hướng, thuật toán sẽ di chuyển nhanh hơn, đưa đến khả năng thoát khỏi vùng giá trị cực tiểu cục bộ và cũng có thể di chuyển nhanh chóng qua vùng bằng phẳng. Thuật toán do đó xử lý lặp đi lặp lại, sau một số epoch. Ở mỗi epoch, các trường hợp huấn luyện sẽ được đưa ra xem xét trong mạng, các ngõ ra thực và mong muốn được so sánh và tính toán lỗi. Lỗi này kết hợp với gradent mặt phẳng sai số, sử dụng để điều chỉnh trọng số và sau đó quá trình xử lý lặp lại. Cấu hình mạng ban đầu là ngẫu nhiên, và huấn luyện chỉ dừng lại khi số vòng lặp epoch tối đa cho phép xảy ra hay khi sai số đạt được ở một mức cho phép, hoặc khi sai số không tăng nữa. 6.3. Học quá mức và tổng quát hóa Một vấn đề mà các kỹ thuật trên không thực sự cực tiểu sai số là khi chúng ta đưa một trường hợp mới vào mạng. Nói cách khác, thuộc tính mong muốn nhất của mạng là khả năng tổng quát hóa các trường hợp mới. Thực ra, mạng được huấn luyện cực tiểu hóa sai số dựa trên tập huấn luyện, tập này không hoàn hảo và hữu hạn, rõ ràng sẽ không đúng khi cực tiểu sai số trên mặt phẳng sai số thực – mặt phẳng sai số của mô hình cơ sở và chưa biết. Sự phân biệt ở đây chính là học quá mức hay khít quá mức. Cách dễ nhất để minh họa khái niệm này là việc dò theo đồ thị đường cong đa thức hơn là minh họa bằng mạng nơron nhân tạo nhưng ý nghĩa thì giống nhau. Đa thức là phương trình có các hệ số và lũy thừa hằng số. Ví dụ: y = 2x + 3 y= 3x 2 + 4x + 1 10 [...]... đổi, tạo ra mạng tốt hơn, giảm sự phức tạp để mạng hội tụ 33 Nghiên cứu về mạng nơron CHƯƠNG 4: GIỚI THIỆU VỀ JOONE 1 Giới thiệu chung Xuất phát từ ý tưởng xây dựng một framework để tạo ra một cách tiếp cận mới trong việc ứng dụng mạng nơron nhân tạo Tác giả Paolo Marrone đã và đang phát triển JOONE - Java Object Oriented Neural Engine - một bộ máy thiết kế, đào tạo và ứng dụng mạng nơron nhân tạo xây... HÌNH MẠNG NƠRON NHÂN TẠO Mô hình mạng Nơron tổng quát có dạng như sau: Ngày nay mạng Nơron có thể giải quyết nhiều vấn đề phức tạp đối với con người, áp dụng trong nhiều lĩnh vực như nhận dạng, định dạng, phân loại, xử lý tín hiệu, hình ảnh v.v… 1 Mô hình nơron và cấu trúc mạng 1.1 Mô hình nơron Cấu trúc một Nơron Ngõ vào một nơron có thể là đại lượng vô hướng hoặc có hướng, đại lượng này được nhân. .. quan hệ nơron trong mạng không còn phù hợp nữa • Tất cả các trường hợp phải được khái quát Mạng nơron nhân tạo chỉ có thể học từ những mẫu được đưa vào Do đó mạng nơron nhân tạo không thể có một quyết định đúng khi nơron chưa được huấn luyện • Mạng chỉ có thể học theo cách dễ nhất mà nó có thể mỗi epoch tốt hơn) Backpropagation có tính chất tốt như nhau nếu dữ liệu rất ít 12 Nghiên cứu về mạng nơron. .. ra tuyến tính cho phép mạng tạo giá trị ra khoảng (-1,1) Mặt khác nếu muốn ép buộc ngõ ra của mạng (ví dụ giữa 0 và 1) thì lớp ngõ ra nên sử dụng hàm truyền sigmoid (ví dụ logsig) a Hàm tạo mạng (newff) Bước đầu tiên huấn luyện mạng feedfoward là tạo đối tượng mạng Hàm newff tạo mạng feedforward Ví dụ: Net= newff ( [-1 2; 0 5],[3 1],{‘tarsig’,’purelin’},’traingd’) ; Hàm trên tạo mạng hai ngõ vào, hai... trong một vùng nhỏ Nếu sử dụng nơron tuyến tính thì ngõ ra của mạng có thể lấy bất kỳ giá trị nào 1.1.2 Mạng feedforward Mạng một lớp gồm các nơron logsig có hai ngõ vào như sau: 19 Nghiên cứu về mạng nơron Mạng này thường có một hay nhiều lớp ẩn gồm các nơron sigmoid, lớp ngõ ra thường gồm các nơron tuyến tính Các nơron trong các lớp ẩn có hàm truyền phi tuyến cho phép mạng học các mối quan hệ tuyến... Cấu trúc mạng Hai hay nhiều nơron kết hợp thành một lớp, và một mạng riêng biệt có thể chứa một hay nhiều lớp nơron Một lớp nơron Trong hình dưới mô tả một lớp nơron với: R: số phần tử của vectơ đầu vào S: số nơron trong lớp a: vector ngõ ra của lớp nơron Ma trận trọng số W:  w1,1 w 2 ,1 W =   wS ,1 w1, 2 w1, 2 wS , 2 w1, R  w2 , R     wS , R  15 Nghiên cứu về mạng nơron Một lớp mạng được... tưởng đó 34 Nghiên cứu về mạng nơron 2 Cấu trúc bên trong của JOONE 2.1 Khái niệm cơ bản Một mạng nơron nhân tạo (neural network) được xây dựng từ các lớp nơron (layers), chúng được kết nối với nhau bởi các dây thần kinh (synapses) Tuỳ thuộc vào sự kế nối này thì có một số loại kiến trúc mạng được hình thành như: mạng tiến, mạng trở lại Trong phần này chúng ta chỉ quan tâm đến mạng truyền tiến (Feed Forward... khi đưa dữ liệu mới vào thì mạng lại tạo sai số lớn Mạng có nhớ được các mẫu huấn luyện, nhưng mạng không học được tính tổng quát hóa trường hợp mới Hình dưới cho thấy đáp ứng của mạng 1 – 20 - 1 huấn luyện lần theo hàm sin Rõ ràng mạng này quá khít với dữ liệu và không tổng quát hóa tốt Một phương pháp cải thiện tính tổng quát hóa của mạng là sử dụng mạng với số nơron vừa đủ Mạng càng lớn hàm càng phức... của hàm truyền f Nơron có thể sử dụng nhiều loại hàm truyền khác nhau để tạo ra tín hiệu ngõ ra 18 Nghiên cứu về mạng nơron Mạng đa lớp thường sử dụng hàm truyền log_sigmoid Hàm truyền logsig tạo giá trị ngõ ra giữa 0 và 1 khi ngõ vào biến thiên từ -: đến +: Hơn nữa, mạng đa lớp cũng có thể sử dụng hàm truyền tansig Nếu lớp cuối cùng của mạng đa lớp có các nơron sigmoid thì ngõ ra của mạng giới hạn trong... Nghiên cứu về mạng nơron Trước khi huấn luyện mạng feedforward, trọng số và ngưỡng phải được khởi tạo Dùng lệnh init để tạo giá trị đầu cho trọng số và ngưỡng Ví du ï: net = init (net) Kỹ thuật cụ thể sử dụng khởi tạo giá trị mạng phụ thuộc vào các thông số mạng như net.initFcn và net.Layer{I}.initFcn Thông số net.initFcn sử dụng xác định hàm khởi động trên toàn mạng Hàm mặc định cho mạng feedforward . Nghiên cứu về mạng nơron. CHƯƠNG 1: TỔNG QUAN MẠNG NƠRON NHÂN TẠO 1. Giới thiệu chung Mạng nơron nhân tạo (Artificial Nơron Networks) trong một. và điều khiển, mạng nơron nhân tạo đều có thể ứng dụng được. Sự thành công nhanh chóng của mạng mạng nơron nhân tạo có thể là do một số nhân tố chính

Ngày đăng: 13/04/2013, 08:58

HÌNH ẢNH LIÊN QUAN

mô hình chưa bằng bộ não. Do đó, để tái tạo trí thông minh, chúng ta cần phải xây dựng những hệ thống có cấu trúc giống bộ não con người. - MẠNG NƠRON NHÂN TẠO
m ô hình chưa bằng bộ não. Do đó, để tái tạo trí thông minh, chúng ta cần phải xây dựng những hệ thống có cấu trúc giống bộ não con người (Trang 3)
3. Mô hình nơron nhân tạo cơ bản - MẠNG NƠRON NHÂN TẠO
3. Mô hình nơron nhân tạo cơ bản (Trang 4)
Mạng nơron nhân tạo tiến cho như hình dưới. Các nơron được sắp xếp theo cấu trúc liên kết lớp riêng biệt - MẠNG NƠRON NHÂN TẠO
ng nơron nhân tạo tiến cho như hình dưới. Các nơron được sắp xếp theo cấu trúc liên kết lớp riêng biệt (Trang 5)
CHƯƠNG 2: MÔ HÌNH MẠNG NƠRON NHÂN TẠO - MẠNG NƠRON NHÂN TẠO
2 MÔ HÌNH MẠNG NƠRON NHÂN TẠO (Trang 13)
Một nơron được cho trên hình vẽ sau với vector nhập p= [p1 ,p 2, ……pR ], trọng số = w1,1, w1,2,……w1,R, ngưỡng b và hàm truyền f  - MẠNG NƠRON NHÂN TẠO
t nơron được cho trên hình vẽ sau với vector nhập p= [p1 ,p 2, ……pR ], trọng số = w1,1, w1,2,……w1,R, ngưỡng b và hàm truyền f (Trang 14)
Trong hình dưới mô tả một lớp nơron với: R: số phần tử của vectơ đầu vào S: số nơron trong lớp - MẠNG NƠRON NHÂN TẠO
rong hình dưới mô tả một lớp nơron với: R: số phần tử của vectơ đầu vào S: số nơron trong lớp (Trang 15)
Hình dưới cho thấy đáp ứng của mạng 1– 20-1 huấn luyện lần theo hàm sin. Rõ ràng mạng này quá khít với dữ liệu và không tổng quát hóa tốt. - MẠNG NƠRON NHÂN TẠO
Hình d ưới cho thấy đáp ứng của mạng 1– 20-1 huấn luyện lần theo hàm sin. Rõ ràng mạng này quá khít với dữ liệu và không tổng quát hóa tốt (Trang 29)
trainbr. Hình dưới cho thấy đáp ứng của mạng 1-20-1 không quá khít dữ liệu, và do đó mạng sẽ - MẠNG NƠRON NHÂN TẠO
trainbr. Hình dưới cho thấy đáp ứng của mạng 1-20-1 không quá khít dữ liệu, và do đó mạng sẽ (Trang 31)
Loại Synapse Hình biễu diễn Mô tả - MẠNG NƠRON NHÂN TẠO
o ại Synapse Hình biễu diễn Mô tả (Trang 39)
Theo tuần tự của nhãn trên hình vẽ chúng ta thấy tiến trình học của mạng được xử lý như sau: - MẠNG NƠRON NHÂN TẠO
heo tuần tự của nhãn trên hình vẽ chúng ta thấy tiến trình học của mạng được xử lý như sau: (Trang 41)

TỪ KHÓA LIÊN QUAN

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w